Answer:
The correct option is;
c. Plot a point not on the original line segment
Step-by-step explanation:
The steps to copy a line segment are;
1) Plot a point that will be an endpoint of the new line segment
2) With the compass pin at the beginning of the original line segment, open the compass width to the end of the original line segment
3) With the adjusted compass width from the above step place the compass pin at the plotted point of the new line segment and draw an arc in the region the new line segment is to be located
4) Select a point on the arc where the other end of the new line will be
5) From the selected point from the above step, draw a line to the point plotted as the beginning of the new line segment
6) The length of the line drawn above is the same as the length of the original line segment.
Point B is on line segment AC. Given BC=9 and AB=11, determine the length AC.
Answer:
[tex]AC=20[/tex]
Step-by-step explanation:
The line segment AC is the entire length of the line. Within this segment, point B is found.
Point B, in a way, splits the segment into two, creating the segments AB and BC.
To find the length of AC, add the lengths of the lines AB and BC together:
[tex]AB=11\\BC=9\\AB+BC=AC\\11+9=AC\\20=AC[/tex]
The length of AC is 20.
:Done
Answer:
20 units.
Step-by-step explanation:
Segment AC is broken into two parts by point B. That means that the length of segment AB plus the length of segment BC equals the length of segment AC.
If BC = 9, and AB = 11, AC = 9 + 11 = 20 units.
Hope this helps!
Water flows from a bathroom tap at a rate of 2 gallons every 6 seconds. At this rate, how many minutes will it take to fill an 80-gallon tub?
Answer:
240 minutes
Step-by-step explanation:
i divide 80 divided by 2 then multiply the answer which is 40 by 6 and get 240
4x
5.
If 7:5 = (x + 2y): (x - y), find the value of
5y
Answer:
5/2 OR 2.5
Step-by-step explanation:
( x + 2y ) = 7 , ( x - 2y ) = 5
x = 7 - 2y , x = 5 + 2y
substitute the two eqns together:
7 - 2y = 5 + 2y
7 - 5 = 2y + 2y
2 = 4y
y = 1/2
when y = 1/2 ,
5y = 5(1/2)
= 5/2 OR 2.5
Let f(p) be the average number of days a house stays on the market before being sold for price p in $1,000s. Which statement best describes the meaning of f(250)?
Answer:
Hey There!! The Correct answer C: ) is the average number of days a house stays on the market before being sold for price p in $1,000s
A little more clearer explanation:
p is the price in $1000s, and
f(p) is the number of days before its sold for p
Hence, f(250) would be the number of days before its sold for 250,000 (since p is in $1000s)
Answer choice C is the correct one.
Hope It Helped!~ ♡
ItsNobody~ ☆
Answer: C
Step-by-step explanation: This is the average number of days the house stayed on the market before being sold for $250,000
x^{2m+n} * x^{n-m} / x^{m+2n}
Answer:
=x
Step-by-step explanation:
Answer:
[tex]\boxed{1}[/tex]
Step-by-step explanation:
[tex]x^{2m+n} * x^{n-m} / x^{m+2n}[/tex]
When bases are same for exponents in division, subtract exponents.
[tex]x^{2m+n} * x^{n-m-(m+2n)}[/tex]
[tex]x^{2m+n} * x^{n-m-m-2n}[/tex]
[tex]x^{2m+n} * x^{-n-2m}[/tex]
When bases are same for exponents in multiplication, add exponents.
[tex]x^{2m+n+-n-2m}[/tex]
[tex]x^{2m+0-2m}[/tex]
[tex]x^0[/tex]
Any base with power or exponent of 0 is 1.
[tex]x^{0}=1[/tex]
have two one-quart jars; the first is filled with water, and the second is empty. I pour half of the water in the first jar into the second, then a third of the water in the second jar into the first, then a fourth of the water in the first jar into the second, then a fifth of the water in the second jar into the first, and so on. How much water in quarts is in the first jar after the $10^{\textrm{th}}$ pour? Express your answer as a common fraction.
Answer:
water in quarts is in the first jar after 10th pour = 12/11
Step-by-step explanation:
Let X represent first jar and Y represents second jar.
have two one-quart jars; the first is filled with water, and the second is emptyLets give the initial value of 2 to the first jar which is filled with water. Lets say there are two liters of water in first jar.
Lets give the initial value of 0 to the second as it is empty.
So before any pour, the values are:
X: 2
Y: 0
pour half of the water in the first jar into the secondAfter first pour the value of jar X becomes:
Previously it was 2.
Now half of water is taken i.e. half of 2
2 - 1 = 1
So X = 1
The value of jar Y becomes:
The half from jar X is added to second jar Y which was 0:
After first pour the value of jar Y becomes:
0 + 1 = 1
Y = 1
a third of the water in the second jar into the firstAfter second pour the value of jar X becomes:
Previously it was 1.
Now third of the water in second jar Y is added to jar X
1 + 1/3
= (3 + 1)/3
= 4/3
X = 4/3
After second pour the value of jar Y becomes:
Previously it was 1.
Now third of the water in Y jar is taken and added to jar X so,
1 - 1/3
= (3 - 1)/3
= 2/3
Y = 2/3
a fourth of the water in the first jar into the secondAfter third pour the value of jar X becomes:
Previously it was 4/3.
Now fourth of the water in the first jar X is taken and is added to jar Y
= 3/4 * (4/3)
= 1
X = 1
After third pour the value of jar Y becomes:
Previously it was 2/3
Now fourth of the water in the second jar X is added to jar Y
= 2/3 + 1/4*(4/3)
= 2/3 + 4/12
= 1
Y = 1
a fifth of the water in the second jar into the firstAfter fourth pour the value of jar X becomes:
Previously it was 1
Now fifth of the water in second jar Y is added to jar X
= 1 + 1/5*(1)
= 1 + 1/5
= (5+1) / 5
= 6/5
X = 6/5
After fourth pour the value of jar Y becomes:
Previously it was 1.
Now fifth of the water in Y jar is taken and added to jar X so,
= 1 - 1/5
= (5 - 1) / 5
= 4/5
Y = 4/5
a sixth of the water in the first jar into the secondAfter fifth pour the value of jar X becomes:
Previously it was 6/5
Now sixth of the water in the first jar X is taken and is added to jar Y
5/6 * (6/5)
= 1
X = 1
After fifth pour the value of jar Y becomes:
Previously it was 4/5
Now sixth of the water in the first jar X is taken and is added to jar Y
= 4/5 + 1/6 (6/5)
= 4/5 + 1/5
= (4+1) /5
= 5/5
= 1
Y = 1
a seventh of the water in the second jar into the firstAfter sixth pour the value of jar X becomes:
Previously it was 1
Now seventh of the water in second jar Y is added to jar X
= 1 + 1/7*(1)
= 1 + 1/7
= (7+1) / 7
= 8/7
X = 8/7
After sixth pour the value of jar Y becomes:
Previously it was 1.
Now seventh of the water in Y jar is taken and added to jar X so,
= 1 - 1/7
= (7-1) / 7
= 6/7
Y = 6/7
a eighth of the water in the first jar into the secondAfter seventh pour the value of jar X becomes:
Previously it was 8/7
Now eighth of the water in the first jar X is taken and is added to jar Y
7/8* (8/7)
= 1
X = 1
After seventh pour the value of jar Y becomes:
Previously it was 6/7
Now eighth of the water in the first jar X is taken and is added to jar Y
= 6/7 + 1/8 (8/7)
= 6/7 + 1/7
= 7/7
= 1
Y = 1
a ninth of the water in the second jar into the firstAfter eighth pour the value of jar X becomes:
Previously it was 1
Now ninth of the water in second jar Y is added to jar X
= 1 + 1/9*(1)
= 1 + 1/9
= (9+1) / 9
= 10/9
X = 10/9
After eighth pour the value of jar Y becomes:
Previously it was 1.
Now ninth of the water in Y jar is taken and added to jar X so,
= 1 - 1/9
= (9-1) / 9
= 8/9
Y = 8/9
a tenth of the water in the first jar into the secondAfter ninth pour the value of jar X becomes:
Previously it was 10/9
Now tenth of the water in the first jar X is taken and is added to jar Y
9/10* (10/9)
= 1
X = 1
After ninth pour the value of jar Y becomes:
Previously it was 8/9
Now tenth of the water in the first jar X is taken and is added to jar Y
= 8/9 + 1/10 (10/9)
= 8/9 + 1/9
= 9/9
= 1
Y = 1
a eleventh of the water in the second jar into the firstAfter tenth pour the value of jar X becomes:
Previously it was 1
Now eleventh of the water in second jar Y is added to jar X
= 1 + 1/11*(1)
= 1 + 1/11
= (11 + 1) / 11
= 12/11
X = 12/11
After tenth pour the value of jar Y becomes:
Previously it was 1.
Now eleventh of the water in Y jar is taken and added to jar X so,
= 1 - 1/11
= (11-1) / 11
= 10/11
Y = 10/11
Answer:
6/11
Step-by-step explanation:
1/2 + (1/2)(2/11) = 6/11
sus
a farmer has 40 4/5 of beans 3/4 of the beans are pinto beans how many pounds of pinto bean are there
Answer: Amount of pinto beaks [tex]=30\dfrac{3}{5}\text{ pounds}[/tex]
Step-by-step explanation:
Given: Amount of beans a farmer has = [tex]40\dfrac{4}{5}\text{ pounds}=\dfrac{40\times5+4}{5}\text{ pounds}[/tex]
[tex]=\dfrac{204}{5}\text{ pounds}[/tex]
Also, [tex]\dfrac{3}{4}[/tex] of the beans are pinto beans .
Amount of pinto beaks = [tex]\dfrac 34\times[/tex] (Amount of beans a farmer has)
= [tex]\dfrac34\times\dfrac{204}{5}=\dfrac{153}{5}\text{ pounds}[/tex]
[tex]=30\dfrac{3}{5}\text{ pounds}[/tex]
Amount of pinto beaks [tex]=30\dfrac{3}{5}\text{ pounds}[/tex]
A personal trainer keep track of the number of minutes each of his 20 clients exercise on the treadmill and the number of calories each client burned during that time removing. which TWO of these data points will cause the correlation coefficient to decrease the most?
A). Data point A
B). Data point B
C). Data point C
D). Data point D
Answer:
Data Point B and Data point E
Step-by-step explanation:
Data point B and data point E are the farthest and are more distant away from the best line of fit compared to other data points. The more clustered data points are, the more the correlation that exists between the variables in question.
Therefore, data point B and data point E, will cause the correlation coefficient to decrease the most.
find the multiplicative inverse of 3 by 4 minus 5 by 7
Answer:
28
Step-by-step explanation:
[tex]\frac{3}{4}-\frac{5}{7}[/tex]
Least Common Denominator of 4 & 7 is 4 * 7 = 28
[tex]\frac{3}{4}-\frac{5}{7}=\frac{3*7}{4*7}-\frac{5*4}{7*4}\\\\\\=\frac{21}{28}-\frac{20}{28}\\\\\\=\frac{21-20}{28}\\\\\\=\frac{1}{28}[/tex]
Multiplicative inverse of [tex]\frac{1}{28}[/tex] is [tex]\frac{28}{1} = 28[/tex]
An average person's hair grows at a rate of 19cm per year how fast in inches per month does the average person hair grow in conversion factor round you answer to the nearest tenths
Answer:
Around 1.6 cm per month
Step-by-step explanation:
We can set up a proportion to find how much the hair grows per month. It's important to note that there are 12 months in a year, so we can represent a year as 12 months.
[tex]\frac{19}{12} = \frac{x}{1}[/tex]
We can now cross multiply:
[tex]19\cdot1=19\\\\19\div12=1.58\overline{33}[/tex]
1.58333... rounds to 1.6.
Hope this helped!
A.) Pinky bought 1. 1/2 kg of apples and 5. 1/4 kg of mangoes 1. 1/2 kg of oranges. Find the total weight of fruits B.) if her family eats 3/4 kg of apples and 2. 1/2 kg of mangoes and 1/2 kg of oranges. Find the weight of fruits left (Please say the answer with explanation who says the answer first I will mark them as the brainliest)
Answer:
A. Total weight of the fruits is 2.25 kg
B. There are no more fruits left.
Step-by-step explanation:
A.
To get the total weight of the fruits, we will first of all have to sort out the fruits and multiply the weight of the fruits by the number available.
Weight of apples:
we have one 1apple weighing 1/2 kg. The weight will be 1 |X 1/2 = 1/2 kg
Weight of mangoes:
We have five mangoes weighing 1/4 kg. Total weight will be 5 X 1/4 = 5/4 kg
Weight of oranges:
We have one orange weighing 1/2 kg. Total weight will be 1X 1/2 = 1/2 kg
Total weight of the fruits will be total weight of Mangoes + oranges + apples
= 1/2 + 5/4 + 1/2 = 2.25kg
B.
If her family begins to eat off some portions of the fruits, we will have to calculate the sum total of all the weights of fruits eaten
The portion eaten will be 3/4 + (2 X 1/2) + 1/2 = 2.25kg
If this happens the family would have eaten all of the fruits because
the original weight present is only 2.25kg of fruits to start with
what is the sum of the interior angles of a regular hexagon
Answer:
see below
Step-by-step explanation:
The sum of the interior angles of any polygon can be found with the formula 180(n - 2) where n = number of sides. In this case, n = 6 so the answer is 180(6 - 2) = 180 * 4 = 720°.
Answer:
The sum of the interior angles of a regular hexagon is 720°
Step-by-step explanation:
As we know that the sum of interior angle is 180(n-2). So the number of sides of hexagon is 6. Now, 180(6-2)=180*4=720°
1. In a right triangle, the lengths of the legs are a and b. Find the length of a hypotenuse, if: a=1, b=1; 2. In a right triangle, the length of a hypotenuse is c and the length of one leg is a. Find the length of the other leg, if: c=5, a=3;
Answer:
1. [tex]c = \sqrt{2}[/tex].
2. b = 4.
Step-by-step explanation:
To solve these two questions, keep the Pythagorean Theorem in mind: [tex]a^2 + b^2 = c^2[/tex]. Also remember that measurements cannot be negative, so we will disregard the negative answers.
1. a = 1, and b = 1. c = ?
[tex]1^2 + 1^2 = c^2[/tex]
[tex]1 + 1 = c^2\\[/tex]
[tex]c^2 = 1 + 1\\c^2 = 2\\\sqrt{c^2} = \sqrt{2}\\c = \sqrt{2}[/tex]
2. a = 3, c = 5. b = ?
[tex]3^2 + b^2 = 5^2\\9 + b^2 = 25\\b^2 = 16\\\sqrt{b^2} = \sqrt{16}\\b = 4[/tex]
Hope this helps!
PLS HELP I WILL GIVE BRAINLIST AND A THANK YOU!!!!!!!! Pls help me :)
Answer:
67°
Step-by-step explanation:
CGE + AGC + AGG = 180 (angles on a straight line)
23°+90°+x=180°
x=67°
There are 9 classes of 25 students each, 4 teachers, and two times as many chaperones as teachers.
Each bus holds a total of 45 people.
What is the least number of buses needed for the field trip?
5 buses is the answer pls mark me brainliest
Least number of bus require for trip = 5 buses
What is Unitary method?It is a method where we find the value of a single unit from the value of multiple units and the value of multiple units from the value of a single unit.
Steps to Use Unitary Method
First, let us make a note of the information we have. There are 5 ice-creams. 5 ice-creams cost $125.
Step 1: Let’s find the cost of 1 ice cream. In order to do that, divide the total cost of ice-creams by the total number of ice-creams. The cost of 1 ice-cream = Total cost of ice-creams/Total number of ice-creams = 125/5 = 25. Therefore, the cost of 1 ice cream is $25.
Step 2: To find the cost of 3 ice-creams, multiply the cost of 1 ice cream by the number of ice-creams. The cost of 3 ice-creams is cost of 1 ice-cream × number of ice-creams = 25 × 3 = $75. Finally, we have the cost of 3 ice-creams i.e. $75.
Given:
Total number of classes = 9
Number of student in each class = 25
Number of teacher = 4
Number of chaperones = Double of teacher
Bus hold = 45 people
Now,
Total number of student = 9 × 25
= 225
Number of chaperones = 4 × 2
= 8
Total people = 225 + 8 + 4
= 237
Least number of bus require for trip = Total people / Bus hold
= 237 / 45
= 5.266
Learn more about unitary method here:
https://brainly.com/question/22056199
#SPJ2
Please solve (will make brainiest)
Answer:
1a) 1/64
1b) 1/169
1c) 1/9
Step-by-step explanation:
You have to apply Indices Law :
[tex] {a}^{ - n} = \frac{1}{ {a}^{n} } [/tex]
Question A,
[tex] {4}^{ - 3} = \frac{1}{ {4}^{3} } = \frac{1}{64} [/tex]
Question B,
[tex] {13}^{ - 2} = \frac{1}{ {13}^{2} } = \frac{1}{169} [/tex]
Question C,
[tex] {( - 3)}^{ - 2} = {( - \frac{1}{3}) }^{2} = \frac{1}{9} [/tex]
1.Solve by factorization method: x+1/x=11 1/11 2.Comment on the nature of roots for 4x^2-5=2(〖x+1)〗^2-7 plz, help...
Answer:
The equation
[tex]4\,x^2-5=2\,(x+1)^2-7[/tex]
can be solved by first expanding all indicated operations, and later when the constant terms disappear, by factoring out 2x , leaving the equation as a product of two factors equal zero, from which it is easy to extract the roots. See below.
Step-by-step explanation:
When solving for x in the following expression, and using factoring to apply at the end the zero product theorem:
[tex]4\,x^2-5=2\,(x+1)^2-7\\4\,x^2-5=2\,(x^2+2x+1)-7\\4\,x^2-5=2\,x^2+4\,x+2-7\\4\,x^2-5=2\.x^2+4\,x-5\\4\,x^2=2\,x^2+4\,x\\4\,x^2-2\,x^2-4\,x=0\\2\,x^2-4\,x=0\\2\,x\,(x-2)=0[/tex]
We observe that for the last product, to get a zero, x has to be zero (making the first factor zero), or x has to be "2" making the binomial factor zero.
20 squared (+5) divided by 100
The answer is 4.05
Step-by-step explanation:
20^2 is 20•20 which is 400 || +5=405 || /100=4.05
|3x–1|=8 please help!!!!!
Answer: -3
Add 1 to both sides
[tex]3x-1+1=8+1[/tex]
[tex]3x=9[/tex]
Divide both sides by 3
[tex]3x/3=9/3\\x=3[/tex]
PLEASE help me with this question!!! REALLY URGENT!
Answer:
B
Step-by-step explanation:
So we have a table of values of a used car over time. At year 0, the car is worth $20,000. By the end of year 8, the car is only worth $3400.
We can see that this is exponential decay since each subsequent year the car depreciates by a different value.
To find the rate of change the car depreciates, we simply need to find the value of the exponential decay. To do this (and for the most accurate results) we can use the last term (8, 3400).
First, we already determined that the original value (year 0 value) of the car is 20,000. Therefore, we can say:
[tex]f(t)=20000(r)^t[/tex]
Where t is the time in years and r is the rate (what we're trying to figure out).
Now, to solve for r, use to point (8, 3400). Plug in 8 for t and 3400 for f(t):
[tex]3400=20000(r)^8\\3400/20000=17/100=r^8\\r=\sqrt[8]{17/100}\approx0.8[/tex]
In other words, the rate of change modeled by the function is 0.8.
As expected, this is exponential decay. The 0.8 tells us that the car depreciates by 20% per year.
I answered all my work correctly but I don’t understand this one.
For the function f(x) = -12x + 7, find the
matching value for x when f(x) = 17. Write
your answer as a fraction.
Answer:
[tex]\large\boxed{x=-\frac{5}{6}}[/tex]
Step-by-step explanation:
f(x) is the same value as y. Therefore, y = 17. We can place this into slope intercept form (except with a defined value for y) and solve for x.
Start by subtracting 7 from both sides. Then, divide by -12 to solve for x. Finally, simplify the fraction.
17 = -12x + 7
10 = -12x
-10/12 = x
-5/6 = x
[tex]\large\boxed{x=-\frac{5}{6}}[/tex]
Remember, a percent is a fractional part
of 100. In a bag of candy, 15 of the 50
pieces are red. What percentage of the
candy is red?
mex
B 50%.
C 3006
D 659
Answer:
Step-by-step explanation:
B
Answer:
The answer would be 30% (although I don't see that as an answer).
Step-by-step explanation:
This is because when you multiply the denominator times a number that makes the denominator 100 and multiply that same number by the numerator you get the percentage of the sample you are looking at on the numerator.
15/50 = (15*2)/(50*2) = 30/100 = 30%
What is the rate of change and initial value for the linear relation that includes the points shown in the table?
ху
1 | 20
3 | 10
5 | 0
7 | -10
A. Initial value: 20, rate of change: 10
B. Initial value: 30, rate of change: 10
C. Initial value: 25, rate of change: -5
D. Initial value: 20, rate of change: -10
Answer:
C, at 0/25, 1/20, 2/15, 3/10,...
Answer:
C
Step-by-step explanation:
James conducted an experiment with 4 possible outcomes. He determined that the experimental probability of event A happening is 10 out of 50. The theoretical probability of event A happening is 1 out of 4. Which action is most likely to cause the experimental probability and theoretical probabilities for each event in the experiment to become closer? removing the last 10 trials from the experimental data completing the experiment many more times and combining the results to the trials already done including a fifth possible outcome performing the experiment again, stopping immediately after each event occurs once
Answer:
Completing the experiment a few more times and combining the results to the trails already done.
Answer:
Completing the experiment a few more times and combining the results to the trails already done.
Step-by-step explanation:
4.
Aliyah, Brenda and Candy share a sum of money in the ratio of 3:5:6. After
Candy gives $100 to Aliyah and $50 to Brenda, the ratio becomes 2 : 3:3.
(a) Suppose Aliyah has $3x at the start, express Candy's initial sum of money in
terms of x.
(b) Find the value of x.
(c) Hence, how much money does Brenda have in the end?
Answer:
(a) Candy's initial sum as a terms of x is $6x
(b) x = $60
(c) $350
Step-by-step explanation:
The given parameters are;
The ratio in which Aliyah, Brenda and Candy share the sum of money = 3:5:6
The amount Candy later gives Aliyah = $100
The amount Candy later gives Brenda = $50
The new ratio of the sum of the shared money between Aliyah, Brenda and Candy = 2:3:3
(a) Whereby Aliyah has $3x at the start, we have;
Total sum of mony = Y
Amount of Aliyah's initial share = Y × 3/(3 + 5 + 6) = Y×3/14
Therefore, Y×3/14 = $3x
x = Y×3/14 ÷ 3 = Y/14
Amount of Candy's initial share = Y × 6/14
Therefore Candy's initial sum as a terms of x = $6x
(b) Given that Aliyah's and Candy's initial sum as a function of x are $3x and $6x, therefore, in the ratio 3:5:6, Brenda's initial sum as a function of x = $5x
Which gives;
Total amount of money = $14x
With
6x - 150, 3x + 100, and 5x + 50, the ratio =is 2:3:3
Therefore, we have;
14·x × 2/(2 + 3 + 3) = (6·x - 150)
14·x × 2/(8) = (6·x - 150)
14·x × 1/4 = (6·x - 150)
7·x/2 = (6·x - 150)
12·x - 300 = 7·x
12·x - 7·x = 300
5·x = 300
x = $60
(b) The final amount of money with Brenda = 5x + 50 = 5 × 60 + 50 = $350
The final amount of money with Brenda = $350.
A shop sells DVDs and CDs.
DVDs are sold at one price.
CDs are sold at a different price.
2 DVDs and 1 CD cost £35
2 DVDs and 2 CDs cost £45
Martin has £50 Does he have enough to buy 1 DVD and 3 CDs?
Answer:
Step-by-step explanation:
Lets Price of a DVD is fixed i.e. 15
and One CD price is 5 (Not fixed)
In First situation
2 DVDs and 1 CD cost = 35 as given
2 x 15 + 5 = 35
Lets one CD price is 7.5
In Second situation
2 x 15 + 2 x 7.5 = 45
Its mean CD price may be between 5 to 7.5
In asked scenario, Martin has 50
1 DVD and 3 CDs?
1 x 15 + 3 x 7.5 = 37.5
37.5 is lesser than 50
Hence Martin has enough to buy 1 DVD and 3 CDs.
Which system of linear inequalities is represented by
the graph?
Oy> x-2 and y < x + 1
O y< x-2 and y > x + 1
Oy x + 1
O y > x-2 and y < x + 1
Answer:
The correct option is;
y < x - 2, and y > x + 1
Step-by-step explanation:
The given graph of inequalities is made up of parallel lines. Therefore, the slope of the inequalities are equal
By examination of the graph, the common slope = (Increase in y-value)/(Corresponding increase in x-value) = (0 - 1)/(-1 - 0) = 1
Therefore, the slope = 1
We note that the there are three different colored regions, therefore, the different colored regions opposite to each inequalities should be the areas of interest
The y-intercept for the upper bounding linear inequality, (y >) is 1
The y-intercept for the lower bounding linear inequality, (y <) is -2
The two inequalities are y > x + 1 and y < x - 2
The correct option is y < x - 2, and y > x + 1.
The system of linear inequalities is represented by the graph is y> x-2 and y < x + 1
Inequalities is an expression that shows the non equal comparison of two or more variables and numbers.
Given that:
y and x are variables, plotting the inequalities using geogebra online graphing tool.The system of linear inequalities is represented by the graph is y> x-2 and y < x + 1
Find out more on linear inequalities at: https://brainly.com/question/21103162
The pepper plant has 2/3 as many fruits on it as the tomato plant has. The tomato plant has 9 fruits on it. How many fruits does the pepper plant have on it?
Answer:
The pepper plant has 15 fruits on it.
Step-by-step explanation:
Let the tomato plant have x plants. Let the pepper plant have y plants. Since the pepper plant has 2/3 more fruits on it than the tomato plant, we have that y - x = 2x/3
collecting like terms,
y = 2x/3 + x
The above is the number of plants the pepper plant has.
y = 2x/3 + x
y = (2x + 3x)/3
y = 5x/3
Since x = number of fruits on tomato plant = 9, then
y = 5x/3
y = 5(9)/3
y = 5 × 3
y = 15
Since y = number of fruits on pepper plant = 15
So, the pepper plant has 15 fruits on it.
. Find two polynomial expressions whose quotient, when simplified, is 1/x . Use that division problem to determine whether polynomials are closed under division.
Answer:
The two polynomials are:
(x + 1) and (x² + x)
Step-by-step explanation:
A polynomial is simply an expression which consists of variables & coefficients involving only the operations of addition, subtraction, multiplication, and non - negative integer exponents of variables.
Now, 1 and x are both polynomials. Thus; 1/x is already a quotient of a polynomial.
Now, to get two polynomial expressions whose quotient, when simplified, is 1/x, we will just multiply the numerator and denominator by the same polynomial to get more quotients.
So,
Let's multiply both numerator and denominator by (x + 1) to get;
(x + 1)/(x(x + 1))
This gives; (x + 1)/(x² + x)
Now, 1 and x are both polynomials but the expression "1/x" is not a polynomial but a quotient and thus polynomials are not closed under division.