Answer:
a. Constant shape
In the following reaction, what is the quantity of heat (in kJ) released when 5.87 moles of CH₄ are burned?
CH₄ (g) + 2 O₂ (g) → CO₂ (g) + 2 H₂O(g) ∆H° = -802 kJ/mol
Taking into account the definition of enthalpy of a chemical reaction, the quantity of heat released when 5.87 moles of CH₄ are burned is 4,707.74 kJ.
The enthalpy of a chemical reaction as the heat absorbed or released in a chemical reaction when it occurs at constant pressure. That is, the heat of reaction is the energy that is released or absorbed when chemicals are transformed into a chemical reaction.
The enthalpy is an extensive property, that is, it depends on the amount of matter present.
In this case, the balanced reaction is:
CH₄ (g) + 2 O₂ (g) → CO₂ (g) + 2 H₂O(g)
and the enthalpy reaction ∆H° has a value of -802 kJ/mol.
This equation indicates that when 1 mole of CH₄ reacts with 2 moles of O2, 802 kJ of heat is released.
When 5.87 moles of CH₄ are burned, then you can apply the following rule of three: if 1 mole of CH₄ releases 802 kJ of heat, 5.87 moles of CH₄ releases how much heat?
[tex]heat=\frac{5.87 molesof CH_{4}x802 kJ}{1 mol of CH_{4} }[/tex]
heat= 4,707.74 kJ
Finally, the quantity of heat released when 5.87 moles of CH₄ are burned is 4,707.74 kJ.
Learn more:
https://brainly.com/question/15355361?referrer=searchResultshttps://brainly.com/question/16982510?referrer=searchResultshttps://brainly.com/question/13813185?referrer=searchResultshttps://brainly.com/question/19521752A car is traveling 70km in 45 minutes. How many miles an hour is the car traveling?
52
Explanation:
70x45÷60= 52
I hope this is helpful
Fill in the left side of this equilibrium constant equation for the reaction of benzoic acid with water
Answer:
C6H5CO2H (aq) + H2O (l) _C6H5CO2- + H3OAn element with 5 valence electrons would be a
0 - 3 anion
O +5 anion
0-5 cation
O + 3 cation
Answer:
ask you subject teacher
Explanation:
as the solar nebula cooled which compounds were the first to condense from a gas to a solid? Rock water ice or metal
As the solar nebula cooled METAL compounds are the first to condense from a gas to a solid. The solar nebula gave birth to the Solar system.
A solar nebula is a disc-shaped cloud of gases and grain dust, which gave birth to the Sun and planets of the Solar system, approximately 4.6 billion years ago.
The solar nebula is at the beginning a mixture of interstellar gases (hydrogen and helium) and dust grains.
As the solar nebula cools, heavy elements such as metals in the disk condensate into planetesimals.
Learn more in:
https://brainly.com/question/14151385
How many moles of c3h6will be consumed when 4.11 mol of co2 are produced in the following equation 2c3h6 +9o2 - 6co2 + 6H2o
Answer: a.1.37 b.4.11 c.6.00 d.12.3
Explanation:
Dissolution of KOH, ΔHsoln:
KOH(s) → KOH(aq) (10.1)
Neutralization of solid KOH, ΔHneut:
KOH(s) + HCl(aq) → H2O(l) + KCl(aq) (10.2)
1) Using Hess's law, show how to combine Reaction 10.1 and Reaction 10.2 to give
KOH(aq) + HCl(aq) → H2O(l) + KCl(aq) (10.3)
2)How should ΔHsoln and ΔHneut be combined (mathematically) to give the change in enthalpy for Reaction 10.3, ΔH?
Using Hess's law we found:
1) By adding reaction 10.2 with the reverse of reaction 10.1 we get reaction 10.3:
KOH(aq) + HCl(aq) → H₂O(l) + KCl(aq) ΔH (10.3)
2) The ΔHsoln must be subtracted from ΔHneut to get the total change in enthalpy (ΔH).
The reactions of dissolution (10.1) and neutralization (10.2) are:
KOH(s) → KOH(aq) ΔHsoln (10.1)
KOH(s) + HCl(aq) → H₂O(l) + KCl(aq) ΔHneut (10.2)
1) According to Hess's law, the total change in enthalpy of a reaction resulting from differents changes in various reactions can be calculated as the sum of all the enthalpies of all those reactions.
Hence, to get reaction 10.3:
KOH(aq) + HCl(aq) → H₂O(l) + KCl(aq) (10.3)
We need to add reaction 10.2 to the reverse of reaction 10.1
KOH(s) + HCl(aq) + KOH(aq) → H₂O(l) + KCl(aq) + KOH(s)
Canceling the KOH(s) from both sides, we get reaction 10.3:
KOH(aq) + HCl(aq) → H₂O(l) + KCl(aq) (10.3)
2) The change in enthalpy for reaction 10.3 can be calculated as the sum of the enthalpies ΔHsoln and ΔHneut:
[tex] \Delta H = \Delta H_{soln} + \Delta H_{neut} [/tex]
The enthalpy of reaction 10.1 (ΔHsoln) changed its sign when we reversed reaction 10.1, so:
[tex] \Delta H = \Delta H_{neut} - \Delta H_{soln} [/tex]
Therefore, the ΔHsoln must be subtracted from ΔHneut to get the total change in enthalpy ΔH.
Learn more here:
https://brainly.com/question/2082986?referrer=searchResultshttps://brainly.com/question/1657608?referrer=searchResultsI hope it helps you!
pls help see attached pic for the question.
Answer: Evaporation and sublimation.
Explanation: Evaporation is the process of changing from liquid to gas, and sublimation is the process of changing from solid to gas.
Calculate the number of molecules present in 11 moles of H2O.
Answer:
[tex]11 \times 6.022 \times {10}^{23} \\ = 66.242\times {10}^{23} \: of \: \\ water \: molecules[/tex]
How to find distance from motion graph velocity - time?
Answer:
by finding the slope of tangent (y2 - y1)/(x2 - x1)
Compare the alkali metals and alkaline earth metals with respect to (i) Ionization enthalpy (ii) basicity of oxides (iii) solubility of hydroxide
Answer:
Ionization enthalpy
Explanation:
that should be right
Which statement best describes a mechanical wave?
Answer:
A mechanical wave is a wave that is an oscillation of matter, and therefore transfers energy through a medium.
Explanation:
While waves can move over long distances, the movement of the medium of transmission—the material—is limited. Therefore, the oscillating material does not move far from its initial equilibrium position.
--------------
hope this helped!
✼-answers by brookeangelx
The wave transmits energy from one point to another in the form of signals. Some waves require a medium for propagation while some others does not require a medium for the propagation.
What is a mechanical wave?The mechanical wave is defined as the wave which involves the oscillation of matter and it is responsible for the transfer of energy through a medium. These types of waves does not need a medium for propagation.
The mechanical waves cannot travel through vacuum. Some of the examples of mechanical waves are sound waves, water waves, seismic waves, etc. These waves are not capable of transmitting its energy through a vacuum.
The sound wave is a mechanical wave and the medium which it propagates can be solid, liquid or gas. It can travel fastest in solids and slower in gases.
Thus mechanical wave is an oscillation of matter.
To know more about mechanical wave, visit;
https://brainly.com/question/26116832
#SPJ6
Find the volume of 0.170 M sulfuric acid necessary to react completely with 72.2 g sodium hydroxide.
The volume of sulphuric acid, H₂SO₄ needed for the complete reaction with 72.2 g of sodium hydroxide, NaOH is 5.31 L
We'll begin by calculating the number of mole in 72.2 g of NaOH. This can be obtained as follow:
Mass of NaOH = 72.2 g
Molar mass of NaOH = 23 + 16 + 1 = 40 g/mol
Mole of NaOH =?Mole = mass / molar mass
Mole of NaOH = 72.2 / 40
Mole of NaOH = 1.805 mole Next, we shall determine the number of mole of H₂SO₄ needed to react with 1.805 mole of NaOH.2NaOH + H₂SO₄ —> Na₂SO₄ + 2H₂O
From the balanced equation above,
2 moles of NaOH reacted with 1 mole of H₂SO₄.
Therefore,
1.805 mole of NaOH will react with = 1.805 / 2 = 0.9025 mole of H₂SO₄.
Finally, we shall determine the volume of H₂SO₄.Mole of H₂SO₄ = 0.9025 mole
Molarity of H₂SO₄ = 0.170 M
Volume of H₂SO₄ =?Volume = mole / Molarity
Volume of H₂SO₄ = 0.9025 / 0.170
Volume of H₂SO₄ = 5.31 LThus, the volume of H₂SO₄ needed for the reaction is 5.31 L
Learn more: https://brainly.com/question/14356462
Three test tubes contain aqueous hydrogen sulfide, aqueous sulfur-dioxide and Lugol reagent. By mixing any two of the three test tubes, identify their contents. Explain, stating reasons, how you arrive at your conclusions. Write equations whenever applicable.
Answer:
Initial rate experiments
The simplest initial rate experiments involve measuring the time taken for some recognizable event to happen early in a reaction. This could be the time required for 5 cm3 of gas to be produced, for a small, measurable amount of precipitate to form, or for a dramatic color change to occur. Examples of these three indicators are discussed below.
The concentration of one of the components of the reaction could be changed, holding everything else constant: the concentrations of other reactants, the total volume of the solution and the temperature. The time required for the event to occur is then measured. This process is repeated for a range of concentrations of the substance of interest. A reasonably wide range of concentrations must be measured.This process could be repeated by altering a different property.
Explanation:
I don't think so if this is the answer. if not ok sorry
0 000
which explains why it is important to eat a full healthy meal before an oron o ping po
Food provides the carbon dioxide that is a product of cellular respiration
Food provides the oxygen that is a product of cellular respiration
Food provides the glucose that is a reactant in cellular respiration.
Food provides the energy that is a reactant in cellular respiration.
Answer:
A healthy diet is essential for good health and nutrition. It protects you against many chronic noncommunicable diseases, such as heart disease, diabetes and cancer. Eating a variety of foods and consuming less salt, sugars and saturated and industrially-produced trans-fats, are essential for healthy diet.
What does a chemical reaction tell us?
Answer:
A chemical reaction rearranges the constituent atoms of the reactants to create different substances as products. The properties of the products are different from those of the reactants.
I hope this helps.
Select the container from the figure (Figure 1) that represents the dilution of a 4 % (m/v) KCl solution to each of the following: Figure1 of 1 There is a diagram showing several containers. One container is filled with 4 percent of mass to volume solution of NaCl. Container 1 is filled with a solution in which volume is two times less than the volume of NaCl solution. Container 2 is filled with a solution of a volume two times larger compared to the NaCl solution. Container 3 is filled with a solution of a volume two times larger than the volume of the solution in container 2. Part A 2 % (m/v) KCl
From the dilution formula, we have that at constant value of the solute, the volume of the solution is inversely proportional to the concentration.
The correct responses are;
Part A: Container 2Part B: Container 3Reasons:
The given parameters are;
The concentration of the KCl solution = 4% m/v
Taking the solution as solution of KCl
The volume of the solution in container 1 = Two times less than the volume of KCl solution.
[tex]V_{container \, 1} = \displaystyle \mathbf{ \frac{1}{2} \cdot V_{4\% \, solution}}[/tex]
The volume of the solution in container 2 = Two times larger compared to the volume of KCl solution.
[tex]V_{container \, 2} = \mathbf{\displaystyle 2 \times V_{4\% \, solution}}[/tex]
The volume of the solution in container 3 = Two times larger than the container two solution volume.
[tex]V_{container \, 3} = \displaystyle \mathbf{ 2 \times V_{container \, 2}}[/tex]
Therefore;
[tex]V_{container \, 3} = \displaystyle 2 \times 2 \times V_{4\% \, solution} = \mathbf{4 \times V_{4\% \, solution }}[/tex]
Part A Required:
a. To select the container that represent the dilution of the 4% solution to 2%
Solution:
The dilution formula is; C₁·V₁ = C₂·V₂
Therefore;
[tex]\displaystyle V_1 = \mathbf{\frac{C_1 \cdot V_1}{C_2}}[/tex]
C₁ =4%, C₂ = 2%, we get;
[tex]\displaystyle V_1 = \frac{4 \cdot V_1}{2} = 2 \cdot V_1[/tex]
The volume of the container that represents a 2% dilution is container 2
which is filled with a solution of a volume two times larger compared to the
KCl solution.
Part B:
Required:
The container diluted to a 1% m/v KCl solution.
Solution;
Using the dilution formula, we have;
C₁ = 4%, C₂ = 1%
Therefore;
[tex]\displaystyle V_1 = \frac{C_1 \cdot V_1}{C_2}[/tex]
[tex]\displaystyle V_1 = \frac{4 \cdot V_1}{1} = \mathbf{4 \cdot V_1}[/tex]
The volume of the solution is four times the volume of the 4% KCl solution, which is equivalent to the volume in container 3.
Possible parts of the question are;
Select the container that represents the dilution of the 4% (m/v) KCl solution to obtain the solutions that follows;
Part A: a 2% (m/v) KCl solution
Part B: a solution that is a 1% (m/v) KCl solution
Please see attached drawings
Learn more here:
https://brainly.com/question/11493179
Which of the following is NOT a type of evidence indicating that a chemical change has occurred? *
- fizzing/bubbling
- heat is released
- solubility
- sound is given off
Answer:
sound is given off
Explanation:
due to a number of scientific research sound that is given off of an object is not due to a chemical reaction.
Grace wanted to find out the best conditions for growing lettuce plants.
She took 4 trays and planted 8 lettuce plants in each.
The results of her investigation are shown below.
How many days did the investigation last?
Use the table to help you.
Explanation:
the investigation lasts for 7 days.
hope this helps you.
If the pressure of 50.0 mL of oxygen gas at 100°C increases from 735 mm Hg to 925 mm Hg, what is
the final volume? Assume temperature remains constant.
Answer: .039L
Explanation:
Which of the following describes how air resistance affects the motion of a falling object?
Air resistance opposes the force of gravity and causes falling objects to lose speed once they reach terminal velocity.
Air resistance opposes the force of gravity and causes falling objects to lose speed once they reach terminal velocity.
Air resistance may change the direction of a falling object but does not affect its speed.
Air resistance may change the direction of a falling object but does not affect its speed.
Air resistance works with gravity to pull a falling object towards the Earth.
Air resistance works with gravity to pull a falling object towards the Earth.
Air resistance opposes the force of gravity and causes an object to reach terminal velocity.
Air resistance opposes the force of gravity and causes an object to reach terminal velocity.
Air resistance opposes the gravity in a falling object hence the object loses speed once it reaches terminal velocity.
According to the experiment of Galileo, in the absence of air resistance, all objects that are thrown down from the same height will hit the ground at he same time due to the effect of gravity.
We know that the air resistance makes the acceleration of object to become less than the acceleration due to gravity. So, air resistance opposes the force of gravity and causes falling objects to lose speed once they reach terminal velocity.
Learn more: https://brainly.com/question/865531
Answer:
The answer is D - Air resistance opposes the force of gravity and causes falling objects to lose speed once they reach terminal velocity.
Ill explain why -, for example ,
When the paper is smooth, it exposes a large surface to the air beneath it which slows its descent. Once it is crumpled, the surface which comes in contact with the air is much smaller, allowing it to fall much faster. At first, you probably thought the book would touch the ground first since it is heavier However, once the piece of paper was crumpled, they hit the ground at the same time! Funny, since it is the same piece of paper and the book is still heavier. It all comes down to form. I hope this helped u with the test !!
The Law of Conservation of Energy states that Energy can neither be ____________ nor _____________ but only change from one __________ to another.
Answer:
Explanation:
The law of conservation of energy states that energy can neither be created nor destroyed but only changed from one form of energy to another.
The law of conservation of energy states that energy can neither be created nor destroyed but changes from one state to another.
What is law of conservation of energy?The law of conservation of energy states that energy can neither be created nor destroyed it can only be converted from one form of energy to another.According to this, the total energy of the system remains constant.
This statement is also a statement of first law of thermodynamics which is based on energy.Conservation of energy is distinct from conservation of mass as mass and energy are directly proportional which is given the equation, E=mc².
Because of law of conservation of energy the perpetual motion of machine cannot exist. This means that no system without an external source of energy can supply unlimited amount of energy to its surroundings.
Learn more about law of conservation of energy,here:
https://brainly.com/question/12050604
#SPJ6
In the laboratory you are asked to make a 0.282 m manganese(II) acetate solution using 315 grams of water. How many grams of manganese(II) acetate should you add
Answer:315 - 282 = 173?
Explanation:
A chemical reaction involves the reactants A and B, and the product C.
A+B→C
Trial 1 2 3
[A](mol/L) 0.10 0.10 0.20
[B](mol/L) 0.10 0.20 0.10
−Δ[A]Δt(molL s) 3.08×10−9 2.464×10−8 1.232×10−8
Explanation:
a+b =ab
answer
ab added all
is give answer
Is brass a solution:
Answer:
Brass is an alloy, and either a "solid solution".
Alloys in general may be solid solutions or they simply be mixtures
Explanation:
Hope it Helps you!! What is the mass of 8 moles of sodium chloride?
468 g
4.68 9
46.8 g
4.689 mol
Please answer
I'll mark BRAINLIST
Answer:
468 g _______________________
The mass of 8 moles of sodium chloride is 468 grams. Therefore, option A is correct.
Molar mass, also known as molecular weight, is the mass of one mole of a substance. It is typically expressed in grams per mole (g/mol). Molar mass is calculated by summing the atomic masses of all the atoms in a molecule.
To calculate the mass of a substance, multiply the number of moles by the molar mass of the substance. The molar mass of sodium chloride (NaCl) is approximately 58.44 grams per mole.
The mass of 8 moles of sodium chloride:
Mass = Number of moles × Molar mass
Mass = 8 moles × 58.44 g/mol
Mass = 467.52 grams
To learn more about the moles, follow the link:
https://brainly.com/question/20552052
#SPJ6
Because electron delocalization stabilizes a compound, if the only way electrons can be moved is away from the most electroneagtive atom, that is better than no electron delocalization at all.
a. True
b. False
As electron delocalization stabilizes the compound it is necessary that it takes place for compound to exist , hence the given statement is false.
What is a compound?Compound is defined as a chemical substance made up of identical molecules containing atoms from more than one type of chemical element.
Molecule consisting atoms of only one element is not called compound.It is transformed into new substances during chemical reactions. There are four major types of compounds depending on chemical bonding present in them.They are:
1)Molecular compounds where in atoms are joined by covalent bonds.
2) ionic compounds where atoms are joined by ionic bond.
3)Inter-metallic compounds where atoms are held by metallic bonds
4) co-ordination complexes where atoms are held by co-ordinate bonds.
They have a unique chemical structure held together by chemical bonds .Compounds have different properties as those of elements because when a compound is formed the properties of the substance are totally altered.
Learn more about compounds,here:
https://brainly.com/question/13516179
#SPJ2
The melting point of H₂O(s) is 0 °C. Would you expect the melting point of H₂S(s) to be 85 °C, 0 °C or -85 °C.? Justify your choice
Answer:
-85 °C
Explanation:
O and S are in the same group( Group 16). Since S is below O it's atomic mass is higher than O. So molar mass of H2S is higher than H2O. The strength of Vanderwaal Interactions ( London dispersion forces) increases when the molar mass increases. However, only H2O can form H bonds with each other. This is because electronegativity of O is higher than S and therefore H in H2O has a higher partial positive charge than H of H2S.
H bond dominate among these 2 types of forces so the strength of attractions between molecules is higher in H2O than H2S. Therefore more energy should be supplied for H2O to break inter
molecular forces and convert from solid to liquid state than H2S. So mpt of H2O must be higher than that of H2S.
what is the best way to make a supersaturated solution?
A: Heat the solution
B: Stir the Solution
C: Evaporate the solution
D: Cool the solution
Answer:
heat the solution
Explanation:
i think
Answer:
The way to make a supersaturated solution is to add heat, but just a little heat won't do the job. You have to heat the water close to the boiling point. When the water gets this hot, the water molecules have more freedom to move around, and there is more space for solute molecules between them.
Plaseee ASAP
In an experiment hydrochloric acid is added drop by drop to solid sodium sulfite (Na2SO3). A gas is evolved and collected. Half of the collected gas is added to Lugol solution (I2 dissolved in KI solution), the other half of the gas is added to hydrogen sulfide solution. Write the equation of the reactions, discuss the observations that can be seen during the reactions and explain the changes. In your answer, also discuss the followings:
a) What gas is liberated during the reaction between HCl and Na2SO3? Why can it be liberated this way? Write an equation for the reaction.
b) What ability of the gas is
demonstrated in the reactions with Lugol solution and with H2S? Write equations and use oxidation numbers to prove it. What makes it possible for the substance to act differently in the two reactions?
c) What other properties of the gas evolved can you recall?
d) What are the environmental implications of the gas evolved? Write the appropriate equation for the reaction.
SO2 acts both as an oxidizing and a reducing agent depending on the conditions of the reaction. It also leads to acid rain.
The reaction of HCl with Na2SO3 occurs as follows;
Na2SO3 + 2HCl ------> 2NaCl + SO2 + H2O
The gas evolved in the reaction is SO2. It is liberated because sulfites react with acids to liberate sulfur IV oxide.
The ionic equation of the reaction is; [tex]SO3^2-(aq) + 2H^+(aq) ----> SO2(g) + H2O(l)[/tex]
The reaction of SO2 with Lugol solution occurs as follows;
SO2 +I2 + 2H20→ H2SO4 + 2HI. This demonstrates oxidation because sulfur is oxidized from +4 to +6 state from left to right. This shows SO2 as a reducing agent.
With H2S, the gas reacts as follows;
2H2S + SO2 → 3S (s) + 2H2O
The oxidation number of sulfur decreases from +4 to zero. This demonstrates the gas as an oxidizing agent. SO2 can act as oxidizing or reducing agent because it can change its oxidation state to +6(oxidation) by electron loss or gain electrons to decrease its oxidation state as low as -2.
The gas SO2 is an acid gas. It dissolves in water to yield an acid solution. Also SO2 is a bleaching agent. The major environmental impact of SO2 is that it leads to acid rain as follows; 2SO2 + O2 + 2H2O⇌2H2SO4.
Learn more: https://brainly.com/question/2510654