Answer:
The diagonals of all parallelograms do not bisect each other at 90 degree angles.
Step-by-step explanation:
Allison bought jelly beans to share with her friends. She bought pounds of blueberry jelly beans and pounds of lemon jelly beans. If she gave pounds of jelly beans away to her friends, how many pounds of jelly beans does Allison have left?
Answer: [tex]1\dfrac{11}{12}\text{ pounds}[/tex]
Step-by-step explanation:
The complete question is provided in the attachment.
Given, Amount blueberry jelly beans= [tex]1\dfrac{1}{4}[/tex] pounds
[tex]=\dfrac{5}{4}[/tex] pounds.
Amount lemon jelly beans = [tex]2\dfrac{1}{3}[/tex]pounds
[tex]=\dfrac{7}{2}[/tex] pounds
Total jelly beans she bought = Amount blueberry jelly beans + Amount lemon jelly beans
[tex]=(\dfrac{5}{4}+\dfrac{7}{3})[/tex] pounds
[tex]=\frac{15+28}{12}\text{ pounds}\\\\=\dfrac{43}{12}\text{ pounds}[/tex]
Amount of jelly beans she gave away = [tex]1\dfrac{2}{3}=\dfrac{5}{3}\text{ pounds}[/tex]
Amount of jelly beans she has left= Total jelly beans - Amount of jelly beans she gave away
=[tex]\dfrac{43}{12}-\dfrac{5}{3}\\\\=\dfrac{43-20}{12}\\\\=\dfrac{23}{12}\\\\=1\dfrac{11}{12}\text{ pounds}[/tex]
She has left [tex]1\dfrac{11}{12}\text{ pounds}[/tex] of jelly beans.
Use Lagrange multipliers to minimize the function subject to the following two constraints. Assume that x, y, and z are nonnegative. Question 18 options: a) 192 b) 384 c) 576 d) 128 e) 64
Complete Question
The complete question is shown on the first uploaded image
Answer:
Option C is the correct option
Step-by-step explanation:
From the question we are told that
The equation is [tex]f (x, y , z ) = x^2 +y^2 + z^2[/tex]
The constraint is [tex]P(x, y , z) = x + y + z - 24 = 0[/tex]
Now using Lagrange multipliers we have that
[tex]\lambda = \frac{ \delta f }{ \delta x } = 2 x[/tex]
[tex]\lambda = \frac{ \delta f }{ \delta y } = y[/tex]
[tex]\lambda = \frac{ \delta f }{ \delta z } = 2 z[/tex]
=> [tex]x = \frac{ \lambda }{2}[/tex]
[tex]y = \frac{ \lambda }{2}[/tex]
[tex]z = \frac{ \lambda }{2}[/tex]
From the constraint we have
[tex]\frac{\lambda }{2} + \frac{\lambda }{2} + \frac{\lambda }{2} = 24[/tex]
=> [tex]\frac{3 \lambda }{2} = 24[/tex]
=> [tex]\lambda = 16[/tex]
substituting for x, y, z
=> x = 8
=> y = 8
=> z = 8
Hence
[tex]f (8, 8 , 8 ) = 8^2 +8^2 + 8^2[/tex]
[tex]f (8, 8 , 8 ) = 192[/tex]
Translate this sentence into an equation. 43 is the sum of 11 and Carlos age. Use the variable c to represent Carlos age.
Answer:
c + 11 = 43
Step-by-step explanation:
C = Carlos age
11 = The number added
43 = The number added plus carlos' age
c +11 = 43
c = 43 - 11
c = 32
Carlos' age is 32 years.
Answer:
C+11=43
Step-by-step explanation:
C= Carlos age
11= added number
43= Carlos age +added number
C+11=43
C=43-11
C=32
Age of Carlos 32. :)
Let X denote the day she gets enrolled in her first class and let Y denote the day she gets enrolled in both the classes. What is the distribution of X
Answer:
X is uniformly distributed.
Step-by-step explanation:
Uniform Distribution:
This is the type of distribution where all outcome of a certain event have equal likeliness of occurrence.
Example of Uniform Distribution is - tossing a coin. The probability of getting a head is the same as the probability of getting a tail. The have equal likeliness of occurrence.
A professional soccer player kicked a ball across the field. The ball’s height, in meters, is modeled by the function graphed below. What's the average rate of change between the point when the ball reached its maximum height and the point where it hit the ground?
Answer:
Hey there!
You can think of the rate of change as the slope of a quadratic function- here we see that it is 9/-3, or - 3.
Let me know if this helps :)
Answer:
–3 meters per second
Step-by-step explanation:
Lines a and b are parallel. If the slope of line a is , what is the slope of line b?
A.
-
B.
4
C.
D.
-4
Answer:
C. 1/4
Step-by-step explanation:
Parallel lines always have the same slope.
Answer:
C. 1/4
Step-by-step explanation:
Parallel lines have the same slope. If line b is parallel to line a, and line a has slope 1/4, then line b has slope 1/4.
The heat evolved in calories per gram of a cement mixture is approximately normally distributed. The mean is thought to be 100, and the standard deviation is 2. You wish to test H0: μ = 100 versus H1: μ ≠ 100 with a sample of n = 9 specimens.
A. If the acceptance region is defined as 98.5 le x- 101.5, find the type I error probability alpha.
B. Find beta for the case where the true mean heat evolved is 103.
C. Find beta for the case where the true mean heat evolved is 105. This value of beta is smaller than the one found in part (b) above. Why?
Answer:
A.the type 1 error probability is [tex]\mathbf{\alpha = 0.0244 }[/tex]
B. β = 0.0122
C. β = 0.0000
Step-by-step explanation:
Given that:
Mean = 100
standard deviation = 2
sample size = 9
The null and the alternative hypothesis can be computed as follows:
[tex]\mathtt{H_o: \mu = 100}[/tex]
[tex]\mathtt{H_1: \mu \neq 100}[/tex]
A. If the acceptance region is defined as [tex]98.5 < \overline x > 101.5[/tex] , find the type I error probability [tex]\alpha[/tex] .
Assuming the critical region lies within [tex]\overline x < 98.5[/tex] or [tex]\overline x > 101.5[/tex], for a type 1 error to take place, then the sample average x will be within the critical region when the true mean heat evolved is [tex]\mu = 100[/tex]
∴
[tex]\mathtt{\alpha = P( type \ 1 \ error ) = P( reject \ H_o)}[/tex]
[tex]\mathtt{\alpha = P( \overline x < 98.5 ) + P( \overline x > 101.5 )}[/tex]
when [tex]\mu = 100[/tex]
[tex]\mathtt{\alpha = P \begin {pmatrix} \dfrac{\overline X - \mu}{\dfrac{\sigma}{\sqrt{n}}} < \dfrac{\overline 98.5 - 100}{\dfrac{2}{\sqrt{9}}} \end {pmatrix} + \begin {pmatrix}P(\dfrac{\overline X - \mu}{\dfrac{\sigma}{\sqrt{n}}} > \dfrac{101.5 - 100}{\dfrac{2}{\sqrt{9}}} \end {pmatrix} }[/tex]
[tex]\mathtt{\alpha = P ( Z < \dfrac{-1.5}{\dfrac{2}{3}} ) + P(Z > \dfrac{1.5}{\dfrac{2}{3}}) }[/tex]
[tex]\mathtt{\alpha = P ( Z <-2.25 ) + P(Z > 2.25) }[/tex]
[tex]\mathtt{\alpha = P ( Z <-2.25 ) +( 1- P(Z < 2.25) })[/tex]
From the standard normal distribution tables
[tex]\mathtt{\alpha = 0.0122+( 1- 0.9878) })[/tex]
[tex]\mathtt{\alpha = 0.0122+( 0.0122) })[/tex]
[tex]\mathbf{\alpha = 0.0244 }[/tex]
Thus, the type 1 error probability is [tex]\mathbf{\alpha = 0.0244 }[/tex]
B. Find beta for the case where the true mean heat evolved is 103.
The probability of type II error is represented by β. Type II error implies that we fail to reject null hypothesis [tex]\mathtt{H_o}[/tex]
Thus;
β = P( type II error) - P( fail to reject [tex]\mathtt{H_o}[/tex] )
∴
[tex]\mathtt{\beta = P(98.5 \leq \overline x \leq 101.5) }[/tex]
Given that [tex]\mu = 103[/tex]
[tex]\mathtt{\beta = P( \dfrac{98.5 -103}{\dfrac{2}{\sqrt{9}}} \leq \dfrac{\overline X - \mu}{\dfrac{\sigma}{n}} \leq \dfrac{101.5-103}{\dfrac{2}{\sqrt{9}}}) }[/tex]
[tex]\mathtt{\beta = P( \dfrac{-4.5}{\dfrac{2}{3}} \leq Z \leq \dfrac{-1.5}{\dfrac{2}{3}}) }[/tex]
[tex]\mathtt{\beta = P(-6.75 \leq Z \leq -2.25) }[/tex]
[tex]\mathtt{\beta = P(z< -2.25) - P(z < -6.75 )}[/tex]
From standard normal distribution table
β = 0.0122 - 0.0000
β = 0.0122
C. Find beta for the case where the true mean heat evolved is 105. This value of beta is smaller than the one found in part (b) above. Why?
[tex]\mathtt{\beta = P(98.5 \leq \overline x \leq 101.5) }[/tex]
Given that [tex]\mu = 105[/tex]
[tex]\mathtt{\beta = P( \dfrac{98.5 -105}{\dfrac{2}{\sqrt{9}}} \leq \dfrac{\overline X - \mu}{\dfrac{\sigma}{n}} \leq \dfrac{101.5-105}{\dfrac{2}{\sqrt{9}}}) }[/tex]
[tex]\mathtt{\beta = P( \dfrac{-6.5}{\dfrac{2}{3}} \leq Z \leq \dfrac{-3.5}{\dfrac{2}{3}}) }[/tex]
[tex]\mathtt{\beta = P(-9.75 \leq Z \leq -5.25) }[/tex]
[tex]\mathtt{\beta = P(z< -5.25) - P(z < -9.75 )}[/tex]
From standard normal distribution table
β = 0.0000 - 0.0000
β = 0.0000
The reason why the value of beta is smaller here is that since the difference between the value for the true mean and the hypothesized value increases, the probability of type II error decreases.
Please help me solve for the median !!!
Answer:
50.93
Step-by-step explanation:
Add up the frequencies:
2 + 5 + 14 + 15 + 21 + 18 + 15 + 9 + 2 = 101
Divide by 2: 101/2 = 50.5
So the median is the 51st number, with 50 below and 50 above.
Add up the frequencies until you find the interval that contains the 51st number.
2 + 5 + 14 + 15 = 36
2 + 5 + 14 + 15 + 21 = 57
So the median is in the group 49.5 − 51.5. To estimate the median, we use interpolation. Find the slope of the line from (36, 49.5) to (57, 51.5).
m = (51.5 − 49.5) / (57 − 36)
m = 2/21
So at x = 51:
2/21 = (y − 49.5) / (51 − 36)
y = 50.93
Simply. Who ever answers this will be marked Brainlist.
Answer:
Step-by-step explanation:
Hello,
[tex]r^3s^{-2}\cdot 8r^{-3}s^4\cdot 4rs^5\\\\=r^{3-3+1}s^{-2+4+5}\cdot 8\cdot 4\\\\\boxed{=32\cdot r\cdot s^7}[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
5x+4(-x-2)=-5x+2(x-1)+12
Answer:
x=9/2
Step-by-step explanation:
Let's solve your equation step-by-step.
5x+4(−x−2)=−5x+2(x−1)+12
Step 1: Simplify both sides of the equation.
5x+4(−x−2)=−5x+2(x−1)+12
5x+(4)(−x)+(4)(−2)=−5x+(2)(x)+(2)(−1)+12 (Distribute)
5x+−4x+−8=−5x+2x+−2+12
(5x+−4x)+(−8)=(−5x+2x)+(−2+12) (Combine Like Terms)
x+−8=−3x+10
x−8=−3x+10
Step 2: Add 3x to both sides.
x−8+3x=−3x+10+3x
4x−8=10
Step 3: Add 8 to both sides.
4x−8+8=10+8
4x=18
Step 4: Divide both sides by 4.
4x/4=18/4
x=9/2
Which expression is equivalent to 73 ⋅ 7−5? 72 77 1 over 7 to the 2nd power 1 over 7 to the 7th power
Answer:
1/7^2
Step-by-step explanation:
The applicable rules of exponents are ...
(a^b)(a^c) = a^(b+c)
a^-b = 1/a^b
__
Then your expression simplifies to ...
[tex]7^3\cdot 7^{-5}=7^{3-5}=7^{-2}=\boxed{\dfrac{1}{7^2}}[/tex]
Answer:
The answer is 1/7^2
Step-by-step explanation:
I took the test lol
PLEASE HELP ASAP RN!!!!!!
Answer:
3sqrt(2)
Step-by-step explanation:
sqrt(32) - sqrt(2)
rewriting sqrt(32)
sqrt(16*2) - sqrt(2)
sqrt(16) * sqrt(2) - sqrt(2)
4 sqrt(2) - sqrt(2)
3sqrt(2)
I NEED this answered within the next 30 minutes! Please it is simple. There is an error in this. What is it?
Answer:
(a). x = 80°
(b). x = 7.2 units
Step-by-step explanation:
Angle formed between the tangents from a point outside the circle measure the half of the difference of intercepted arcs.
(a). Here the intercepted arcs are,
Measure of major arc = 360° - 100°
= 260°
Measure of minor arc = 100°
x° = [tex]\frac{1}{2}[m(\text{Major arc})-m(\text{Minor arc})][/tex]
= [tex]\frac{1}{2}(260-100)[/tex]
x = 80°
(b). If a secant and tangent are drawn form a point outside the circle, then square of the measure of tangent is equal to the product of the measures of the secant segment and and its external segment.
x² = 4(4 + 9)
x² = 4 × 13
x² = 52
x = √52
x = 7.211 ≈ 7.2 units
The value of 3 in 783.97
Answer:
place value of 3 in 783.97 is 3
Step-by-step explanation:
Answer:
Units
Step-by-step explanation:
The units start counting from 3 because after the point that is the 9 start counting tenth
The mean number of days to observe rain in a particular city is 20 days with a standard deviation of 2 days. Suppose that the rain pattern is Normally distributed. what is the probability of raining if the number of days are more than 23?
Answer:
The probability of raining if the number of days is more than 23 is 0.0668.
Step-by-step explanation:
We are given that the mean number of days to observe rain in a particular city is 20 days with a standard deviation of 2 days.
Let X = Number of days of observing rain in a particular city.
The z-score probability distribution for the normal distribution is given by;
Z = [tex]\frac{X-\mu}{\sigma}[/tex] ~ N(0,1)
where, [tex]\mu[/tex] = population mean number of days = 20 days
[tex]\sigma[/tex] = standard deviation = 2 days
So, X ~ Normal([tex]\mu=20, \sigma^{2} = 2^{2}[/tex])
Now, the probability of raining if the number of days is more than 23 is given by = P(X > 23 days)
P(X > 23 days) = P( [tex]\frac{X-\mu}{\sigma}[/tex] > [tex]\frac{23-20}{2}[/tex] ) = P(Z > 1.50) = 1 - P(Z [tex]\leq[/tex] 1.50)
= 1 - 0.9332 = 0.0668
The above probability is calculated by looking at the value of x = 1.50 in the z table which has an area of 0.9332.
A senior accounting major at Midsouth State University has job offers from four CPA firms. To explore the offers further, she asked a sample of recent trainees how many months each worked for the firm before receiving a raise in salary. The sample information is submitted to Minitab with the following results:
Analysis of Variance
Source df SS MS F P
Factor 3 28.17 9.39 5.37 0.010
Error 15 26.26 1.75
Total 18 54.43
A) Reject H0 if F >
B) For the 0.05 level of significance, is there a difference in the mean difference in the mean number of months before a raise was anted among the four CPA firms?
Answer:
A) Reject H0 if F > 5.417
B) we fail to reject the null hypothesis and conclude that we do not have sufficient evidence at 0.05 level of significance to support the claim that there is a difference in the mean number of months before a raise was granted among the four CPA firms
Step-by-step explanation:
A) From the table, we can see that we have df1 = 3 and df2 = 15. And we are given a significance level of α = 0.01
We are also given f-value of 1.75
Thus,from the f-distribution table attached at significance level of α = 0.01 and df1 = 3 and df2 = 15, we have;
F-critical = 5.417
Normally, we reject H0 if F > 5.417
But in this case, F is 1.75 < 5.417 and so we conclude that we do not reject H0 at the 0.01 level of significance
B) for 0.05 level of significance, df1 = 3 and df2 = 15, from the 2nd table attached, we have;
F-critical = 3.2874
Again the f-value is less than this critical one.
Thus, we fail to reject the null hypothesis and conclude that we do not have sufficient evidence at 0.05 level of significance to support the claim that there is a difference in the mean number of months before a raise was granted among the four CPA firms
Foram prescritos 500mg de dipirona para uma criança com febre.Na unidade tem disponivel ampola de 1g/2ml.Quantos g vão ser administrados no paciente
De acordo com a disponibilidade da unidade, há apenas a seguinte dosagem: 1g/2mL - ou seja, uma grama de dipirona a cada 2mL
O enunciado está meio mal formulado, pois é dito que foram prescritos 500mg de dipirona e é essa quantidade de farmaco que a criança tem que tomar. Deseja-se saber quantos mL deverao ser administrados.
Fazendo a classica regra de 3, podemos chegar no volume desejado:
(atentar que 500mg = 0,5g)
g mL
1 --------- 2
0,5 --------- X
1 . X = 0,5 . 2
X = 1mLsolve for x: -3(x + 1)= -3(x + 1) - 5
Answer:
No solution : 0= -5Step-by-step explanation:
[tex]-3\left(x+1\right)=-3\left(x+1\right)-5\\\\\mathrm{Add\:}3\left(x+1\right)\mathrm{\:to\:both\:sides}\\\\-3\left(x+1\right)+3\left(x+1\right)=-3\left(x+1\right)-5+3\left(x+1\right)\\\\\mathrm{Simplify}\\\\0=-5\\\\\mathrm{The\:sides\:are\:not\:equal}\\\\\mathrm{No\:Solution}[/tex]
Salaries of 42 college graduates who took a statistics course in college have a mean, , of . Assuming a standard deviation, , of $, construct a % confidence interval for estimating the population mean .
Answer:
The 99% confidence interval for estimating the population mean μ is ($60,112.60, $68087.40).
Step-by-step explanation:
The complete question is:
Salaries of 42 college graduates who took a statistics course in college have a mean, [tex]\bar x[/tex] of, $64, 100. Assuming a standard deviation, σ of $10,016 construct a 99% confidence interval for estimating the population mean μ.
Solution:
The (1 - α)% confidence interval for estimating the population mean μ is:
[tex]CI=\bar x\pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex]
The critical value of z for 99% confidence interval is:
[tex]z_{\alpha/2}=z_{0.01/2}=z_{0.005}=2.57[/tex]
Compute the 99% confidence interval for estimating the population mean μ as follows:
[tex]CI=\bar x\pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex]
[tex]=64100\pm 2.58\times\frac{10016}{\sqrt{42}}\\\\=64100+3987.3961\\\\=(60112.6039, 68087.3961)\\\\\approx (60112.60, 68087.40)[/tex]
Thus, the 99% confidence interval for estimating the population mean μ is ($60,112.60, $68087.40).
which of the following best describes the bases of a cylinder? A. Congruent B. Polygons C. Parallel D. Discs (Check All That Apply)
Answer:
A. Congruent and D. Discs
Step-by-step explanation:
You won't see a cylinder that doesn't have congruent bases
Look at the shape of the bases and look at a disc compare their shape
We can describe the bases of a cylinder as congruent.
What is the volume of cylinder?The volume of cylinder is given by -
V = πR²h
Given is to describe the bases of a cylinder.
The cylinders are uniform in cross - section. Therefore, the bases of the cylinder will have the same area. So, we can conclude that the given bases are congruent.
Therefore, we can describe the bases of a cylinder as congruent.
To solve more questions on cylinders, visit the link below-
https://brainly.com/question/16134180
#SPJ7
Time
(minutes)
Water
(gallons)
1
16.50
1.5
24.75
2
33
find the constant of proportionality for the second and third row
Answer:
16.50
Step-by-step explanation:
Constant of proportionality = no of gallons of water per 1 minute.
In the first row, we have 16.50 gallons of water per 1 minute.
In the 2nd row, we have 24.75 gallons of water in 1.5 minutes. In 1 minute, we will have 24.75 ÷ 1.5 = 16.50 gallons
In the 3rd row, we have 33 gallons in 2 minutes. In 1 minute, we will have 33 ÷ 2 = 16.50 gallons.
We can see that there seems to be the same constant of proportionality for the 2nd and 3rd row, which is 16.50.
Thus, a relationship between gallons of water (w) and time (t), considering the constant, 16.50, can be written as: [tex] w = 16.50t [/tex]
This means the constant of proportionality, 16.50, is same for all rows.
Please help. I’ll mark you as brainliest if correct!
Answer:
9 3 -7 -13
4 -4 11 8
0 9 2 -4
Step-by-step explanation:
9 3 -7 -13
4 -4 11 8
0 9 2 -4
Answer: 9 3 -7 -13
4 -4 11 8
0 9 2 -4
Step-by-step explanation:
Three out of every ten dentists recommend a certain brand of fluoride toothpaste. Which assignment of random digits would be used to simulate the random sampling of dentists who prefer this fluoride toothpaste?
Answer:
eddfdgdccggģdffcdrrfxddxcvgfx
find the perimeter of a square of sides 10.5cm
Answer:
Perimeter = 42 cm
Step-by-step explanation:
A square has all equal sides so you would just add 10.5 + 10.5 + 10.5 + 10.5 to get 42 cm.
Answer:
42 cm
Step-by-step explanation:
Side of square = 10.5 cm (given)
Perimeter of square = Side X 4
= 10.5 X 4
= 42 cm
HOPE THIS HELPED YOU !
:)
(21x-3)+21=23x+6 solve
Answer:
False
Step-by-step explanation:
You Cnat solve it
Answer:
you cannot solve it
Step-by-step explanation:
false
Which statements about the dilation are true? Check all that apply. Triangle X prime Y prime Z prime. Point X prime is 2 units from the center of dilation C and point Z prime is 3 units from the center of dilation. Triangle X Y Z. Point X is 5 units from point C and point Z is 7.5 units from point C. The center of dilation is point C. It is a reduction. It is an enlargement. The scale factor is 2.5. The scale factor is Two-fifths.
Answer:
I only know two right answers.
A: The center of dilation is point C.
C: It is an enlargement.
E: The scale factor is 2/5.
Step-by-step explanation:
These two answers are correct because When you look in the center you see a C.
You tell if it is a reduction because the pre image is small but the image is big.
The center of dilation is point C.
It is an enlargement.
The scale factor is 2/5
The correct options are D, F, H.
What is dilation?Resizing an item uses a transformation called dilation. Dilation is used to enlarge or shorten the structures. The result of this transformation is an image with the same shape as the original. However, there is a variation in the shape's size. The initial form should be stretched or contracted during a dilatation.
Given:
The transformation of the figure is dilation.
The figure is given in the attached image.
From the diagram:
The center of dilation is point C.
It is an enlargement.
The scale factor is 2/5
Therefore, all the correct statements are given above.
To learn more about the dilation in geometry;
https://brainly.com/question/10713409
#SPJ6
Write in words how we would say the following
3 square
Answer:
Three to the second power
Step-by-step explanation:
Hey there!
3 square
Can be written as the following,
Three to the second power
Hope this helps :)
You are studying for your final exam of the semester up to this point you received 3 exam scores of 61% 62% and 86% to receive a grade of c and the class you must have an average exam score between 70% and 79% for all four exams including the final find the widest range of scores that you can get on the final exam in order to receive a grade of C for the class 63 to 100% 71 to 100% 68 to 97
There will be a total of 4 test scores including the final exam. To get a 70, the 4 tests need to equal 4 x 70 = 280 points , to be 79, they have to equal 4 x 79 = 316 points.
The 3 already done = 61 + 62 + 86 = 209 points.
The final exam needs to be between :
280 -209 = 71
316 -209 = 107. The answer would be between 71 and 100%
The cost of a daily rental car is as follows: The initial fee is $39.99 for the car, and it costs $0.20 per mile. If Julie's final bill was $100.00 before taxes, how many miles did she drive?
Answer:
300.05 miles
Step-by-step explanation:
initial fee= $39.99
final bill = $ 100
cost =$ 0.20 per mile
remaining amount = $ 60.01
solution,
she drive = remaining amount / cost
=60.01/0.20
=300.05 miles
Answer:
500 miles
Step-by-step explanation:
Let us use cross multiplication to find the unknown amount.
Given:
1) Cost for 1 mile=$0.20
2)Cost for x miles=$100
Solution:
No of miles Cost
1) 1 $0.20
2)x $100
By cross multiplying,
100 x 1= 0.20x
x=100/0.20
x=500 miles
Thank you!
If a recipe which makes 8 servings calls for 2 cups of sugar, how many cups of sugar will it take to make 18 servings?
Answer:
4.5
Step-by-step explanation:
2/8=x/18
Answer:
4.5 cups
Step-by-step explanation:
first you set up the problem like servings/cups. This would look like 8/2. Then you add the 18 servings and make it a cross multiplication problem. The expression would look like 8/2=18/x. You cross multiply and get 8x=36. Divide by 8 and get x=4.5 cups.