Answer:
[tex]\dfrac{b^3}{8a^{18}}[/tex] matches the first choice
Step-by-step explanation:
[tex]\left(\dfrac{2 a b}{a^{-5}b^2}\right)^{-3}=(2a^{1-(-5)}b^{1-2})^{-3}=(2a^6b^{-1})^{-3}\\\\=2^{-3}a^{6(-3)}b^{-1(-3)}=8^{-1}a^{-18}b^3=\boxed{\dfrac{b^3}{8a^{18}}}[/tex]
__
The applicable rules of exponents are ...
(a^b)(a^c) = a^(b+c)
(a^b)^c = a^(bc)
a^-b = 1/a^b
Answer:
A
Step-by-step explanation:
just took the pretest! good luck!
Nisha is looking out the window of her apartment building at a sculpture in a park across the street. The top of Nisha's window is 80 feet from the ground. The angle of depression from the top of Nisha's window to the bottom of the sculpture is 20°. How far away from the building is the sculpture? Round your answer to the nearest hundredth.
Answer:
219.80 feet
Step-by-step explanation:
Tan 20= 80/b
Tan 20= 0.363970234266
(0.363970234266)b=80
b= 219.80 feet
The distance between the sculpture and the bottom of the building is required.
The distance between the building and sculpture is 219.80 feet.
Trigonometry[tex]\theta[/tex] = Angle of depression = Angle of elevation = [tex]20^{\circ}[/tex]
p = Height of building = 80 feet
b = Required length
From the trigonometric ratios we have
[tex]\tan\theta=\dfrac{p}{b}\\\Rightarrow b=\dfrac{p}{\tan\theta}\\\Rightarrow b=\dfrac{80}{\tan 20}\\\Rightarrow b=219.80\ \text{feet}[/tex]
Learn more about trigonometry:
https://brainly.com/question/23899312
A 160-lb man carries a 5-lb can of paint up a helical staircase that encircles a silo with radius 20 ft. If the silo is 90 ft high and the man makes exactly three complete revolutions, how much work is done by the man against gravity in climbing to the top
Weight of man and paint = 160 + 5 = 165 total pounds.
Gravitational force is independent of the path taken so we can ignore the radius of the silo.
Work done = total weight x height
The problem says he climbs to the top so overall height is 90 feet
Work = 165 lbs x 90 ft = 14,850 ft-lbs
What is the probability that a randomly selected individual on this campus weighs more than 166 pounds? (express in decimal form and round final answer to 4 decimal places)
Answer:
hello attached is the missing part of your question and the answer of the question asked
answer : 0.2951
Step-by-step explanation:
Given data:
number of persons allowed in the elevator = 15
weight limit of elevator = 2500 pounds
average weight of individuals = 152 pounds
standard deviation = 26 pounds
probability that an individual selected weighs more than 166 pounds
std = 26 , number of persons(x) = 15, average weight of individuals(u) = 152 pounds
p( x > 166 ) = p( x-u / std, 166 - u/ std )
= p ( z > [tex]\frac{166-152}{26}[/tex] )
= 1 - p( z < 0.5385 )
p( x > 166 ) = 1 - 0.70488 = 0.2951
Evaluate S_5 for 600 + 300 + 150 + … and select the correct answer below. A. 1,162.5 B. 581.25 C. 37.5 D. 18,600
Answer:
A. 1,162.5
Step-by-step explanation:
Write the next two terms and add them up:
S5 = 600 +300 +150 +75 +37.5 = 1162.5 . . . . matches choice A
================================================
Explanation:
{600, 300, 150, ...} is a geometric sequence starting at a = 600 and has common ratio r = 1/2 = 0.5, this means we cut each term in half to get the next term. We could do this to generate five terms and then add them up. Or we could use the formula below with n = 5
Sn = a*(1-r^n)/(1-r)
S5 = 600*(1-0.5^5)/(1-0.5)
S5 = 1,162.5
-----------
Check:
first five terms = {600, 300, 150, 75, 37.5}
S5 = sum of the first five terms
S5 = 600+300+150+75+37.5
S5 = 1,162.5
Because n = 5 is relatively small, we can quickly confirm the answer. With larger values of n, a spreadsheet is the better option.
Heidi bought a machine that throws tennis balls for her dog to fetch. The height of each ball thrown by the machine, in feet, is modeled by the function f(x) = –x2 + x + 2, where x represents time in seconds. How many seconds after the machine throws the ball does it hit the ground?
Answer:
2 seconds
Step-by-step explanation:
Given the equation:
[tex]f(x) = -x^2 + x + 2[/tex]
Where f(x) represents the height of each ball thrown by machine.
and x represents the time in seconds.
To find:
The number of seconds after which the machine throws the balls hits the ground = ?
Solution:
In other words, we have to find the value of [tex]x[/tex] after which the [tex]f(x) = 0[/tex]
(Because when the ball hits the ground, the height becomes 0).
Let us put [tex]f(x) = 0[/tex] and solve for [tex]x[/tex]
[tex]f(x) = -x^2 + x + 2 =0\\\Rightarrow -x^2 + x + 2 =0\\\Rightarrow x^2 - x - 2 =0\\\Rightarrow x^2 - 2x+x - 2 =0\\\Rightarrow x(x - 2)+1(x - 2) =0\\\Rightarrow (x+1)(x - 2) =0\\\Rightarrow x =-1, 2[/tex]
[tex]x=-1[/tex] sec is not a valid answer because time can not be negative.
So, the answer is after 2 seconds, the ball hits the ground.
“Type ‘equal, supplementary, complementary, or vertical in the space provided’”
Answer:
Supplementary
Step-by-step explanation:
When the sum of 2 angles equal 180°, they are called supplementary angles. And they also form a straight line together.
<AOB (40°) and <BOC (140°) are not equal angles.
<AOB (40°) and <BOC (140°) are not complementary angles. Complementary angles add up to equal 90°.
<AOB (40°) and <BOC (140°) are not vertical angles. Vertical angles are opposite angles formed when two lines intersect.
<AOB (40°) and <BOC (140°) are supplementary angles. They add up to equal 180°.
Solve for x: x/25 > 5
Answer:
x>125
Step-by-step explanation:
Answer:
x > 125
Step-by-step explanation:
Multiply each side by 25, so it now looks like this: x > 125I hope this helps!
Given the two functions, which statement is true?
fx = 3^4, g(x) = 3^x + 5
Answer:
third option
Step-by-step explanation:
Given f(x) then f(x) + c represents a vertical translation of f(x)
• If c > 0 then shift up by c units
• If c < 0 then shift down by c units
Given
g(x) = [tex]3^{x}[/tex] + 5 ← this represents a shift up of 5 units
Thus g(x) is the graph of f(x) translated up by 5 units
Answer:
[tex]\boxed{\sf{Option \: 3}}[/tex]
Step-by-step explanation:
g(x) is translated up 5 units compared to f(x). In a vertical translation, when the graph is moved 5 units up, 5 is added to the function. When the graph is moved 5 units down, 5 is subtracted from the function. The graphs are shifted in the direction of the y-axis.
You work for a pharmacy and monthly sales of asthma inhalers in your pharmacy follows a normal distribution with a mean of 191 inhalers per month and a standard deviation of 21 due to a storm the next shipment of inhalers did not arrive. The pharmacy only has 163 inhalers currently in stock and available to sell for the current month. What is the z score corresponding to selling 163 inhalers?
Answer: -1.33 .
Step-by-step explanation:
Formula to find the Z-score :
[tex]Z=\dfrac{\text{Expected value - Mean}}{\text{Standard deviation}}[/tex]
Given: Mean = 191 and Standard deviation = 21
Then , the z-score corresponding to the expected value of 163 will be :
[tex]Z=\dfrac{163-191}{21}\\\\=\dfrac{-28}{21}\approx-1.33[/tex]
Hence, the z score corresponding to selling 163 inhalers is -1.33 .
Can somebody please solve this problem for me!
Answer:
x = 200.674
Step-by-step explanation:
tan∅ = opposite/adjacent
Step 1: Find length of z
tan70° = 119/z
ztan70° = 119
z = 119/tan70°
z = 43.3125
Step 2: Find length z + x (denoted as y)
tan26° = 119/y
ytan26° = 119
y = 119/tan26°
y = 243.986
Step 3: Find x
y - z = x
243.986 - 43.3125 = x
x = 200.674
find the value of X from the given picture
Answer:
x = 108
Step-by-step explanation:
The sum of a circle is 360
90 + x/2 + x+x = 360
Combine like terms
90 + 2x+x/2 = 360
90 + 5/2 x = 360
Subtract 90 from each side
5/2x = 270
Multiply each side by 2/5
5/2x * 2/5 = 270*2/5
x =108
The population of Jacksonville is 836,507. What is the population rounded to the
nearest hundred thousand?
A. 900,000
O
B. 850,000
C. 840,000
o D. 800,000
Answer:
D. 800,000
Step-by-step explanation:
It is D because you find the hundred thousand place which is the 8, the you go to the number next door which is 3, if the 3 is 5 or greater the 8 will become a 9 or if it is not then it will stay the same. And everything to the left stays the same, everything to the right turns into zeros.
a theater has (2x+1) rows of seats, with (x-3) seats in each row. how many seats are in the theater?
A. 2x^2- 5x- 3
B. 2x^2+ 5x- 3
C. 2x^2- 7x+ 3
D. 2x^2- 7x- 3
(2x+1)(x-3)
y(x-3) .... let y = 2x+1
y*x+y(-3) .... distribute
xy - 3y
x( y ) - 3( y )
x( 2x+1 ) - 3( 2x+1) ... replace y with 2x+1
2x^2 + x - 6x - 3 ..... distribute
2x^2 - 5x - 3
Answer is choice A
What is 2 cm converted to feet?
Answer:
0.065617 ft
Step-by-step explanation:
Answer:
0.0656168 feet.
Step-by-step explanation:
Mark each of the following as true or false and explain how you know.
true false false true...is the quick answer
Remember that negatives are always less than positive numbers.
Pennsylvania Refining Company is studying the relationship between the pump price of gasoline and the number of gallons sold. For a sample of 14 stations last Tuesday, the correlation was 0.65. Can the company conclude that the correlation is positive
Complete Question
Pennsylvania Refining Company is studying the relationship between the pump price of gasoline and the number of gallons sold. For a sample of 14 stations last Tuesday, the correlation was 0.65.At the 0.01 significance level Can the company conclude that the correlation is positive
Answer:
Yes the company conclude that the correlation is positive
Step-by-step explanation:
From the question we are told that
The sample size is n = 14
The correlation is r = 0.65
The null hypothesis is [tex]H_o : r < 0[/tex]
The alternative hypothesis is [tex]H_1 : r > 0[/tex]
Generally the standard deviation is mathematically evaluated as
[tex]Sr = \sqrt{1- r}[/tex]
[tex]Sr = \sqrt{1- 0.65}[/tex]
[tex]Sr = 0.616[/tex]
The degree of freedom for the one-tail test is
[tex]df = n- 2[/tex]
[tex]df = 14- 2[/tex]
[tex]df = 12[/tex]
The standard error is evaluated as
[tex]SE = \frac{0.616}{ \sqrt{12} }[/tex]
[tex]SE =0.1779[/tex]
The test statistics is evaluated as
[tex]t = \frac{r }{SE}[/tex]
[tex]t = \frac{0.65 }{0.1779}[/tex]
[tex]t = 3.654[/tex]
The p-value of of t is obtained from the z table, the value is
[tex]p-value = P(t < 3.654) = 0.00012909[/tex]
Given that [tex]p-value < \alpha[/tex] then we reject the null hypothesis
Hence the company can conclude that the correlation is positive
Help someone please!!
Answer:
A. 5:4
Step-by-step explanation:
Since the question mentions twelfths of a pie, it is easier to say each pie has 12 pieces or 36 total pieces ordered from the 3 pies. Ty ate 5 and Rob ate 15 which is 3 times more than Ty. A total of 20 pieces have been eaten from the 36 you started with. Eaten = 20 and Remaining = 16. So the ratio is 20:16 which is simplified to 5:4.
A middle school has 470 students. Regina surveys a random sample of 40 students and finds that 28 have cell phones. How many students at the school are likely to have cell phones? A. 132 students B. 188 students C. 329 students D. 338 students Please include ALL work! <3
Answer:
C. 329
Step-by-step explanation:
So 28 is 70% of 40
so we know that 70% percent of students have phones
70% of 470
329
Thats how I solved it have a great day :)
2 lines intersect a horizontal line to form 8 angles. Labeled clockwise, starting at the top left, the angles are: A, B, C, D, E, F, G, D. Which of the pairs of angles are vertical angles and thus congruent? ∠A and ∠G ∠A and ∠B ∠C and ∠F ∠D and ∠H
Answer:
∠A and ∠G is the pair of vertical angles.
Step-by-step explanation:
From the figure attached,
Two lines 'm' and 'n' are two parallel lines. These lines intersect a horizontal line 'l'.
Since, "Pair of opposite angles formed at the point of intersection are the vertical angles and equal in measure."
Therefore, Opposite angles ∠A ≅ ∠G, ∠B ≅ ∠H, ∠C ≅ ∠E and ∠D ≅ ∠F are the vertical angles.
From the given options,
∠A and ∠G is the pair representing the pair of vertical angles and thus congruent.
Answer:
a
Step-by-step explanation:
HCF of x minus 2 and X square + X - 6
Answer:
[tex] \boxed{ \sf{ \bold{ \huge{ \boxed{x - 2}}}}}[/tex]Step-by-step explanation:
[tex] \sf{x - 2} \: and \: { {x}^{2} + x - 6}[/tex]
To find the H.C.F of the algebraic expressions, they are to be factorised and a common factor or the product of common factors is obtained as their H.C.F
Let's solve
First expression = x - 2
Second expression = x + x - 6
Here, we have to find the two numbers which subtracts to 1 and multiplies to 6
= x + ( 3 - 2 ) x + 6
Distribute x through the parentheses
= x + 3x - 2x + 6
Factor out x from the expression
= x ( x + 3 ) - 2x + 6
Factor out -2 from the expression
= x ( x + 3 ) - 2 ( x + 3 )
Factor out x+3 from the expression
= ( x + 3 ) ( x - 2 )
Here, x - 2 is common in both expression.
Thus, H.C.F = x - 2
Hope I helped!
Best regards!!!
Answer:
x - 2
Step-by-step explanation:
by factorization method
1) x - 2
2) x^2 + x - 6
by splitting method
x^2 + 3x - 2x - 6
taking separate common from the first two terms and last two terms
x(x + 3) - 2(x + 3)
now writing x+3 once and the other term to get the right answer
(x + 3)(x - 2)
in both parts just see the similar term and write it as HCF
HCF= x - 2
and the second method by which you can get this answer is division method
The perimeter of a rectangle is 80 inches, if the width is 18 inches what is the area of the rectangle? A.22 sq.in B.324 sq.in C.396 sq.in D.6,400 sq.in
Answer:
396 in^2
Step-by-step explanation:
The perimeter of a triangle is given by the formula:
● P = 2w+2L
L is the length and w is the width
■■■■■■■■■■■■■■■■■■■■■■■■■■
The width hereis 18 inches and the perimeter is 80 inches.
Replace w by 18 and P by 80 to find L.
● P= 2L+2w
● 80 = 2L + 2×18
● 80 = 2L + 36
Substrat 36 from both sides
● 80-36 = 2L+36-36
●44 = 2L
Divide both sides by 2
● 44/2 = 2L/2
● 22 = L
So the length is 22 inches
■■■■■■■■■■■■■■■■■■■■■■■■■■
The area of a rectangle is given by the formula:
● A= L×w
● A = 22×18
● A = 396 in^2
Carl recorded the number of customers who visited his new store during the week:
Day Customers
Monday 17
Tuesday 13
Wednesday 14
Thursday 16
He expected to have 15 customers each day. To answer whether the number of customers follows a uniform distribution, a chi-square test for goodness of fit should be performed. (alpha = 0.10)
What is the chi-squared test statistic? Answers are rounded to the nearest hundredth.
Answer:
The chi - square test can be [tex]\approx[/tex] 0.667
Step-by-step explanation:
From the given data :
The null hypothesis and the alternative hypothesis can be computed as:
Null hypothesis: The number of customers does follow a uniform distribution
Alternative hypothesis: The number of customers does not follow a uniform distribution
We learnt that: Carl recorded the number of customers who visited his new store during the week:
Day Customers
Monday 17
Tuesday 13
Wednesday 14
Thursday 16
The above given data was the observed value.
However, the question progress by stating that : He expected to have 15 customers each day.
Now; we can have an expected value for each customer as:
Observed Value Expected Value
Day Customers
Monday 17 15
Tuesday 13 15
Wednesday 14 15
Thursday 16 15
The Chi square corresponding to each data can be determined by using the formula:
[tex]Chi -square = \dfrac{(observed \ value - expected \ value )^2}{expected \ value}[/tex]
For Monday:
[tex]Chi -square = \dfrac{(17 - 15 )^2}{15}[/tex]
[tex]Chi -square = \dfrac{(2)^2}{15}[/tex]
[tex]Chi - square = \dfrac{4}{15}[/tex]
chi - square = 0.2666666667
For Tuesday :
[tex]Chi -square = \dfrac{(13- 15 )^2}{15}[/tex]
[tex]Chi -square = \dfrac{(-2)^2}{15}[/tex]
[tex]Chi - square = \dfrac{4}{15}[/tex]
chi - square = 0.2666666667
For Wednesday :
[tex]Chi -square = \dfrac{(14- 15 )^2}{15}[/tex]
[tex]Chi -square = \dfrac{(-1 )^2}{15}[/tex]
[tex]Chi -square = \dfrac{(1 )}{15}[/tex]
chi - square = 0.06666666667
For Thursday:
[tex]Chi -square = \dfrac{(16- 15 )^2}{15}[/tex]
[tex]Chi -square = \dfrac{(1 )^2}{15}[/tex]
[tex]Chi -square = \dfrac{(1 )}{15}[/tex]
chi - square = 0.06666666667
Observed Value Expected Value chi - square
Day Customers
Monday 17 15 0.2666666667
Tuesday 13 15 0.2666666667
Wednesday 14 15 0.06666666667
Thursday 16 15 0.06666666667
Total : 0.6666666668
The chi - square test can be [tex]\approx[/tex] 0.667
At level of significance ∝ = 0.10
degree of freedom = n - 1
degree of freedom = 4 - 1
degree of freedom = 3
At ∝ = 0.10 and df = 3
The p - value for the chi - square test statistics is 0.880937
Decision rule: If the p - value is greater than the level of significance , we fail to reject the null hypothesis
Conclusion: Since the p - value is greater than the level of significance , we fail to reject the null hypothesis and conclude that there is insufficient evidence to show that the number of customers does not follows a uniform distribution.
Answer:.67
Step-by-step explanation:
The odds in favor of a horse winning a race are 7:4. Find the probability that the horse will win the race.
Answer:
7/11 = 0.6363...
Step-by-step explanation:
7 + 4 = 11
probability of winning: 7/11 = 0.6363...
The probability that the horse will in the race is [tex]\mathbf{\dfrac{7}{11}}[/tex]
Given that the odds of the horse winning the race is 7:4
Assuming the ratio is in form of a:b, the probability of winning the race can be computed as:
[tex]\mathbf{P(A) = \dfrac{a}{a+b}}[/tex]
From the given question;
The probability of the horse winning the race is:
[tex]\mathbf{P(A) = \dfrac{7}{7+4}}[/tex]
[tex]\mathbf{P(A) = \dfrac{7}{11}}[/tex]
Learn more about probability here:
https://brainly.com/question/11234923?referrer=searchResults
What is 28% of 58?
Hhhhhhh
Answer:
16.24
Step-by-step explanation:
of means multiply
28% * 58
Change to decimal form
.28 * 58
16.24
Answer:
[tex]\Large \boxed{\mathrm{16.24}}[/tex]
Step-by-step explanation:
[tex]28\% \times 58[/tex]
[tex]\displaystyle \sf Apply \ percentage \ rule : a\%=\frac{a}{100}[/tex]
[tex]\displaystyle \frac{28}{100} \times 58[/tex]
[tex]\sf Multiply.[/tex]
[tex]\displaystyle \frac{1624}{100} =16.24[/tex]
A box is 1 m high, 2.5 m long, and 1.5 m wide, what is its volume?
Answer:
3.75
Step-by-step explanation:
[tex]v = lbh \\ 2.5 \times 1.5 \times 1 \\ = 3.75[/tex]
The volume of the rectangular prism will be 3.75 cubic meters.
What is the volume of the rectangular prism?Let the prism with a length of L, a width of W, and a height of H. Then the volume of the prism is given as
V = L x W x H
A box is 1 m high, 2.5 m long, and 1.5 m wide.
Then the volume of the rectangular prism will be
V = L x W x H
V = 1 x 2.5 x 1.5
V = 3.75 cubic meters
Thus, the volume of the rectangular prism will be 3.75 cubic meters.
More about the volume of the rectangular prism link is given below.
https://brainly.com/question/21334693
#SPJ2
The data represents the daily rainfall (in inches) for one month. Construct a frequency distribution beginning with a lower class limit of and use a class width of . Does the frequency distribution appear to be roughly a normal distribution?
Answer:
The frequency distribution does not appear to be normal.
Step-by-step explanation:
The data provided is as follows:
S = {0.38 , 0 , 0.22 , 0.06 , 0 , 0 , 0.21 , 0 , 0.53 , 0.18 , 0 , 0 , 0.02 , 0 , 0 , 0.24 , 0 , 0 , 0.01 , 0 , 0 , 1.28 , 0.24 , 0 , 0.19 , 0.53 , 0 , 0, 0.24 , 0}
It is provided that the first lower class limit should be 0.00 and the class width should be 0.20.
The frequency distribution table is as follows:
Class Interval Count
0.00 - 0.19 21
0.20 - 0.39 6
0.40 - 0.59 2
0.60 - 0.79 0
0.80 - 0.99 0
1.00 - 1 . 19 0
1.20 - 1. 39 1
The frequency distribution does not appear to be normal. This is because the frequencies does not start and end at almost equivalent points and the mid-distribution does not consist of the highest frequency.
Thus, the frequency distribution does not appear to be normal.
Theresa bought 2 pineapples for $6. She be wants to find the constant of proportionality in terms of dollars per pineapple. She modeled this proportional relationship on a number line diagram, as shown.
Part A
Using the diagram, find the constant of proportionality in terms of dollars per pineapple.
Answer:
$3 per pineapple
Step-by-step explanation:
Hey there!
If 2 pineapples are $6,
6 / 2 = 3
So 1 pineapple is $3.
Hope this helps :)
Answer:
3 dollars for 1 pineapple
Step-by-step explanation:
well 2 pinapples is 6 bucks. so 2x=6, and to get x, just divide each side by 2. 6/2=3.
g If A and B are disjoint events, with P( A) = 0.20 and P( B) = 0.30. Then P( A and B) is: a. .00 b. .10 c. .50 d. 0.06
Answer: A) 0
P(A and B) = 0 when events A and B are disjoint, aka mutually exclusive.
We say that two events are mutually exclusive if they cannot happen at the same time. An example would be flipping a coin to have it land on heads and tails at the same time.
What is the missing statement in step 10 of the proof?
Answer:
c/sin C = b/sin C
Step-by-step explanation:
Look at the statement in the previous step and the reason in this step.
c sin B = b sin C
Divide both sides by sin B sin C:
(c sin B)/(sin B sin C) = (b sin C)/(sin B sin C)
c/sin C = b/sin B
Gavin goes to the market and buys one rectangle shaped board. The length of the board is 16 cm and width of board is 10 cm. If he wants to add a 2 cm wooden border around the board, what will be the area of the rectangle board?
Answer:
The answer is 216
Step-by-step explanation:
if there is a 2 cm border, that means that the sides will both become 2 centimeters longer. so (16+2)*(10*2) = 18*12 = 216.