Answer:
[tex]g(x) = \frac{3}{x}[/tex]
[tex]g(x) =-\frac{2}{x}[/tex]
[tex]g(x) =\frac{5}{2x}[/tex]
Step-by-step explanation:
Given
[tex]f(x)=\frac{1}{x}[/tex]
Required
Which represents vertical stretch of f(x)
The transformation is represented as:
[tex]g(x) = a* f(x)[/tex]
Where:
[tex]|a| > 1[/tex]
So, the functions are:
[tex]g(x) = \frac{3}{x}[/tex] ---- [tex]|3| > 1[/tex]
[tex]g(x) =-\frac{2}{x}[/tex] --- [tex]|-2|>1[/tex]
[tex]g(x) =\frac{5}{2x}[/tex] --- [tex]|\frac{5}{2}| > 1[/tex]
Answer:
the other person is correct if you need them quick it is a b and d
Step-by-step explanation:
Given the function R(x)=x+3/x−5, find the values of x that make the function greater than or equal to zero. Write the solution in interval notation.
Answer:
Step-by-step explanation:
[tex]R(x)=\frac{x+3}{x-5} \geq 0\\R(x)=0,gives~x+3=0,x=-3\\R(x)>0 ,if~both~numerator ~and~denominator~are~of~same~sign.\\let~x+3>0,x>-3\\and~x-5>0,x>5\\combining \\x>5\\\\again~let~x+3<0,x<-3\\x-5<0,x<5\\combining\\x<-3\\Hence~R(x)\geq 0\\if ~x \in ~[- \infty,-3]U(5,\infty)[/tex]
What is 23– 48? Need awnser now
help with b please. thank you
Answer:
See explanation.
General Formulas and Concepts:
Algebra I
Terms/CoefficientsFactoringAlgebra II
Polynomial Long DivisionPre-Calculus
ParametricsCalculus
Differentiation
DerivativesDerivative NotationDerivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Basic Power Rule:
f(x) = cxⁿf’(x) = c·nxⁿ⁻¹Derivative Rule [Quotient Rule]: [tex]\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}[/tex]
Parametric Differentiation: [tex]\displaystyle \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle x = 2t - \frac{1}{t}[/tex]
[tex]\displaystyle y = t + \frac{4}{t}[/tex]
Step 2: Find Derivative
[x] Differentiate [Basic Power Rule and Quotient Rule]: [tex]\displaystyle \frac{dx}{dt} = 2 + \frac{1}{t^2}[/tex][y] Differentiate [Basic Power Rule and Quotient Rule]: [tex]\displaystyle \frac{dy}{dt} = 1 - \frac{4}{t^2}[/tex]Substitute in variables [Parametric Derivative]: [tex]\displaystyle \frac{dy}{dx} = \frac{1 - \frac{4}{t^2}}{2 + \frac{1}{t^2}}[/tex][Parametric Derivative] Simplify: [tex]\displaystyle \frac{dy}{dx} = \frac{t^2 - 4}{2t^2 + 1}[/tex][Parametric Derivative] Polynomial Long Division: [tex]\displaystyle \frac{dy}{dx} = \frac{1}{2} - \frac{7}{2(2t^2 - 1)}[/tex] [Parametric Derivative] Factor: [tex]\displaystyle \frac{dy}{dx} = \frac{1}{2} \bigg( 1 - \frac{9}{2t^2 + 1} \bigg)[/tex]Here we see that if we increase our values for t, our derivative would get closer and closer to 0.5 but never actually reaching it. Another way to approach it is to take the limit of the derivative as t approaches to infinity. Hence [tex]\displaystyle \frac{dy}{dx} < \frac{1}{2}[/tex].
Topic: AP Calculus BC (Calculus I + II)
Unit: Parametrics
Book: College Calculus 10e
Each side of a square is increasing at a rate of 8 cm/s. At what rate (in cm2/s) is the area of the square increasing when the area of the square is 49 cm2
Answer:
Step-by-step explanation:
This is nice and simple. I'm going to walk through it like I do when teaching this concept to my class for the first time. This is a good problem for that.
We are given a square and we are looking for the rate at which the area is increasing when a certain set of specifics are given. That means that the main equation for this problem is the area of a square, which is:
[tex]A=s^2[/tex] where s is a side.
Since we are looking for the rate at which the area is changing, [tex]\frac{dA}{dt}[/tex], we need to take the derivative of area formula implicitly:
[tex]\frac{dA}{dt}=2s\frac{ds}{dt}[/tex] that means that if [tex]\frac{dA}{dt}[/tex] is our unknown, we need values for everything else. We are given that the initial area for the square is 49. That will help us determine what the "s" in our derivative is. We plug in 49 for A and solve:
[tex]49=s^2[/tex] so
s = 7
We are also given at the start that the sides of this square are increasing at a rate of 8cm/s. That is [tex]\frac{ds}{dt}[/tex]. Filling it all in:
[tex]\frac{dA}{dt}=2(7)(8)[/tex] and
[tex]\frac{dA}{dt}=112\frac{cm^2}{s}[/tex]
The surface area of a square of side L is given by
[tex]A = L^2[/tex]
The rate of change of the area per unit time is
[tex]\dfrac{dA}{dt} = 2L\dfrac{dL}{dt}[/tex]
We can express the length L on the right hand side in terms of the area A [tex](L = \sqrt{A})[/tex]:
[tex]\dfrac{dA}{dt} = 2\sqrt{A}\dfrac{dL}{dt}[/tex]
[tex]\:\:\:\:\:\:\:=2(\sqrt{49\:\text{cm}^2})(8\:\text{cm/s})[/tex]
[tex]\:\:\:\:\:\:\:=112\:\text{cm}^2\text{/s}[/tex]
Solve the following equation by first writing the equation in the form a x squared = c:
3 a squared minus 21 = 27
A. a = 4
B. a = plus-or-minus 4
C. a = plus-or-minus 16
D. a = 16
9514 1404 393
Answer:
B. a = plus-or-minus 4
Step-by-step explanation:
3a² -21 = 27 . . . . . . . given
3a² = 48 . . . . . . . . . . add 21 to both sides (desired form)
a² = 16 . . . . . . . . . . . divide both sides by 3
a = ±4 . . . . . . . take the square root
The Quality Control Department employs five technicians during the day shift. Listed below is the number of times each technician instructed the production foreman to shut down the manufacturing process last week.
Technician Shutdowns Technician Shutdowns
Taylor 4 Rousche 3
Hurley 3 Huang 2
Gupta 5
Required:
a. How many different samples of two technicians are possible from this population?
b. List all possible samples of two observations each and compute the mean of each sample.
c. Compare the mean of the sample means with the population mean.
d. Compare the shape of the population distribution with the shape of the distribution of the sample means.
Answer:
Kindly check explanation
Step-by-step explanation:
Given the data :
Technician __Shutdown
Taylor, T___4
Rousche, R _ 3
Hurley, H__ 3
Huang, Hu___2
Gupta, ___ 5
The Numbe of samples of 2 possible from the 5 technicians :
We use combination :
nCr = n! ÷ (n-r)!r!
5C2 = 5!(3!)2!
5C2 = (5*4)/2 = 10
POSSIBLE COMBINATIONS :
TR, TH, THu, TG, RH, RHu, RG , HHu, HG, HuG
Sample means :
TR = (4+3)/2 = 3.5
TH = (4+3)/2 = 3.5
THu = (4+2) = 6/2 = 3
TG = (4 + 5) = 9/2 = 4.5
RH = (3+3) = 6/2 = 3
RHu = (3+2) /2 = 2.5
RG = (3 + 5) = 8/2 = 4
HHu = (3+2) = 2.5
HG = (3+5) = 8/2 = 4
HuG = (2+5) / 2 = 3.5
Mean of sample mean (3.5+3.5+3+4.5+3+2.5+4+2.5+4+3.5) / 10 = 3.4
Population mean :
(4 + 3 + 3 + 2 + 5) / 5 = 17 /5 = 3.4
Population Mean and mean of sample means are the same.
This distribution should be approximately normal.
which of the folleing is a statistical question?
a) how tall is steve?
b)what are the heights of students in class?
c)what is the formula for the volume of the cube?
d) what is the address of the white house?
In AAEB, CD is parallel to AB. Complete each proportion.
Answer: I dont know if this is right
Step-by-step explanation:
EC/CA= ED/DB
EC/EA = DE/BA
EB/ED= AE/DE
DB/EB = CD/AE
Use the figure to find u.
Answer:
u = 2
Step-by-step explanation:
Since this is a right triangle, we can use trig functions
cos theta = adj side / hypotenuse
cos 45 = sqrt(2) / u
u cos 45 = sqrt(2)
u = sqrt(2) / cos 45
u = sqrt(2) / 1/ sqrt(2)
u = sqrt(2) * sqrt(2)
u =2
u=2
Answer:
Solution given:
Relationship between base and hypotenuse is given by cos angle.Cos 45°=base/hypotenuse
[tex]\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{u}[/tex]
doing crisscrossed multiplication
[tex]\sqrt{2}*\sqrt{2}=1*u[/tex]
u=2
A paper factory makes cardboard sheets like the one shown below. If the area of each sheet is given by the expression 6x ^ 2 + 7x + 2, what are the dimensions of each sheet of cardboard?
Answer:
(3x+2) by (2x+1)
Step-by-step explanation:
A cardboard is a rectangle, and has two dimensions. Given a quadratic equation, you should find a way to split it in two.
The easiest way to do so is through factoring. (There are many ways to do this, take a look at the plethora of sources offered on the internet.)
When the expression 6x^2 + 7x + 2 is factored, it is (3x+2)(2x+1). Hence, these are your dimensions.
Points B, A, and E are:
A. coplanar and non-collinear
B. collinear and coplanar
C. non-collinear and non-coplanar
D. collinear and collinear
Answer:
Option B.
Step-by-step explanation:
3 points are collinear if we can draw a line that connects the points.
And we know that any 2 or 3 points are always coplanar because we can find a plane such that the 2 or 3 points belong to it.
In the image we can see that B, A, and E are at the same y-value, thus these points are collinear, then the points define a line, and these are 3 points, thus we know that are coplanar.
Then points A, B, and E are collinear and coplanar.
The correct option is B.
Jeff has 20 coins. 2/5 of them are quarters. How many quarters does he have? How many coins are not quarters?
Given: Line AC is parallel to DF, Line BE is perpendicular to DF, and angle AEB is congruent to angle CEB, prove angle BAE is congruent to angle BCE. Will give Brainliest if explained thoroughly.
9514 1404 393
Explanation:
There are several ways you can go at this. Here are a couple. All proofs will start with the given relations being repeated as part of the proof. Here are the next steps.
Angle Sum∠AED ≅ ∠BAE . . . . alternate interior angles are congruent
∠AED +∠AEB = 90° . . . . angle sum theorem
∠BAE +∠AEB = 90° . . . . substitution property of equality
∠CEF ≅ ∠BCE . . . . alternate interior angles are congruent
∠CEF +∠CEB = 90° . . . . angle sum theorem
∠BCE +∠CEB = 90° . . . . substitution property of equality
∠BAE +∠AEB = ∠BCE +∠CEB . . . . substitution property of equality
∠BAE +∠AEB = ∠BCE +∠AEB . . . . substitution property of equality
∠BAE = ∠BCE . . . . addition property of equality
Congruent Triangles∠ABE = ∠CBE = 90° . . . . BE ⊥ AC
BE ≅ BE . . . . reflexive property of congruence
ΔBEA ≅ ΔBEC . . . . ASA congruence theorem
∠BAE ≅ ∠BCE . . . . CPCTC
What is the difference of the two polynomials? (NineX squared plus 8X) minus (twoX squared plus 3X)
Answer:
[tex]7x {}^{2} + 5x[/tex]
Step-by-step explanation:
[tex]9x {}^{2} + 8x - (2x {}^{2} + 3x) \\ \\ = 9x {}^{2} + 8x - 2x {}^{2} - 3x (remove \: brackets) \\\ \\ = 7x {}^{2} - 5x [/tex]
A supervisor records the repair cost for 17 randomly selected stereos. A sample mean of $66.34 and standard deviation of $15.22 are subsequently computed. Determine the 80% confidence interval for the mean repair cost for the stereos. Assume the population is approximately normal. Find the critical value that should be used in constructing the confidence interval.
A supervisor records the repair cost for 17 randomly selected stereos. A sample mean of $66.34 and standard deviation of $15.22 are subsequently computed. Determine the 80 % confidence interval for the mean repair cost for the stereos. Assume the population is approximately normal. Construct the 80% confidence interval.
Answer:
I AM VERY SORRY AARUSH KAPUSH
Step-by-step explanation:
In a poll, adults in a region were asked about their online vs. in-store clothes shopping. One finding was that % of respondents never clothes-shop online. Find and interpret a % confidence interval for the proportion of all adults in the region who never clothes-shop online.
The question is incomplete. The complete question is :
In a poll, 1100 adults in a region were asked about their online vs. in-store clothes shopping. One finding was that 43% of respondents never clothes-shop online. Find and interpret a 95% confidence interval for the proportion of all adults in the region who never clothes-shop online.
Solution :
95% confidence interval for p is :
[tex]$\hat p - Z_{\alpha/2}\times \sqrt{\frac{\hat p(1-\hat p)}{n}} < p < \hat p + Z_{\alpha/2}\times \sqrt{\frac{\hat p(1-\hat p)}{n}}$[/tex]
[tex]$0.43 - 1.96\times \sqrt{\frac{0.43(1-0.43)}{1100}} < p < 0.43 + 1.96\times \sqrt{\frac{0.43(1-0.43)}{1100}}$[/tex]
0.401 < p < 0.459
Therefore, 95% confidence interval is from 0.401 to 0.459
if ax^3+9x^2+4x-10 when divided by x-3 leaves the reminder 5,then a=
Let f(x) = ax³ + 9x² + 4x – 10
g(x) = 0⇒x - 3 = 0
⇒ x = 0 + 3
⇒ x = 3
On dividing f(x) by x - 3, it leaves a remainder 5.
Now keeping, f(3) = 5
⇒a(3)³ + 9(3)² + 4(3) - 10 = 5
⇒ a × 27 + 9 × 9 + 4 × 3 - 10 = 5
⇒ 27a + 81 + 12 - 10 = 5
⇒ 81 + 12 - 10 - 5 = 27a
⇒ 81 + 12 - 15 = 27a
⇒ 93 - 15 = 27a
⇒ 78 = 27a
⇒ a = 27/78
⇒ a = 0.3461
Help
The table shows the results of a survey of students in two math classes.
Find P(more than 1 hour of TV | 6th period class). Round to the nearest thousandth. Be sure to show and explain your work.
Did You Watch More Than One Hour of TV Last Night?
Answer:
0.6
Step-by-step explanation:
In this question, the | symbol means "given", so we can phrase the question as "Find the probability that a student watches more than one hour of TV given that they are in the 6th period class"
Next, because there is a 100% chance that the student is in the 6th period class, we can disregard the results of the 3rd period class.
Given that the student is in the 6th period class, there are 15 total students (as 9+6=15 = the sum of the yes and no answers for 6th period) and 9 students that said yes. Therefore, there is a 9/15 = 3/5 = 0.6 probability that a student watches more than 1 hour of TV given that they are in the 6th period class
Which sequence or sequences are correct and why?
Answer:
didn't get the question did u forget to put the sequence ???????
pls write the question fully so that I can help you
Please help 20 points an will give Brainiest to who ever is right
Answer:
horizontal expansion factor of 2
2^x =2(2)=4
2^4=2×2×2×2= 16
What is the solution to the system of equations?
y = A system of equations. y equals StartFraction 2 over 3 EndFraction x plus 3. x equals negative 2.x + 3
x = –2
(negative 2, negative StartFraction 15 over 2 EndFraction)
(negative 2, StartFraction 5 over 3 EndFraction)
(negative 2, StartFraction 11 over 6 EndFraction)
(negative 2, StartFraction 13 over 3 EndFraction)
9514 1404 393
Answer:
(b) (negative 2, StartFraction 5 over 3 EndFraction)
Step-by-step explanation:
The value of x is given, so you only need to substitute that into the first equation to find y.
y = 2/3(-2) +3 = -4/3 +9/3
y = 5/3
The solution is (x, y) = (-2, 5/3).
Answer:
negative 2, StartFraction 5 over 3 EndFraction)
Step-by-step explanation:
HELP
Which of the lines below has a slope of 0?
Answer:
C has a zero slope
Step-by-step explanation:
A horizontal line has a slope of zero
A vertical line has an undefined slope
A positive slope goes up from left to right
A negative slope goes down from left to right
A class contains 18 girls and 14 boys. For all parts of this question, each boy and girl are distinguishable from one another. Answer the following questions:a)In how many ways can a committee of one boy and one girl be chosen
Answer:
The total number of ways is 252.
Step-by-step explanation:
Number of girls = 18
number of boys = 14
Commitee of one girl and a boy
(18 C 1)(14 C 1)
= 252
Resolve into factors. 2ab + a^2 b - 2b - ab (algebra)
AS IN THE PICTURE.............
HELP PLEASE ASAP!!! So for this problem I got the scientific notation however I can not seem to figure out the standard notation. Can someone please help me out here please?
Answer:
0.000000073
Step-by-step explanation:
Given number is,
7.3E - 8
In scientific notation number will be,
7.3 × 10⁻⁸
In standard form the number will be,
0.000000073
A human resources office is working to implement an increase in starting salaries for new
administrative secretaries and faculty at a community college. An administrative secretary
starts at $28,000 and new faculty receive $40,000. The college would like to determine the
percentage increase to allocate to each group, given that the college will be hiring 8
secretaries and 7 faculty in the upcoming academic year. The college has at most $5,000 to
put towards raises. What should the percentage increase be for each group?
Answer:
Step-by-step explanation :
Let % increase in administrative secretary be = x
Let % increase in new faculty receive be = y
Administrative secretary salary = 28,000
New faculty receive Salary = 40,000
(8)*(x/100)* (28000) + (7)*(y/100)*(40000) = 5,000
2240x +2800 y = 5,000
224x +280 y = 500
56x +70y = 125
Therefore, x and y should be chosen such that it satisfy the above equation.
Is anyone good at this? Please help me!
Answer:
Step-by-step explanation:
For a function given as,
f(x)= 2x + 2
Domain of the given function is → {-5, -1, 2, 3}
For the Range of the given function,
f(-5) = 2(-5) + 2
= -8
f(-1) = 2(-1) + 2
= -2 + 2
= 0
f(2) = 2(2) + 2
= 6
f(3) = 2(3) + 2
= 8
Therefore, set for the range will be → {-8, 0, 6, 8}
Now plot the ordered pairs on the graph,
(-5, -8), (-1, 0), (2, 6), (3, 8)
If the total income generated from Gasoline for AER was $408 millions, how much would be the cost for a barrel of gasoline
for every 5 people who bought $9.75 tickets to the football game, 3 people bought $14.50 tickets. If each of 35 people bought a $9.75 ticket, how many people bought the more expensive ticket?
Answer:
21
Step-by-step explanation:
5/3=35/x
3 x 35=105
5 x x= 5x
105=5x
105/5=5x/5
21=x
The number of people who bought the more expensive ticket is 21.
What is an expression?
Expression in maths is defined as the collection of the numbers variables and functions by using signs like addition, subtraction, multiplication, and division.
Given that:-
For every 5 people who bought $9.75 tickets to the football game, 3 people bought $14.50 tickets. If every 35 people bought a $9.75 ticket,Let the number of people be X so we can form the following expression given below:-
5/3=35/x
3 x 35=105
5 x x= 5x
105=5x
105/5=5x/5
21=x
Therefore the number of people who bought the more expensive ticket is 21.
To know more about Expression follow
https://brainly.com/question/723406
#SPJ2
Let $f$ be a linear function for which $f(6)-f(2)=12$. What is $f(12)-f(2)?$ Please explain how you found your answer. Thank you!
========================================================
Explanation:
Since f(x) is linear, this means f(x) = mx+b
m = slopeb = y interceptLet's plug in x = 6
[tex]f(x) = mx+b\\f(6) = m*6+b\\f(6) = 6m+b[/tex]
Repeat for x = 2
[tex]f(x) = mx+b\\f(2) = m*2+b\\f(2) = 2m+b[/tex]
Now subtract the two function outputs
[tex]f(6)-f(2) = (6m+b)-(2m+b)\\f(6)-f(2) = 6m+b-2m-b\\f(6)-f(2) = 4m\\[/tex]
The b terms cancel out which is very handy.
Set this equal to 12, since f(6)-f(2) = 12, and solve for m
[tex]f(6)-f(2) = 12\\4m = 12\\m = 12/4\\m = 3\\[/tex]
So the slope of f(x) is m = 3
-------------------------------------------------------------------------
Next, plug in x = 12
[tex]f(x) = mx+b\\f(12) = m*12+b\\f(12) = 12m+b[/tex]
We can then say:
[tex]f(12)-f(2) = (12m+b)-(2m+b)\\f(12)-f(2) = 12m+b-2m-b\\f(12)-f(2) = 10m\\[/tex]
Lastly, we plug in m = 3
[tex]f(12)-f(2) = 10m\\f(12)-f(2) = 10*3\\f(12)-f(2) = 30\\[/tex]