Answer:
Normal force exerted on the rover would be greater at a point on the surface of the planet where the weight of the rover is experienced to be greater.
Explanation:
Since weight is a vector quantity, it can vary with position. Weight is the amount of force the planet exerts on the rover centered towards the planet.
Such a force is the result of gravitational pull and is quantified as:
[tex]F=G\times \frac{M.m}{R^2}[/tex]
and [tex]M=\rho\times \frac{4\pi.r^3}{3}[/tex]
where:
R = distance between the center of mass of the two bodies (here planet & rover)
G = universal gravitational constant
M = mass of the planet
m = mass of the rover
This gravitational pull varies from place to place on the planet because the planet may not be perfectly spherical so the distance R varies from place to place and also the density of the planet may not be uniform hence there is variation in weight.
Weight is basically a force that a mass on the surface of the planet experiences.
According to Newton's third law the there is an equal and opposite reaction force on the body (here rover) which is the normal force.
A merry-go-round of radius R = 2.0 m has a moment of inertia I = 250 kg-m2
and is rotating at 10 rev/min. A 25-kilogram child at rest jumps onto the edge of the merry-go-round. What is the new angular speed of the merry-go-round?
Answer:
dont be lose because the person who lose will win the match
A boy throws a ball upward with a velocity of 4.50 m/s at 60.0o. What is the maximum height reached by the ball?
Answer:
3.1m
Explanation:
Since we only care about the y direction we only need to find vy. Once u draw your vector you will realize that vy= 4.5sin60=3.897m/s.
use vf²=v²+2a(y)
At the maximum height the velocity is 0 and since the object is in freefall, a=-g
Plug in all values
0=15.1875-2*9.8(y)
solve for y
-15.1875*2/-9.8=y
y=3.1m
Answer:
0.774m
Explanation:
The formula for maximum height is given by:
hmax = ∨₀² ₓ Sin (α)² / 2 × g
where;
∨₀ = initial velocity
Sin (α) = angle of launch
g = gravitational acceleration which is equal to 9.8m/s²
Plugging in our values, we will have:
hmax = (4.50m/s)² × (Sin 60.0)² / 2 × 9.8m/s²
hmax= 20.25m/s × 0.75 / 19.8m/s²
hmax = 15.1875 / 19.8
hmax = 0.774m
The unit of kinetic energy is the _______. The unit of kinetic energy is the _______. hertz meter watt joule radian
Answer:
joule
Explanation:
if 145kl of energy is added to water, what mass of water can be heated from 35C to 100C then vaporized at 100C
Answer:
m = 0.057 kg = 57 g
Explanation:
Energy Added to Water = Heat added to raise the temperature of water + Heat used to vaporize water
[tex]E = mC\Delta T + mH\\E = m(C\Delta T + H)[/tex]
where,
E = Energy added to water = 145 KJ
m = mass of water = ?
C = specific heat capacity of water = 4.2 KJ/kg.°C
ΔT = change in temperature = 100°C - 35°C = 65°C
H = Latent heat of vaporization of water = 2260 KJ/kg
Therefore,
[tex]145\ KJ = m[(4.2\ KJ/kg.^oC)(65^oC)+2260\ KJ/kg]\\\\145\ KJ = m(2533\ KJ/kg)\\\\m = \frac{145\ KJ}{2533\ KJ/kg}[/tex]
m = 0.057 kg = 57 g
The mass of water that can be heated is equal to 0.527 kilograms.
Given the following data:
Quantity of energy = 145 kJ = 145,000 Joules.Initial temperature = 35.0°CFinal temperature = 100.0°CScientific data:
Specific heat capacity of water = 4200 J/kg°CLatent heat of vaporization of water = 2260 KJ/kgTo calculate the mass of water that can be heated:
The quantity of energy and heat.Note: The quantity of energy added to water is equal to the quantity of heat used to vaporize water and the quantity of heat that is added to raise the temperature of water.
Mathematically, this is given by this expression:
[tex]E=mc\theta + mH\\\\E= m(c\theta + H)[/tex]
Making m the subject of formula, we have:
[tex]m=\frac{E}{c\theta + H}[/tex]
Substituting the parameters into the formula, we have;
[tex]m=\frac{145000}{[42000\times (100-35)] + 2260}\\\\m=\frac{145000}{(4200\times 65) + 2260}\\\\m=\frac{145000}{273000 + 2260}\\\\m=\frac{145000}{275260}[/tex]
Mass, m = 0.527 kilograms.
Read more on quantity of energy here: https://brainly.com/question/13439286
A rock, initially at rest with respect to Earth and located an infinite distance away is released and accelerates toward Earth. An observation tower is built 3 Earth-radii high to observe the rock as it plummets to Earth. Neglecting friction, the rock's speed when it hits the ground is _________ its speed at the top of the tower.
Answer:
the rock speed is increased
A rock is initially at rest concerning the earth, but the speed of the rock will increase when it hits the ground.
What is Friction?The resistance to something rolling or moving over another solid object is called friction. Even though frictional forces can be helpful, like the traction needed to walk without slipping, they also present a considerable amount of resistance to motion. About 20% of the engine power in a car is used to combat frictional forces in the moving parts.
The primary cause of friction between metals appears to be the forces of attraction, also known as adhesion, between the contact zones of the surfaces, which are always microscopically unequal. Because of friction caused by the imperfections of the tougher surface rubbing up against the softer surface, these "welded" connections are sheared.
To know more about Friction :
https://brainly.com/question/13000653
#SPJ2
true or false A permanent magnet and a coil of wire carrying a current both produce magnetic fields
Answer:
True. A permanent magnet like the earth produces its own B field due to movement of the iron core. The earths magnetic field is the reason why we have an atmosphere and it also is the only defense against solar flares. A coil of wire or solenoid that has current have so much moving charge that the motion of the electrical charge can create a significant G b-field
1. A 20.0 N force directed 20.0° above the horizontal is applied to a 6.00 kg crate that is traveling on a horizontal
surface. What is the magnitude of the normal force exerted by the surface on the crate?
N = 52.0 N
Explanation:
Given: [tex]F_a= 20.0\:\text{N}=\:\text{applied\:force}[/tex]
[tex]m=6.00\:\text{kg}[/tex]
[tex]N = \text{normal force}[/tex]
The net force [tex]F_{net}[/tex] is given by
[tex]F_{net} = N + F_a\sin 20 - mg=0[/tex]
Solving for N, we get
[tex]N = mg - F_a\sin 20[/tex]
[tex]\:\:\:\:\:\:= (6.00\:\text{kg})(9.8\:\text{m/s}^2) - (20.0\:\text{N}\sin 20)[/tex]
[tex]\:\:\:\:\:\:= 52.0\:\text{N}[/tex]
A 1.64 kg mass on a spring oscillates horizontal frictionless surface. The motion of the mass is described by the equation: X = 0.33cos(3.17t). In the equation, x is measured in meters and t in seconds. What is the maximum energy stored in the spring during an oscillation?
Answer:
[tex]K.E_{max}=0.8973J[/tex]
Explanation:
From the question we are told that:
Mass [tex]m=1.64kg[/tex]
Equation of Mass
[tex]X=0.33cos(3.17t)[/tex]...1
Generally equation for distance X is
[tex]X=Acos(\omega t)[/tex]...2
Therefore comparing equation
Angular Velocity [tex]\omega=3.17rad/s[/tex]
Amplitude A=0.33
Generally the equation for Max speed is mathematically given by
[tex]V_{max}=A\omega[/tex]
[tex]V_{max}=0.33*3.17[/tex]
[tex]V_{max}=1.0461m/s[/tex]
Therefore
[tex]K.E_{max}=0.5mv^2[/tex]
[tex]K.E_{max}=0.5*1.64*(1.0461)^2[/tex]
[tex]K.E_{max}=0.8973J[/tex]
A cannon and a supply of cannonballs are inside a sealed railroad car of length L, as in Fig. 7-33. The cannon fires to the right; the car recoils to the left. The cannonballs remain in the car after hitting the far wall. (a) After all the cannonballs have been fired, what is the greatest distance the car can have moved from its original position
Answer:
Initially let n cannonballs with a total mass of m be to the left of the center of mass at L /2 and the mass of the car at L/2
x1 = [-m / (m + M)] * L / 2 is the original position of the CM
x2 = (m (x + L/2) + M x) / (m + M) * L/2 final position of CM with all cannon balls to the right
[-m x - m L / 2 + m x - M x] / (M + m) * L/2
= - ( m L / 2 + M x) / (m + M) * L/2 = Xcm
Check the math, but maximum distance occurs when the cannonballs of mass m move from -L/2 to L/2 and the car of mass M moves from zero to -x
An astronaut on a distant planet wants to determine its acceleration due to gravity. The astronaut throws a rock straight up with a velocity of 19 m/s and measures a time of 24.4 s before the rock returns to his hand. What is the acceleration (magnitude and direction) due to gravity on this planet
Answer:
1.56 m/s²
Explanation:
Projectile motion is a form of motion where an object moves in parabolic path (trajectory). Projectile motion only occurs when there is one force applied at the beginning on the trajectory, after which the only interference is from gravity.
The total time (time of flight) of an object is given by:
T = 2usinθ / g
where u is the initial velocity, θ is the angle with horizontal and g is the acceleration due to gravity
Since the astronaut throws a rock straight up, hence θ = 90°, u = 19 m/s, T = 24.4 s.
T = 2usinθ / g
Substituting:
24.4 = 2(19)(sin90)/g
g = 2(19)(sin90) / 24.4
g = 1.56 m/s²
Give reason why a man getting out of moving bus must run in the same direction for a certain distance.
Explanation:
Explanation: It's because when he stop down from a moving bus his feet come at rest while the upper portion of his body is still in motion and he falls in the forward direction.
1. A block of mass m = 10.0 kg is released with a speed v from a frictionless incline at height 7.00 m. The
block reaches the horizontal ground and then slides up another frictionless incline as shown in Fig. 1.1. If the
horizontal surface is also frictionless and the maximum height that the block can slide up to is 26.0 m, (a) what
is the speed v of the block equal to when it is released and (b) what is the speed of the block when it reaches
the horizontal ground? If a portion of length 1 2.00 m on the horizontal surface is frictional with coefficient
of kinetic friction uk = 0.500 (Fig. 1.2) and the block is released at the same height 7.00 m with the same
speed v determined in (a), (c) what is the maximum height that the block can reach, (d) what is the speed of the
block at half of the maximum height, and (e) how many times will the block cross the frictional region before
it stops completely?
1 = 2.00 m (frictional region)
Let A be the position of the block at the top of the first incline; B its position at the bottom of the first incline; C its position at the bottom of the second incline; and D its position at the top of the second incline. I'll denote the energy of the block at a given point by E (point).
At point A, the block has total energy
E (A) = (10.0 kg) (9.80 m/s²) (7.00 m) + 1/2 (10.0 kg) v₀²
E (A) = 686 J + 1/2 (10.0 kg) v₀²
At point B, the block's potential energy is converted into kinetic energy, so that its total energy is
E (B) = 1/2 (10.0 kg) v₁²
The block then slides over the horizontal surface with constant speed v₁ until it reaches point C and slides up a maximum height of 26.0 m to point D. Its total energy at D is purely potential energy,
E (D) = (10.0 kg) (9.80 m/s²) (26.0 m) = 2548 J
Throughout this whole process, energy is conserved, so
E (A) = E (B) = E (C) = E (D)
(a) Solve for v₀ :
686 J + 1/2 (10.0 kg) v₀² = 2548 J
==> v₀ ≈ 19.3 m/s
(b) Solve for v₁ :
1/2 (10.0 kg) v₁² = 2548 J
==> v₁ ≈ 22.6 m/s
Now if the horizontal surface is not frictionless, kinetic friction will contribute some negative work to slow down the block between points C and D. Check the net forces acting on the block over this region:
• net horizontal force:
∑ F = -f = ma
• net vertical force:
∑ F = n - mg = 0
where f is the magnitude of kinetic friction, a is the block's acceleration, n is the mag. of the normal force, and mg is the block's weight. Solve for a :
n = mg = (10.0 kg) (9.80 m/s²) = 98.0 N
f = µn = 0.500 (98.0 N) = 49.0 N
==> - (49.0 N) = (10.0 kg) a
==> a = - 4.90 m/s²
The block decelerates uniformly over a distance 2.00 m and slows down to a speed v₂ such that
v₂² - v₁² = 2 (-4.90 m/s²) (2.00 m)
==> v₂² = 490 m²/s²
and thus the block has total/kinetic energy
E (C) = 1/2 (10.0 kg) v₂² = 2450 J
(c) The block then slides a height h up the frictionless incline to D, where its kinetic energy is again converted to potential energy. With no friction, E (C) = E (D), so
2450 J = (10.0 kg) (9.80 m/s²) h
==> h = 25.0 m
(d) At half the maximum height, the block has speed v₃ such that
2450 J = (10.0 kg) (9.80 m/s²) (h/2) + 1/2 (10.0 kg) v₃²
==> v₃ ≈ 15.7 m/s
The block loses speed and thus energy as it moves between B and C, but its energy is conserved elsewhere. If we ignore the inclines and pretend that the block is sliding over a long horizontal surface, then its velocity v at time t is given by
v = v₁ + at = 22.6 m/s - (4.90 m/s²) t
The block comes to a rest when v = 0 :
0 = 22.6 m/s - (4.90 m/s²) t
==> t ≈ 4.61 s
It covers a distance x after time t of
x = v₁t + 1/2 at ²
so when it comes to a complete stop, it will have moved a distance of
x = (22.6 m/s) (4.61 s) + 1/2 (-4.90 m/s²) (4.61 s)² = 52.0 m
(e) The block crosses the rough region
(52.0 m) / (2.00 m) = 26 times
What is (a) the x component and (b) the y component of the net electric field at the square's center
Answer:
What is (a) the x component and (b) the y component of the net electric field at the square's center
It takes the elevator in a skyscraper 4.0 s to reach its cruising speed of 10 m/s. A 60 kg passenger gets aboard on the ground floor.
1. What is the passenger's apparent weight before the elevator starts moving?
2. What is the passenger's apparent weight whilethe elevator is speeding up?
3. What is the passenger's apparent weight afterthe elevator reaches its cruising speed?
Answer:
1. 588 N
2. 738 N
3. 588 N
Explanation:
time, t = 4 s
initial velocity, u = 0
final velocity, v = 10 m/s
mass, m= 60 kg
1.
Weight of passenger before starts
W =m g = 60 x 9.8 = 588 N
2.
When the elevator is speeding up
v = u + a t
10 = 0 + a x 4
a = 2.5 m/s2
Now the weight is
W' = m (a + g) = 60 (9.8 + 2.5) = 738 N
3.
When he reaches the cruising speed, the weight is
W = 588 N
Help me with my physics, please
A new car manufacturer advertises that their car can go from zero to sixty mph in 8 [s]. This is a description of
Answer:
Acceleration
Explanation:
The fact that new can go from zero to 60mph in 8 secs is a description of its pick-up or in physics, it's called acceleration.
Here initial velocity u= 0
final velocity v = 60 mph = 1m/minute.
or v =1609.344/60 = 26.82m/s
and time taken to do so is 8 sec
Acceleration a = (v-u)/t
a = (26.82-0)/8 = 3.35 m/s^2
Therefore, acceleration of the car a = 3.35 m/s^2.
Two objects are at rest on a frictionless surface. Object 1 has a greater mass than object 2.
(a) When a constant force is applied to object 1, it accelerates through a distance d. The force is removed from object 1 and is applied to object 2. At the moment when object 2 has accelerated through the same distance d, which statements are true? (Select all that apply.)
K1 < K2 p1 = p2 p1 < p2 p1 > p2 K1 > K2 K1 = K2
(b) When a force is applied to object 1, it accelerates for a time interval ?t. The force is removed from object 1 and is applied to object 2. Which statements are true after object 2 has accelerated for the same time interval ?t? (Select all that apply.)
K1 > K2 K1 = K2 p1 = p2 p1 > p2 K1 < K2 p1 < p2
Answer:
Look at explanation
Explanation:
a) Kinetic energy= ΔW. W=Fd, and since in both scenarios the same force and same distance is travelled. K1=K2. I am assuming that the objects are at non zero height so by P=mgh, P1>P2
b. Again I am assuming that the objects are at non zero height so by P=mgh, P1>P2. A heavier mass, a constant force means a smaller acceleration. So a1<a2. We can then use x-x0=v0t+1/2at² and since v0=0, x-x0(d)=1/2at². Solve for t²=2d/a. Since t is the same for both but a1<a2, d1<d2. And since Kinetic Energy=ΔW, W=Fd and F is constant while d1<d2, K1<K2.
According to the question,
Potential energy be "P".Kinetic energy be "K".(a)
Word done towards both the block will be similar.
So,
→ [tex]P1 = P2[/tex]
→ [tex]K1= K2[/tex]
(b)
We know,
→ [tex]a = \frac{F}{M}[/tex]
or,
→ [tex]V = a\times t[/tex]
Now,
→ [tex]K = \frac{1}{2} MV^2[/tex]
[tex]= 0.5\times M\times V^2[/tex]
[tex]=0.5\times M\times (\frac{F^2}{M^2} )\times t^2[/tex]
[tex]= 0.5\times F^2\times \frac{t^2}{M}[/tex]
The force and t will be same. So K of the smaller mass will be greater than the larger mass.
hence,
→ [tex]K1<K2[/tex]
Thus the above responses are correct.
Learn more about friction here:
https://brainly.com/question/13340887
A satellite of mass m, originally on the surface of the Earth, is placed into Earth orbit at an altitude h. (a) Assuming a circular orbit, how long does the satellite take to complete one orbit
Answer:
T = 5.45 10⁻¹⁰ [tex]\sqrt{(R_e + h)^3}[/tex]
Explanation:
Let's use Newton's second law
F = ma
force is the universal force of attraction and acceleration is centripetal
G m M / r² = m v² / r
G M / r = v²
as the orbit is circular, the speed of the satellite is constant, so we can use the kinematic relations of uniform motion
v = d / T
the length of a circle is
d = 2π r
we substitute
G M / r = 4π² r² / T²
T² = [tex]\frac{4\pi ^2 }{GM} \ r^3[/tex]
the distance r is measured from the center of the Earth (Re), therefore
r = Re + h
where h is the height from the planet's surface
let's calculate
T² = [tex]\frac{4\pi ^2}{ 6.67 \ 10^{-11} \ 1.991 \ 10^{30}}[/tex] (Re + h) ³
T = [tex]\sqrt{29.72779 \ 10^{-20}} \ \sqrt[2]{R_e+h)^3}[/tex]
T = 5.45 10⁻¹⁰ [tex]\sqrt{(R_e + h)^3}[/tex]
Images formed by a convex mirror are always
Answer:
Images formed by a convex mirror are always virtual
Explanation:
A virtual image is always created by a convex mirror, and it is always situated behind the mirror. The picture is vertical and situated at the focus point when the item is far away from the mirror. As the thing approaches the mirror, the image follows suit and increases until it reaches the same height as the object.
OAmalOHopeO
Two balls of known masses hang from the ceiling on massless strings of equal length. They barely touch when both hang at rest. One ball is pulled back until its string is at 45 ∘, then released. It swings down, collides with the second ball, and they stick together.The problem can be divided into three parts: (1) from when the first ball is released and to just before it hits the stationary ball, (2) the two balls collide, and (3) the two balls swing up together just after the collision to their highest point. ..............conserved in parts (1) and (3) as the balls swing like pendulums. During the collision in part (2) ................. conserved as the collision is ................. Explain.Match the words in the left column to the appropriate blanks in the sentences on the rightboth energy and momentum areonly energy is only momentum is.........both energy and momentum are only energy is only momentum iselasticinelastic
Answer:
In parts 1 and 3 the energy
In part 2 moment. inelastic
conserved
Explanation:
In this exercise, we are asked to describe the conservation processes for each part of the exercise.
In parts 1 and 3 the energy is conserved since the bodies do not change
In part 2 the bodies change since they are united therefore the moment is conserved and part of the kinetic energy is converted into potential energy.
Energy
moment .inelastic
conserved
The two balls swing up together just after the collision to their highest point. energy is conserved.
What is the law of conservation of momentum?According to the law of conservation of momentum, the momentum of the body before the collision is always equal to the momentum of the body after the collision.
According to the law of conservation of momentum
Momentum before collision =Momentum after collision
When the first ball is released and just before it hits the stationary ball, The two balls collide, The two balls swing up together just after the collision to their highest point. energy is conserved.
The balls swing like pendulums. During the collision in part (2) energy is conserved as the collision is inelastic.
We are requested to describe the conservation methods for each element of the activity in this exercise.
Because the bodies do not change in sections 1 and 3, energy is conserved.
Because the bodies change in part 2 is joined, the moment is conserved and some of the kinetic energy is transformed into potential energy.
Hence the two balls swing up together just after the collision to their highest point. energy is conserved.
To learn more about the law of conservation of momentum refer to;
https://brainly.com/question/1113396
What is the energy equivalent of an object with a mass of 2.5 kg? 5.5 × 108 J 7.5 × 108 J 3.6 × 1016 J 2.25 × 1017 J
Answer:
E = m c^2 = 2.5 * (3 * 10E8)^2 = 2.25 * 10E17 Joules
Answer:
The answer is D. 2.25 × 1017 J
Explanation:
got it right on edge 2021
A basketball of mass 0.608 kg is dropped from rest from a height of 1.37 m. It rebounds to a height of 0.626 m.
(a) How much mechanical energy was lost during the collision with the floor?
(b) A basketball player dribbles the ball from a height of 1.37 m by exerting a constant downward force on it for a distance of 0.132 m. In dribbling, the player compensates for the mechanical energy lost during each bounce. If the ball now returns to a height of 1.37 m, what is the magnitude of the force?
Answer:
a)[tex]|\Delta E|=4.58\: J[/tex]
b)[tex]F=61.90\: N[/tex]
Explanation:
a)
We can use conservation of energy between these heights.
[tex]\Delta E=mgh_{2}-mgh_{1}=mg(h_{2}-h_{1})[/tex]
[tex]\Delta E=0.608*9.81(0.6026-1.37)[/tex]
Therefore, the lost energy is:
[tex]|\Delta E|=4.58\: J[/tex]
b)
The force acting along the distance create a work, these work is equal to the potential energy.
[tex]W=\Delta E[/tex]
[tex]F*d=mgh[/tex]
Let's solve it for F.
[tex]F=\frac{mgh}{d}[/tex]
[tex]F=\frac{0.608*9.81*1.37}{0.132}[/tex]
Therefore, the force is:
[tex]F=61.90\: N[/tex]
I hope is helps you!
convert 56km/h to m/s.
Explanation:
15.556 metres per second
Un objeto de 0.5kg de masa se desplaza a lo largo de una trayectoria rectilínea con aceleración constante de 0.3m/s2. Si partió del reposo y la magnitud de su cantidad de movimiento en kg*m/s después de 8s es:
Answer:
p = 1.2 kg-m/s
Explanation:
The question is, "An object of mass 0.5kg is moving along a rectilinear path with constant acceleration of 0.3m / s2. If it started from rest and the magnitude of its momentum in kg * m / s after 8s is".
Mass of the object, m = 0.5 kg
Acceleration of the object, a = 0.3 m/s²
We need to find the momentum after 8 seconds.
We know that,
[tex]p=F\times t[/tex]
i.e.
p = mat
So,
[tex]p=0.5\times 0.3\times 8\\\\p=1.2\ kg-m/s[/tex]
So, the momentum of the object is 1.2 kg-m/s.
An electron is pushed into an electric field where it acquires a 1-V electrical potential. Suppose instead that two electrons are pushed the same distance into the same electric field (but far enough apart that they don't effect eachother). What is the electrical potential of one of the electrons now?
Answer:
0.5 V
Explanation:
The electric potential distance between different locations in an electric field area is unaffected by the charge that is transferred between them. It is solely dependent on the distance. Thus, for two electrons pushed together at the same distance into the same field, the electric potential will remain at 1 V. However, the electric potential of one of the two electrons will be half the value of the electric potential for the two electrons.
Which is a mixture?
'a' sodium metal
'b' chlorine gas
'c' sodium metal and chlorine gas
'd' sodium chloride (salt) and water
Answer:
d. Sodium chloride (salt) + water
Explanation:
A mixture is made up of two or more substance combined together (combined chemically).NaCl (salt) can completely dissolve in water and sodium chlorine (aqueous) is a homogeneous mixture.sodium metal when extracted is a soft, silvery white solid.chlorine gas is a pure gas.sodium metal and chlorine gas are at pure state hence they are not mixture.learn more: https://brainly.com/question/2331419
Answer:D. Sodium chloride (salt) and water
Explanation:
I got it right on edge 2023
hope this is helpful!
What happens to the acceleration if you triple the force that you apply to the painting with your hand? (Use the values from the example given in the previous part of the lecture.) Submit All Answers Answer: Not yet correct, tries 1/5 3. A driver slams on the car brakes, and the car skids to a halt. Which of the free body diagrams below best matches the braking force on the car. (Note: The car is moving in the forward direction to the right.] (A) (B) (C) (D) No more tries. Hint: (Explanation) The answer is A. The car is moving to the right and slowing down, so the acceleration points to the left. The only significant force acting on the car is the braking force, so this must be pointing left because the net force always shares the same direction as the object's acceleration. 4. Suppose that the car comes to a stop from a speed of 40 mi/hr in 24 seconds. What was the car's acceleration rate (assuming it is constant). Answer: Submit Al Answers Last Answer: 55 N Only a number required, Computer reads units of N, tries 0/5. 5. What is the magnitude (or strength) of the braking force acting on the car? [The car's mass is 1200 kg.) Answer: Submit Al Answers Last Answer: 55N Not yet correct, tries 0/5
Answer:
2) when acceleration triples force triples, 3) a diagram with dynamic friction force in the opposite direction of movement of the car
4) a = 2.44 ft / s², 5) fr = 894.3 N
Explanation:
In this exercise you are asked to answer some short questions
2) Newton's second law is
F = m a
when acceleration triples force triples
3) Unfortunately, the diagrams are not shown, but the correct one is one where the axis of movement has a friction force in the opposite direction of movement, as well as indicating that the car slips, the friction coefficient of dynamic.
The correct answer is: a diagram with dynamic friction force in the opposite direction of movement of the car
4) let's use the scientific expressions
v = v₀ - a t
as the car stops v = 0
a = v₀ / t
let's reduce the magnitudes
v₀ = 40 mile / h ([tex]\frac{5280 ft}{1 mile}[/tex]) ([tex]\frac{1 h}{3600 s}[/tex]) = 58.667 ft / s
a = 58.667 / 24
a = 2.44 ft / s²
5) let's use Newton's second law
fr = m a
We must be careful not to mix the units, we will reduce the acceleration to the system Yes
a = 2.44 ft / s² (1 m / 3.28 ft) = 0.745 m / s²
fr = 1200 0.745
fr = 894.3 N
A car is moving north at 5.2 m/s2. Which type of motion do the SI units in this
value express?
Answer:
the SI unit (meter per second square) indicates a linear type of motion.
Explanation:
Given;
acceleration of the car, a = 5.2 m/s² North
the SI unit of the car, = m/s²
The SI unit of the given value (acceleration), indicates a linear type of motion.
Linear acceleration is the change in linear velocity with time. Also, the northwards direction indicates linear displacement of the car.
Therefore, the SI unit (meter per second square) indicates a linear type of motion.
Answer:
displacement
Explanation:
Question 7 of 10
A railroad freight car with a mass of 32,000 kg is moving at 2.0 m/s when it
runs into an at-rest freight car with a mass of 28,000 kg. The cars lock
together. What is their final velocity?
A.1.1 m/s
B. 2.2 m/s
C. 60,000 kg•m/s
D. 0.5 m/s
Answer:
a
Explanation:
you take 32,000kg ÷2.0m
A box-shaped metal can has dimensions 8 in. by 4 in. by 10 in. high. All of the air inside the can is removed with a vacuum pump. Assuming normal atmospheric pressure outside the can, find the total force on one of the 8-by-10-in. sides
Answer:
The force on the side is 5252 N.
Explanation:
Area, A = 8 in x 10 in = 80 in^2 = 0.052 m^2
height, h = 10 in
The force on the area is
F = P x A
where, P is the atmospheric pressure and A is the area.
P = 1.01 x 10^5 Pa
Force = 1.01 x10^5 x 0.052 = 5252 N