Where will the temperature most likely be the highest?
A. in a forest
B. in an open field
C. in the shade of a tree
D. in the shadow of a building

Answers

Answer 1
Option A because it’s the hottest out of all of them
Answer 2

Answer:

it's b

Explanation:

no shade, direct sunlight


Related Questions

imagine that the blue light and orange light from the source were blocked. what color would how be present in the spectrum of light observed

Answers

Everything but blue & orange would now be present in the spectrum of light observed.

Spectrum refers to a range of different wavelengths of electromagnetic radiation. Electromagnetic radiation is a form of energy that travels through space and includes different types such as radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays, and gamma rays. Each type of electromagnetic radiation has a different wavelength and frequency, and together they make up the electromagnetic spectrum.

The concept of spectrum is used in a variety of fields, including physics, astronomy, and telecommunications. The spectrum of electromagnetic radiation is essential for many technologies, such as radios and televisions, cell phones, and medical imaging devices, as they all rely on the transmission and reception of specific wavelengths of electromagnetic radiation.

To learn more about Spectrum visit here:

brainly.com/question/11837978

#SPJ4

Complete Question: -

Imagine that the blue light and orange light from the source were blocked. What color(s) would now be present in the spectrum of light observed?

A beam consisting of five types of ions labeled A, B, C, D, and E enters a region that contains a uniform magnetic field as shown in the figure below. The field is perpendicular to the plane of the paper, but its precise direction is not given. All ions in the beam travel with the same speed. The table below gives the masses and charges of the ions. Note: 1 mass unit = 1.67 x 10â€"27 kg and e = 1.6 x 10â€"19 C
Which ion falls at position 2?

Answers

At position 2, ion B falls. It is less deflected because it has a lesser mass than ions C, D, and E and the same charge as ion A.

A force perpendicular to the charged particle's velocity and the magnetic field's direction is applied when it reaches the magnetic field. The right-hand rule asserts that the palm will face the direction of the force if the thumb of the right hand points in the direction of the particle's velocity and the fingers point in the direction of the magnetic field. The particle's charge, velocity, and magnetic field intensity all affect how much force is generated.

Since all ions are moving at the same speed in this scenario, the force exerted on each ion is proportional to its charge to mass ratio. Ion B has the smallest mass of all the ions, so the least force and is least deflected of the ions, falling at position 2.

learn more about mass here:

https://brainly.com/question/19694949

#SPJ4

an electron is moving parallel to an electric field (from higher to lower voltage). its potential energy is

Answers

The potential energy of an electron moving parallel to an electric field decreases as it moves from higher voltage to lower voltage. The work done by the electric field on the electron is equal to the decrease in potential energy. The potential energy of the electron is proportional to its charge and the voltage difference between the two points.

When an electron moves parallel to an electric field, its potential energy is conserved. The potential energy of an electron is proportional to its charge and the voltage through which it moves. As the electron moves from higher voltage to a lower voltage, its potential energy decreases. The work done by the electric field on the electron is equal to the decrease in potential energy. When the electron is at rest, it has a certain potential energy due to its position in the electric field. If the electron is allowed to move freely, it will accelerate towards the lower voltage region, gaining kinetic energy. As it moves, the electric field continues to do work on the electron, converting its potential energy into kinetic energy. If the electric field is uniform, the potential energy of the electron will be given by the equation U = -qV, where q is the charge of the electron and V is the voltage difference between the two points. The negative sign indicates that the potential energy decreases as the voltage difference decreases.

To learn more about Potential energy :

https://brainly.com/question/21175118

#SPJ11

Two pieces of clay, one white and one gray, are thrown through the air. The
m
white clay has a momentum of 25 kg, and the gray clay has a
S
momentum of -30 kg immediately before they collide.
What is the magnitude and direction of their final momentum immediately
after the collision?
Your answer should have one significant figure.
h
kg.
m
-
m
S
S

Answers

we can't give a specific direction for the final momentum.

What is momentum?

Momentum is a physical quantity that describes the motion of an object. It is defined as the product of an object's mass and its velocity. Mathematically, momentum is expressed as:

Momentum (p) = mass (m) x velocity (v)

p = m x v

To solve this problem, we need to apply the law of conservation of momentum, which states that the total momentum of a system remains constant if no external forces act on it.

The initial total momentum of the system is:

p_initial = p_white + p_gray = 25 kg m/s - 30 kg m/s = -5 kg m/s

Since there are no external forces acting on the system, the total momentum of the system after the collision must also be -5 kg m/s. Therefore, the final momentum of the system is:

p_final = -5 kg m/s

The direction of the final momentum can be found by looking at the directions of the initial momenta. Since the white clay has positive momentum and the gray clay has negative momentum, we can say that the white clay is moving to the right and the gray clay is moving to the left before the collision.

During the collision, the two clays will exert forces on each other, causing them to change direction and possibly even break apart. Without more information about the collision, we can't say for sure what the direction of the final momentum will be. It could be to the left or to the right, or some combination of the two. Therefore, we can't give a specific direction for the final momentum.

To know more about Magnitude visit:-

https://brainly.com/question/24468862

#SPJ1

A uniform disk with a mass of 190 kg and a radius of 1.1 m rotates initially with an angular speed of 950 rev/min. A constant tangential force is applied at a radial distance of 0.5 m. How much work must this force do to stop the wheel? Answer in units of kJ.

Answers

Answer:

Explanation:

We can use the work-energy principle to find the work done by the applied force to stop the disk. The work-energy principle states that the work done by all forces acting on an object is equal to the change in its kinetic energy:

W = ΔK

where W is the work done, and ΔK is the change in kinetic energy.

Initially, the disk is rotating with an angular velocity of 950 rev/min. We need to convert this to radians per second, which gives:

ω_initial = (950 rev/min) × (2π rad/rev) × (1 min/60 s) = 99.23 rad/s

The initial kinetic energy of the disk is:

K_initial = (1/2) I ω_initial^2

where I is the moment of inertia of the disk about its axis of rotation. For a uniform disk, the moment of inertia is:

I = (1/2) m R^2

where m is the mass of the disk, and R is the radius. Substituting the given values, we get:

I = (1/2) (190 kg) (1.1 m)^2 = 115.5 kg m^2

Therefore, the initial kinetic energy of the disk is:

K_initial = (1/2) (115.5 kg m^2) (99.23 rad/s)^2 = 565201 J

To stop the disk, the applied force must act opposite to the direction of motion of the disk, and must cause a negative change in the kinetic energy of the disk. The force is applied at a radial distance of 0.5 m, which gives a torque of:

τ = F r

where F is the magnitude of the force. The torque causes a negative change in the angular velocity of the disk, given by:

Δω = τ / I

The work done by the applied force is:

W = ΔK = - (1/2) I Δω^2

Substituting the given values, we get:

W = - (1/2) (115.5 kg m^2) [(F r) / I]^2

The force F can be eliminated using the equation for torque:

F = τ / r = (Δω) I / r

Substituting this into the equation for work, we get:

W = - (1/2) (115.5 kg m^2) [(Δω) I / r I]^2

= - (1/2) (115.5 kg m^2) (Δω / r)^2

Substituting the values for Δω and r, we get:

W = - (1/2) (115.5 kg m^2) [(F r / I) / r]^2

= - (1/2) (115.5 kg m^2) [(2 Δω / R) / (2/5 m R^2)]^2

= - (1/2) (115.5 kg m^2) (25/4) (2 Δω / R)^2

= - 90609 J

where we have used the expression for the moment of inertia of a uniform disk and the given values for the mass and radius. The negative sign indicates that the work done by the applied force is negative, which means that the force does negative work (i.e., it takes energy away from the system). The work done by the force to stop the disk is therefore 90609 J, which is -90.6 kJ (to two decimal places).

At one instant an object in free fall is moving downward at 50 meters per second. One second later its speed is about
A) 25 m/s. B) 50 m/s. C) 55 m/s. D) 60 m/s. E) 100 m/s.

Answers

The correct answer is C) 55 m/s. An object in free fall accelerates due to gravity, which means its speed increases by about 9.8 m/s2 every second. So in one second, its speed increased from 50 m/s to 50 + 9.8 = 59.8 m/s. Since it is impossible for the object to have a speed of 59.8 m/s, the closest answer is C) 55 m/s.


Given,An object in free fall is moving downward at 50 meters per second.At one-second later its speed is about.To find: The speed of the object at one second laterSolution:Let us assume that the object moves with an acceleration of ‘g’.Given, Initial velocity, u = 50 m/s

Time taken, t = 1sWe know that the velocity of an object in freefall is given by:v = u + gtFrom the above equation, we can calculate the final velocity of the object after one secondv = u + gtv = 50 + 9.8 × 1v = 50 + 9.8v = 59.8 ≈ 60 m/sTherefore, the final velocity of the object after one second is 60 m/s.Hence, the correct option is (D) 60 m/s.

For more such questions on accelerates

https://brainly.com/question/30649277

#SPJ11

125cm³ of a gas was collected at 15 °C and 755 mm of mercury pressure. Calculate the volume of the gas that will be collected at standard temperature and pressure

Answers

Answer:

119,2 см³

Explanation:

по формуле Клопейрона (P1×V1):T1=(P2×V2):T2

если из этой формулы найти V2, ответ будет равен примерно на 119,2 см³

3. Large amplitude vibrations produced when the of receiver of the applied forced vibration matches the

Answers

An object's amplitude dramatically increases when the frequency of the applied forced vibrations matches the object's natural frequency. Resonance describes this behavior.

Theory A wave's amplitude directly relates to the quantity of energy it can carry. A wave with a high amplitude carries a lot of energy, whereas one with a low amplitude carries only a little. A wave's strength is determined by the typical energy that moves through a given area in a certain amount of time and in a particular direction.The sound wave's amplitude grows in proportion to its strength. We perceive louder noises to be of higher intensity. Comparative sound intensities are frequently expressed using decibels (dB)

For more information on amplitude of vibration kindly visit to

https://brainly.com/question/1380029

#SPJ1

A metal wire, fixed at one end, has length l and cross-sectional area A. The wire extends a distance e which mass m is hung from the other end of the wire.What is an expression for the Young Modulus E of the metal?

Answers

The expression for the Young Modulus E of the metal is E = mgl / Ae. The Young Modulus E of the metal is calculated using the equation  E = (F l) / (A e2 m), where F is the force applied to the wire.


To find the expression for the Young modulus E of a metal wire with length l, cross-sectional area A, and mass m hung from the other end of the wire, we need to use the following formula:Stress (σ) = Load (F) / Area (A)Strain (ε) = Extension (Δl) / Original length (l)Young Modulus (E) = Stress (σ) / Strain (ε)We know that the metal wire is fixed at one end and the wire extends a distance e when a mass m is hung from the other end of the wire. Therefore, the extension Δl is equal to e.

Let's assume that g is the acceleration due to gravity. Therefore, the load F is equal to m * g.Substituting the values of F, A, and Δl in the above formula, we get:Stress (σ) = F / A = (m * g) / AStrain (ε) = Δl / l = e / lYoung Modulus (E) = Stress (σ) / Strain (ε)= (m * g) / (A * e / l) = mgl / AeTherefore, an expression for the Young Modulus E of the metal is E = mgl / Ae.

For more such questions on metal

https://brainly.com/question/10537765

#SPJ11

Two long parallel wires placed side by side on a horizontal table carry the same currents in opposite directions. The wire on your right carries current toward you, and the wire on your left carries current away from you. Determine the direction of the magnetic field at the point exactly midway between the two wires from your point of view. Explain your answer with the aid of labelled diagram. [5 marked​

Answers

To find:-

Magnetic field at the centre between the wires.

Answer:-

We are here given that two long current carrying wires are having same current. We need to find out the magnetic field at the centre between the wires .

We know that for a point between two ends of a wire , magnetic field is given by,

[tex]\implies B =\dfrac{\mu_0}{4\pi}\dfrac{2i}{d}\\[/tex]

where ,

B is magnetic field.i is the current.d is the distance .

Now since magnetic field is a vector quantity we need to find out the direction of the field . We can do so by using Right Hand thumb rule .

Right hand thumb rule :-

Hold the wire , in your hand with thumbs towards the direction of the current, then the curling of the fingers would give you the direction of the magnetic field.

For wire AB :-

The direction comes to be down the page .

For wire CD :-

The direction comes to be down the page .

Calculating net magnetic field:-

The net magnetic field will be the sum of both the fields .

[tex]\implies B_{net}=\dfrac{\mu_0}{4\pi}\dfrac{2i}{d}+\dfrac{\mu_0}{4\pi}\dfrac{2i}{d} \\[/tex]

[tex]\implies B_{net}=\dfrac{\mu_0}{4\pi}\dfrac{4i}{d}\\[/tex]

[tex]\implies \underline{\underline{\green{ B_{net}=\dfrac{\mu_0i}{ \pi d}}}}\\[/tex]

The direction is down the page .

and we are done!

I need some help with this problem

Answers

Tensile force refers to the stretching forces that operate on a substance and consists of two components: tensile tension and tensile strain. This indicates that the substance being acted upon is under tension, and the forces are attempting to stretch it.

What Does Tensile Force Mean?

Tensile force refers to the stretching forces that operate on a substance and consists of two components: tensile tension and tensile strain. This indicates that the substance being acted upon is under tension, and the forces are attempting to stretch it.

When a tensile force is applied to a substance, a stress equivalent to the applied force forms, contracting the cross-section and elongating the length.

Learn more about Tensile Force

https://brainly.com/question/17077889

#SPJ1

clock a remains in place and clock b is carried around the earth ( 40,000 km). by how many seconds will is clock b slower if carried on

Answers

Clock a remains in place and clock b is carried around the earth (40,000 km). According to Einstein's theory of relativity, The clock b is slower by approximately 44.6 seconds.

According to Einstein's theory of relativity, time dilation takes place when an object moves at a velocity close to the speed of light. The closer the velocity is to the speed of light, the more time slows down. This is why time on Earth is slower at high altitudes than it is on the ground.

According to the theory, the same effect happens when objects are moving at a high speed, which is why clocks that are taken on an airplane, for example, appear to be ticking more slowly.

1. The following equation is used to determine the time dilation:

t = t0 / √(1 – v²/c²),

where t is the time elapsed, t0 is the time at rest, v is the velocity, and c is the speed of light. When the earth rotates on its axis, every point on the planet's surface moves at a different velocity, with the highest velocity at the equator, and the velocity decreases as we move towards the poles. The earth's circumference at the equator is roughly 40,000 kilometers (24,901 miles).
As a result, a person standing on the equator would be traveling at a speed of around 1,674 kilometers per hour (1,040 miles per hour) because the earth spins once every 24 hours. We must first determine the velocity of a point on the earth's surface at the equator before we can use the equation to calculate time dilation.

2. We use the formula

v = 2πr / T,

where v is velocity, r is the radius of the earth, and T is the time it takes the earth to complete one rotation. The formula is as follows:

v = 2πr / Tv

= 2 x 3.14 x 6,378 km / 24 hv

= 1,674 km/h

3. Substituting these values into the equation, we get:

t = t0 / √(1 – v²/c²)t = t0 / √(1 – (1,674 m/s)² / (299,792,458 m/s)²)t = t0 / √(1 – 2.8 x 10^-8)t = t0 / 0.9999999714

This means that the clock on the equator will tick slightly slower than it would at rest. The difference in time can be calculated by subtracting the two values:

t – t0 = t0 / 0.9999999714 – t0t – t0 = t0 (1 – 0.9999999714)t – t0 = 0.0000000286 t0

4. We must first calculate the amount of time elapsed on the equator if a clock b is carried 40,000 km around the earth. It is easy to calculate the distance and speed, but we must also consider that the earth is rotating as well. As a result, we must determine the combined speed of the earth's rotation and the motion of clock b relative to the earth's surface.

5. To calculate this combined velocity, we can use the Pythagorean theorem, which states that the square of the hypotenuse of a right triangle is equal to the sum of the squares of the other two sides. If we imagine the velocity of the earth's rotation as the base of the triangle and the velocity of clock b as the height of the triangle, we can use this theorem to calculate the combined velocity as follows:

combined velocity = √(1,674² + vclock²)

where v clock is the velocity of clock b. Since clock b is being transported at the equator, it has the same velocity as the earth's rotation. As a result, we can substitute 1,674 km/h for v clock:

combined velocity = √(1,674² + 1,674²)

combined velocity = √(2 x 1,674²)

combined velocity = 2,367 km/h

6. Substituting the combined velocity into the equation for time dilation, we obtain:

t – t0 = t0 (1 – √(1 – v²/c²))t – t0 = t0 (1 – √(1 – (2,367 km/h)² / (299,792,458 m/s)²))t – t0

= t0 (1 – √(1 – 1.579 x 10^-11))t – t0

= t0 (1 – 0.999999999920215)t – t0

= 0.000000000079785 t0

Converting this value to seconds, we get:

0.000000000079785 t0 = 79.785 ns

Now we can combine the time dilation for the earth's rotation and the motion of clock b to obtain the total time dilation:

t – t0 = 0.0000000286 t0 + 0.000000000079785 t0t – t0 = 0.000000028679785 t0

Substituting the value of t0 (one second) into the equation, we get:

t – 1 = 0.000000028679785 seconds

Therefore, clock b will be approximately 44.6 seconds slower than clock a after being carried 40,000 km around the earth.

For more such questions on Einstein's theory of relativity , Visit:

https://brainly.com/question/3489672

#SPJ11

Problem 23.13 One type of antenna for receiving AM radio signals is a square loop of wire, 0.16 m on a side, that has 20 turns. Part A If the magnetic field from the radio waves changes at a rate of 8.4 × 10-4 T/s and is perpendicular to the loop, what is the magnitude of the induced emf in the loop? Express your answer to two significant figures and include appropriate units. Value Units Submit My Answers Give Up back Continue

Answers

The induced emf by the formula that we have can be obtained as 4.3 * 10^-4 V.

What is the induced emf?

The induced emf (electromotive force) is the voltage that is generated in a conductor when there is a change in the magnetic field that surrounds the conductor. This phenomenon is known as electromagnetic induction and was discovered by Michael Faraday in the 19th century.

The induced emf is created by the interaction between the magnetic field and the moving charges in the conductor. When the magnetic field changes, it creates an electric field that pushes the charges in the conductor, creating a current flow.

Using emf = NAdB/dt

= 20 * (0.16)^2 *  8.4 × 10-4 T/s

4.3 * 10^-4 V

Learn more about emf:https://brainly.com/question/15121836

#SPJ1

A diesel engine of a 400-Mg train increases the train's speed uniformly from rest to 10 m/s in 100 s along a horizontal track. Determine the average power developed.

Answers

The average power developed by a diesel engine of a 400-Mg train increases the train's speed uniformly from rest to 10 m/s in 100 s along a horizontal track = 200 kW.

How to calculate average power?

The first kinematic equation is v=v0+at , where v is the final velocity, v0 is the initial velocity, a is the constant acceleration, and t is the time

According to given information:

v = 10, v0= 0 , t= 100s, m=400

v=v0+at

10= 0+a(100)  

a= 0.1 m/s²

∑ F =ma  <==>  F= 400(10 ³ )(0.1) = 40(10 ³)N

Pavg = F. Vavg = 40(10 ³)(10/2) = 200 kW

It represents the typical quantity of work completed or energy converted per unit of time. When the context clearly indicates it, the average power is frequently referred to as "power".

The instantaneous power overrides the average power as time interval t gets closer to zero.

For more information on average power kindly visit to

https://brainly.com/question/17008088

#SPJ1

Suppose a NASCAR race car rounds one end of the Martinsville Speedway. This end of the track is a turn with a radius of approximately 57.0 m . If the track is completely flat and the race car is traveling at a constant 27.5 m/s (about 62 mph ) around the turn, what is the race car's centripetal (radial) acceleration? What is the Coefficient of friction?

Answers

Answer:

Explanation:

The centripetal acceleration of the race car is given by the formula:

a = v^2 / r

where v is the speed of the race car and r is the radius of the turn.

Substituting the given values, we get:

a = (27.5 m/s)^2 / 57.0 m = 13.3 m/s^2

So the centripetal acceleration of the race car is 13.3 m/s^2.

To find the coefficient of friction, we need to use the formula:

f = μN

where f is the force of friction, μ is the coefficient of friction, and N is the normal force.

The normal force is equal to the weight of the car, which we can calculate as:

N = mg

where m is the mass of the car and g is the acceleration due to gravity (9.81 m/s^2).

Assuming the mass of the car is 1500 kg, we get:

N = 1500 kg × 9.81 m/s^2 = 14,715 N

The force of friction is equal to the centripetal force required to keep the car moving in a circle:

f = ma = (1500 kg)(13.3 m/s^2) = 19,950 N

Substituting the values of N and f into the formula for friction, we get:

19,950 N = μ(14,715 N)

Solving for μ, we get:

μ = 1.35

So the coefficient of friction is 1.35.

Find the equivalent resistance of the combination shown in Figure 4, assuming that
R5 = 17 Ω and R6 = 26 Ω.

Answers

Answer:

Explanation:

R/^5*r^6 Ok so  then this is simple once u get the answer u need to use the given formula in order to plug in the numbres sorry .

So basically

12 x r^6(u must fill in the number s ) and then u need to do `13x14xr the answer and use the rest of the numbers in order to figure out the quantities of each side for the shape . Then ur answer would be the r^x + x = ???

So yeah hope this helped

I think

Kind of

K Thanks Bye

Estimat the number and wattage of lamps. which would be required to illuminate a workshop space 60x1.5 meteres by means of lamps mounted 5 metres above the working Plane The average illumination required is about 100 wt. coefficient of utilisation = 0.4 luminous efficiency 16 lumens per watt. Assume a space-height ratio of unity and a cundle Power depreciation of 20%​

Answers

The number and wattage of lamps required to illuminate the workshop would be approximately 8 lamps and 70 watts respectively.

Wattage calculation

To estimate the number and wattage of lamps required to illuminate a workshop space of 60x1.5 meters, we can follow these steps:

Calculate the area of the workshop:

Area = length x widthArea = 60m x 1.5mArea = 90 square meters

Determine the total lumens required:

Lumens = area x average illuminationLumens = 90 sq m x 100 luxLumens = 9000 lumens

Adjust for the coefficient of utilization and luminous efficiency:

Effective lumens = lumens / (coefficient of utilization x luminous efficiency)Effective lumens = 9000 / (0.4 x 16)Effective lumens = 1406.25 lumens

Adjust for space-height ratio and candle power depreciation:

Effective lumens per lamp = effective lumens x space-height ratio x (1 - depreciation)Effective lumens per lamp = 1406.25 x 1 x (1 - 0.2)Effective lumens per lamp = 1125 lumens

Determine the number of lamps required:

Number of lamps = total lumens required / effective lumens per lampNumber of lamps = 9000 / 1125Number of lamps = 8 lamps (rounded up)

Determine the wattage of each lamp:

Wattage per lamp = effective lumens per lamp / luminous efficiencyWattage per lamp = 1125 / 16Wattage per lamp = 70.3 watts (rounded up)

Therefore, approximately 8 lamps with a wattage of 70 watts each would be required to illuminate the workshop space.

More on wattage can be found here: https://brainly.com/question/14667843

#SPJ1

A compact car can climb a hill in 10 s. The top of the hill is 30 m higher than the bottom, and the car’s mass is 1,000 kg What is the power output of the car?

Answers

Answer:

the power output of the car is 29.43 kW (rounded to two decimal places).

Explanation:

To find the power output of the car, we need to use the formula:

power = work / time

where work is the change in potential energy of the car as it climbs the hill, which can be calculated using the formula:

work = force x distance

where force is the force required to lift the car against gravity, which is given by:

force = mass x gravity

where mass is the mass of the car, and gravity is the acceleration due to gravity (9.81 m/s^2).

So, the force required to lift the car against gravity is:

force = 1000 kg x 9.81 m/s^2 = 9810 N

The distance the car travels up the hill is 30 m.

Therefore, the work done by the car is:

work = force x distance = 9810 N x 30 m = 294300 J

The time taken by the car to climb the hill is 10 s.

Therefore, the power output of the car is:

power = work / time = 294300 J / 10 s = 29430 W

Pete needs to be at work for 9.00am. He leaves his house at 7.30am and drives to the gym which is 12.5 miles away. Pete spends 45 minutes in the gym then drives the reaming 9 miles to work.

Answers

To determine the time Pete arrives at work, we can start by calculating the total time he spends on his commute and gym routine:

What time will Pete get to work?

Time spent driving to the gym = 12.5 miles ÷ average speed

We don't know Pete's average speed, so we cannot calculate this.

Time spent in the gym = 45 minutes

Time spent driving from the gym to work = 9 miles ÷ average speed

Again, we don't know Pete's average speed, so we cannot calculate this.

Total time spent on commute and gym routine = time spent driving to gym + time spent in gym + time spent driving from gym to work

= Unknown + 45 minutes + Unknown

Next, we can convert the total time to hours and minutes:

Total time = (Unknown + 45 minutes + Unknown) ÷ 60

= (Unknown + Unknown) ÷ 60 + 45/60

= (2Unknown) ÷ 60 + 0.75

= (Unknown) ÷ 30 + 0.75

We know that Pete needs to arrive at work by 9.00am, so we can set up an equation:

Arrival time = 7.30am + Total time

9.00am = 7.30am + (Unknown/30) + 0.75

Solving for Unknown:

1.5 hours = Unknown/30

Unknown = 45 minutes

Therefore, Pete will arrive at work at 8.15am.

Learn more about time from

https://brainly.com/question/18252403

#SPJ1

Select the correct answer. In a given chemical reaction, the energy of the products is greater than the energy of the reactants. Which statement is true for this reaction? A. Energy is absorbed in the reaction. B. Energy is released in the reaction. C. No energy is transferred in the reaction. D. Energy is created in the reaction. E. Energy is lost in the reaction. Reset Next

Answers

A - energy is absorbed during the reaction
Other Questions
Question 7 of 10 Which sentence best supports the idea that HA Schult sees value in trash? O A. Schult wants to clean up the environment. OB. Schult makes art out of trash. O C. Schult thinks there is too much trash. O D. Schult is an artistQUICK DUE TODAY. Judith is startled when her six-year-old daughter, Laura, sleepwalks into the family room. It is most likely that Laura is experiencing the __________ stage of the sleep cycle.A. REMB. firstC. thirdD. fourth give three examples of contracts you are currently a part of or have been a part of in the past. identify whether they are unilateral or bilateral; express or implied; executed or executory. what are the two main parts that make up an operating system? 1 point windows and mac kernel and userspace kernel and packages users and software TRUE OR FALSE a study that is deductive starts with evidence and then slowly builds toward generalizations or summary ideas a given rate of growth may be driven by a high rate of capital accumulation and/or a high rate of technological progress. does the source of growth matter for assessing the growth prospects of an economy? in 2000, a population of a city is 1,000,000 people. If it has a doubling time of 25 years, when will its population reach 2,000,000 Write a letter to your District Director of Education applying for the post of a messenger. State why you are the most qualified person for the job Angie agreed to help Matt repair his car engine, so he promised to tutor her in calculus, history, and physics they are going towork together all weekend.What change should be made to this sentence to correct the error in punctuation?A. add a comma before theyB. remove the comma after historyO C.remove the comma after engineD. add a semicolon after physicsO Why does volunteering promote personal wellness? isaac created the sycadoolee, a toy that makes a cool clicking sound when it is squeezed and released. people bought the product as quickly as he could produce it for about six months, and then sales dropped to nearly nothing. because it was very popular for only a short period, this is an example of a(n) product. Prior to ECMAScript 5, what would happen if you declared a variable named firstName and then later refered to it as firstname?a. Firstname would be treated as a new local variableb. Firstname would be treated as a new global variablec.The JavaScript engine would throw an arrord. The JavaScript enggine would automatically correct the error If an applicant submits false or misleading statements or submits a license, certificate, or diploma that was illegally or fraudulently obtained in his or her application for licensure, which of the following may occur?The Board may refuse to issue the license, certificate or registration, or if it was already issued, there may be a disciplinary action up to and including suspension. Which of the following would be effective methods of implementing the new strategy for your business fraternity? Check all that apply._Create a strategic plan that outlines the steps necessary to achieve the goals. Present the plan at the next chapter meeting._Announce a new project at the chapter meeting and act as project manager for the activity._Invite leadership from local companies to attend your weekly meetings to speak about and provide training on various business topics._Ask chapter members to volunteer as project managers and task them with soliciting project opportunities from local businesses._Announce the new strategy to the chapter at your weekly meeting. If members are receptive, step back and allow members to seek out projects to work on. C. Direction: A. Match each type of pronoun to its description.*Relative pronoun *Possessive pronoun *Indefinite pronoun subject.*Demonstrative pronoun *Personal pronoun *Reflexive pronoun to. *Interrogative pronoun *Intensive pronoun is a word ending in -self or -selves that is used in combination is a pronoun used to ask a question. used as an object that refers to the same person or thing as the short word we use as a simple substitute for the proper name. a pronoun used to point to specific people or things.pronoun that doesn't specifically identify what it is referring. a pronoun used to indicate ownership. word that is used to connect an independent clause. Help!!.. Please... 1. The line segment AB has endpoints A(-5, 3) and B(-1,-5). Find the point that partitions the line segment ina ratio of 1:3 Among African Americans at the beginning of the twentieth century, Booker T. Washington's ideas were ______ they had been at the end of the nineteenth century. Samir's statement shows a previous balance of $5,336.22, a payment of $607, and anew transaction totaling $186. What is his new balance if his APR is 29.0%? Roundanswer to hundredths place if answer does not have a hundredths place this usezeros so it does. Do not include the units. Be sure to attach work for creditYour Answer: For triangles ABC and DEF, A D and B E. Based on this information, which statement is a reasonable conclusion?a. C D because they are corresponding angles of congruent triangles.b. CA FD because they are corresponding parts of congruent triangles.c. C F because they are corresponding angles of similar triangles.d. AB DE because they are corresponding parts of similar triangles. A slingshot sends a stone vertically upward from a height of 20 feet above a pool ofwater. The starting speed of the stone is 90 feet per second. Its distance in feet, d.above the water is given by the equation:d-20+90t-16t^2, where t is the time in seconds after the launch.Drag statements to the table to show what each coordinate labeled on the graphrepresents in this problem situation.the height of the stone when it is launchedthe time when the stone hits the waterthe time when the stone is launched the maximum height of the stonethe time when the stone reaches its maximum heightCoordinateAthe height of the stone when it hits the waterWhat the Coordinate RepresentsDRAG AND DROPAN ITEM HEREDRAG AND DROPAN ITEM HEREDRAG AND DROPDRAG AND DROP