THIS IS THE COMPLETE QUESTION BELOW
The demand equation for a product is p=90000/400+3x where p is the price (in dollars) and x is the number of units (in thousands). Find the average price p on the interval 40 ≤ x ≤ 50.
Answer
$168.27
Step by step Explanation
Given p=90000/400+3x
With the limits of 40 to 50
Then we need the integral in the form below to find the average price
1/(g-d)∫ⁿₐf(x)dx
Where n= 40 and a= 50, then if we substitute p and the limits then we integrate
1/(50-40)∫⁵⁰₄₀(90000/400+3x)
1/10∫⁵⁰₄₀(90000/400+3x)
If we perform some factorization we have
90000/(10)(3)∫3dx/(400+3x)
3000[ln400+3x]₄₀⁵⁰
Then let substitute the upper and lower limits we have
3000[ln400+3(50)]-ln[400+3(40]
30000[ln550-ln520]
3000[6.3099×6.254]
3000[0.056]
=168.27
the average price p on the interval 40 ≤ x ≤ 50 is
=$168.27
If you have a piece of glass that is 12in X 12in - how many square feet is it?
Answer:
1 square foot is the answer
Answer:
1 ft^2
Step-by-step explanation:
We know 12 inches = 1 ft
12 inches by 12 inches
1 ft by 1 ft
The area is 1 * 1 = 1 ft^2
BRAINLEST , If y varies inversely with the square of x, and y = 26 when x = 4, find y when x = 2.
Answer:
Question 18: B. 104
Question 19: [tex] x = \frac{3}{2} [/tex]
Step-by-step Explanation:
Question 18:
Step 1: express the inverse relationship with an equation
[tex] y = \frac{k}{x^2} [/tex] ,
where k is constant
y = 26 when x = 4,
Constant, k, = [tex] y*x^2 = k [/tex]
[tex] k = 26*4^2 = 416 [/tex]
The equation would be [tex] y*x^2 = 416 [/tex]
Step 2: use the equation to find y when X = 2.
[tex] y*x^2 = 416 [/tex]
[tex] y*2^2 = 416 [/tex]
[tex] y*4 = 416 [/tex]
Divide both sides by 4
[tex] \frac{y*4}{4} = \frac{416}{4} [/tex]
[tex] y = 104 [/tex]
Question 19:
[tex] \frac{x}{3} = \frac{x + 2}{7} [/tex]
Cross multiply
[tex] x(7) = 3(x + 2) [/tex]
[tex] 7x = 3x + 6 [/tex]
Subtract 3x from both sides
[tex] 7x - 3x = 3x + 6 - 3x [/tex]
[tex] 4x = 6 [/tex]
Divide both sides by 4
[tex] \frac{4x}{4} = \frac{6}{4} [/tex]
[tex] x = \frac{3}{2} [/tex]
Answer: D.) 52
Explanation: I guessed and got it right lol
find the slope of the line y = 4
Answer:
Brainleist!
Step-by-step explanation:
0
there is no y=mX+b
there is no x no XXXX
that means the slope must be 0 (bc theres a y)
Sorry if my explanation is bad... let me know in comments if u need more help
A sample of a radioactive substance decayed 11% over the course of 3 weeks. How many grams were in the sample originally if 30.26 grams of the substance were remaining after the 3 weeks?
Answer:
34 grams
Step-by-step explanation:
If the remaining sample has 30.26 grams of radioactive substance, and 11% of it decayed, that means that 30.26 grams is 89% of the original. Let the original be x.
30.26=0.89x
Multiply both by one hundred
3026=89x
Divide both by 89
34=x
x=original, so the original was 34 grams.
Simplify 10 - [14 = (3 + 4) · 2]+3
Answer:
There is a typo near the equal sign.
There can be two different answers if we think that = sign as + or -.
First way: Making = as +
=> 10 - [14 + (3+4) x 2] +3
=> 10 - [14 + 7 x 2] + 3
=> 10 - [14 + 14] + 3
=> 10 - 28 + 3
=> 10 + 3 - 28
=> 13 - 28
=> -15
=> So, -15 is the answer if we consider "=" sign as "+" sign.
Second way: Making = as -
=> 10 - [14 - (3+4) x 2] + 3
=> 10 - [14 - 7 x 2] + 3
=> 10 - [14 - 14] + 3
=> 10 - 0 + 3
=> 10 + 3
=> 13
=> So, 13 is the answer if we consider "=" sign as "-" sign.
Help Quick Please. Will give brainliest.
Answer:
72[tex]\sqrt{3}[/tex] units²
Step-by-step explanation:
The area (A) of the triangle is calculated as
A = [tex]\frac{1}{2}[/tex] bh ( b is the base and h the perpendicular height )
Here b = ST = a = 12 and h = RS
To calculate RS use the tangent ratio in the right triangle and the exact value
tan60° = [tex]\sqrt{3}[/tex] , thus
tan60° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{RS}{ST}[/tex] = [tex]\frac{RS}{12}[/tex] = [tex]\sqrt{3}[/tex] ( multiply both sides by 12 )
RS = 12[tex]\sqrt{3}[/tex]
Thus
A = [tex]\frac{1}{2}[/tex] × 12 × 12[tex]\sqrt{3}[/tex] = 6 × 12[tex]\sqrt{3}[/tex] = 72[tex]\sqrt{3}[/tex] units²
Two samples from the same population both have M = 84 and s2 = 20, but one sample has n = 10 and the other has n = 20 scores. Both samples are used to evaluate a hypothesis stating that μ = 80 and to compute Cohen’s d. How will the outcomes for the two samples compare?
Complete Question
Two samples from the same population both have M = 84 and s2 = 20, but one sample has n = 10 and the other has n = 20 scores. Both samples are used to evaluate a hypothesis stating that μ = 80 and to compute Cohen’s d. How will the outcomes for the two samples compare?
a.
The larger sample is more likely to reject the hypothesis and will produce a larger value for Cohen’s d.
b.
The larger sample is more likely to reject the hypothesis, but the two samples will have the same value for Cohen’s d.
c.
The larger sample is less likely to reject the hypothesis and will produce a larger value for Cohen’s d.
d.
The larger sample is less likely to reject the hypothesis, but the two samples will have the same value for Cohen’s d.
Answer:
The Cohen's d value is [tex]d = 0.895[/tex]
The correct option is b
Step-by-step explanation:
From the question we are told that
The sample mean of each population is [tex]M = 84[/tex]
The variance of each population is [tex]s^2 = 20[/tex]
The first sample size is [tex]n_1 = 10[/tex]
The second sample size is [tex]n_2 = 20[/tex]
The null hypothesis is [tex]H_o : \mu = 80[/tex]
Generally the standard deviation is mathematically evaluated as
[tex]s = \sqrt{20 }[/tex]
=> [tex]s = 4.47[/tex]
The first test statistics is evaluated as
[tex]t_1 = \frac{M - \mu }{ \frac{\sigma }{ \sqrt{n_1} } }[/tex]
=> [tex]t_1 = \frac{84 - 80 }{ \frac{4.47 }{ \sqrt{10} } }[/tex]
=> [tex]t_1 = 2.8298[/tex]
The second test statistics is evaluated as
[tex]t_2 = \frac{M - \mu }{ \frac{\sigma }{ \sqrt{n_2} } }[/tex]
=> [tex]t_2 = \frac{84 - 80 }{ \frac{4.47 }{ \sqrt{20} } }[/tex]
=> [tex]t_2 = 4.0[/tex]
The sample with the larger test statistics (sample size) will more likely reject the null hypothesis
Generally the Cohen's d value is mathematically evaluated as
[tex]d = \frac{M - \mu }{s }[/tex]
=> [tex]d = \frac{ 84 - 80 }{4.47 }[/tex]
=> [tex]d = 0.895[/tex]
Given that the the sample mean and sample size are the same for both sample the Cohen's d value will be the same
If you invest $ 30 , 700 with an annual interest rate of 8.9 % , compounded daily, how much would you have at the end of 4 years?
Answer: $43,823.37
Step-by-step explanation:
Formula to calculate the accumulated amount earned on principal (P) at rate of interest (r) compounded daily after t years :
[tex]A=P(1+\dfrac{r}{365})^{365t}[/tex]
As per given , we have
P= $ 30,700
r= 8.9 % = 0.089
t= 4 years
[tex]A=30700(1+\dfrac{0.089}{365})^{365(4)}\\\\=30700(1+0.0002438)^{365(4)}\\\\=30700(1.0002438)^{1460}\\\\=30700(1.42747138525)\\\\=43823.3715272\approx43823.37[/tex]
Hence, the amount at the end of 4 years would be $43,823.37 .
PLEASE HELP ASAP Madelyn drove a race car in a race. She averaged 55 mph and began the race 0.5 hours ahead of the other drivers. The variable d represents Madelyn's distance driven, in miles. The variable t represents the number of hours since the other drivers began to race. Which equation can be used to determine the distance Madelyn drove t hours into the race? d=55t−0.5 d=55(t+0.5) d=55(t−0.5) d = 55t + 0.5
Answer:
d=55(t+0.5)
Step-by-step explanation:
d=55(t+0.5)
Answer:
27.5
Step-by-step explanation:
The formula for the area of a square is s2, where s is the side length of the square. What is the area of a square with a side length of 6 centimeters? Do not include units in your answer.
Answer:
36
step by step
given length=6
so area of square is given by s2 i.e 6^2
=6×6
=36 (Ans)
The amounts of nicotine in a certain brand of cigarette are normally distributed with a mean of 0.966 grams and a standard deviation of 0.315 grams. Find the probability of randomly selecting a cigarette with 0.305 grams of nicotine or less.
Answer:
The probability is [tex]P(X \le 0.305 ) = 0.01795[/tex]
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 0.966 \ grams[/tex]
The standard deviation is [tex]\sigma = 0.315 \ grams[/tex]
Given that the amounts of nicotine in a certain brand of cigarette are normally distributed
Then the probability of randomly selecting a cigarette with 0.305 grams of nicotine or less is mathematically represented as
[tex]P(X \le 0.305 ) = 1 - P(X > 0.305) = 1 - P(\frac{X - \mu }{\sigma } > \frac{0.305 - \mu }{\sigma } )[/tex]
Generally
[tex]\frac{X - \mu }{\sigma } = Z (The \ standardized \ value \ of X )[/tex]
So
[tex]P(X \le 0.305 ) = 1 - P(X > 0.305) = 1 - P(Z > \frac{0.305 - 0.966 }{0.315} )[/tex]
[tex]P(X \le 0.305 ) = 1 - P(X > 0.305) = 1 - P(Z >-2.0984 )[/tex]
From the z-table(reference calculator dot net ) value of [tex]P(Z >-2.0984 ) =0.98205[/tex]
So
[tex]P(X \le 0.305 ) = 1 - P(X > 0.305) = 1 - 0.98205[/tex]
=> [tex]P(X \le 0.305 ) = 1 - P(X > 0.305) = 0.01795[/tex]
=> [tex]P(X \le 0.305 ) = 0.01795[/tex]
Solve x/10 = -7 A. x = 3 B. x = -0.7 C. x = -17 D. x = -70
Answer:
x = -70
Step-by-step explanation:
x/10 = -7
Multiply each side by 10
x/10*10 = -7*10
x = -70
The arc length apothem shown below is 15 feet. Part 1) State the equation that relates arc length to central angle. Part 2) Find the angle apothem in radians. Part 3) Convert your answer from Part 2 to degrees and write it to the nearest hundredth of a degree
Answer:
ans right down there
Step-by-step explanation:
Here,Part 1
if the circle has a radius r so,
15 = r theta
here, theta is in radian.
Part 2
[tex]theta = \frac{15}{6} = 2.5[/tex]
part 3
[tex]theta = \frac{2.5 \times 180}{\pi} [/tex]
or theta =
143.2394487827058021919953870352629258310136811664108038729006
A la propiedad fundamental de las proporcionas, comprueba si las siguientes son o no hay elementos a) 5/7 a 15/21 b) 20/7 a 5/3 c) 16/8 a 4/2
Answer:
fucuvucybycych tcy bic ttx TV ubtx4 cub yceec inivtxr xxv kb
Step-by-step explanation:
t tcextvtcbu6gt CNN tx r.c tct yvrr TV unu9gvt e tch r,e xxv t u.un4crcuv3cinycycr xxv yctzrctvtcrzecycyvubr xiu nyfex tut uhyh
i need help will rate you branliest
Answer:
D. the bottom one is the answer, because hyperbola is two curves that curve infinitely
Which is the graph of g(x) = (0.5)x + 3 – 4?
Answer:
Graph (A)
Step-by-step explanation:
Given question is incomplete; find the question in the attachment.
Given function is g(x) = [tex](0.5)^{x+3}-4[/tex]
Parent function of the given function is,
f(x) = [tex](0.5)^{x}[/tex]
When the function 'f' is shifted by 3 units left over the x-axis, translated function will be,
h(x) = f(x+3) = [tex](0.5)^{x+3}[/tex]
When h(x) is shifted 4 units down, translated function will be,
g(x) = h(x) - 4
g(x) = [tex](0.5)^{x+3}-4[/tex]
g(x) has a y-intercept as (-4).
From the given graphs, Graph A shows the y-intercept as (-4).
Therefore, Graph A will be the answer.
Answer:
The Answer A is correct
Step-by-step explanation:
I took the edg2020 test
PLEASE HELP!!! The question is.. [tex]163-y=-5[/tex] ANSWER GETS BRAINLIEST
Answer:
y = 168Step-by-step explanation:[tex]163 -y =-5\\Collect\:Like\:terms\\163+5 = y\\Simplify\\168 =y\\\\y = 168[/tex]
Hello There!
Answer: [tex]163-168=-5[/tex]Explanation:[tex]163-y=-5[/tex]
To solve your equation, you can just change the -5 to 5 and move it to where y is. After that, change the minus sign to addition.
[tex]163+5=y[/tex]
Now all you have to do is sum it up.
[tex]163+5=168[/tex]
So y = to 168
So your answer is
[tex]163-168=-5[/tex]
Hope this Helps!
[PLEASE HELP] Consider this function, f(x) = 2X - 6.
Match each transformation of f (x) with its descriptions..
Answer:
Find answer below
Step-by-step explanation:
f(x)=2x-6
Domain of 2x-6: {solution:-∞<x<∞, interval notation: -∞, ∞}
Range of 2x-6: {solution:-∞<f(x)<∞, interval notation: -∞, ∞}
Parity of 2x-6: Neither even nor odd
Axis interception points of 2x-6: x intercepts : (3, 0) y intercepts (0, -6)
inverse of 2x-6: x/2+6/2
slope of 2x-6: m=2
Plotting : y=2x-6
Lynn estimates roof jon 1500,bo estimates 2400. What's the ratio to lynn to bo
Answer:
5:8
Step-by-step explanation:
If I understand your question correctly, we have 1500/2400=15/24=5/8, so we have Lynn:Bo is 5:8, however, in the future please be more clear.
What is "estimates roof jon"? And, instead of saying "ratio to lynn to bo" say "What is the ratio of the estimates?" or whatever you're asking. If this answer is wrong, you only have yourself to blame.
Could someone help me pls! And could you explain if possible? Thanks you
Answer:
3%
Step-by-step explanation:
1. Set up the equation
6(0.18) + 12x = 18(0.08)
2. Simplify
1.08 + 12x = 1.44
3. Solve
12x = 0.36
x = 0.03
0.03 = 3%
What are two solutions of x
Answer:
Answer is attached below :)
A particular salad contains 4 units of vitamin A, 5 units of vitamin B complex, and 2 mg of fat per serving. A nutritious soup contains 6 units of vitamin A, 2 units of vitamin B complex, and 3 mg of fat per serving. If a lunch consisting of these two foods is to have at least 10 units of vitamin A and at least 10 units of vitamin B complex, how many servings of each should be used to minimize the total number of milligrams of fat
Answer:
2 servings of salad and 1 serving of soup
Step-by-step explanation:
In the given scenario the aim is to minimise the fat content of the food combination.
Fat content of soup is 3mg while fat content of salad is 2 mg.
Using Soup as 0 and Salad as 2 will not give the required vitamin content
The logical step will be to keep servings of soup to the minimum.
Let's see some combinations of salad and soup. Keeping serving of soup to the minimum of 1
1. 1 serving of salad and one serving of soup will contain 10 mg of vitamin A, 7 mg of vitamin B complex, and 3 mg of fat.
This will not work because amount of vitamin B complex is not up to 10 mg
2. 2 servings of salad and 1 serving of soup. Will contain 14 mg of vitamin A, 12 mg of vitamin B, and 7 mg of fat
This is the best option as we have amount of vitamin A and vitamin B complex in adequate quantity.
Also fat is lowest in this combination because soup the food with highest fat content is at minimum amount of one serving
Identify the decimals labeled with the letters A, B, and C on the scale below. Letter A represents the decimal Letter B represents the decimal Letter C represents the decimal
[tex]10[/tex] divisions between $15.59$ and $15.6$ so each division is $\frac{15.60-15.59}{10}=0.001$
A is 5 division from $15.59$, so, A is $15.59+5\times 0.001=15.595$
similarly, C is 4 division behind $15.59$ so it is $15.590-4\times0.001=15.586$
and B is $15.601$
3(x–6)=18 help plese
Answer:
x = 12
Step-by-step explanation:
3(x–6)=18
x-6 = 18:3
x-6 = 6
x = 6+6
x = 12
Answer:
x=12
Step-by-step explanation:
Rhombus J K L M is shown. The length of J K is 2 x + 4 and the length of J M is 3 x. What is the length of a side of rhombus JKLM? 4 units 8 units 12 units 16 units
Answer:
12 units
Step-by-step explanation:
Since all of the sides of a rhombus are congruent, JK = JM which means:
2x + 4 = 3x
-x = -4
x = 4 so 3x = 3 * 4 = 12
Find the measure of c.
Answer:
149 degrees
Step-by-step explanation:
This shape is a cyclic, so opposite angles add up to 180 degrees.
180-31 = 149
Please answer this correctly without making mistakes
Step-by-step explanation:
Option A and B are the correct answer because it equal to 688.5 and 688.05
Answer:
it is 1377/2 and 688 1/17 thats the answer
Step-by-step explanation:
the principal p is borrowed at a simple interest rate r for a period of time t. find the loan's future value g P = 700, r = 8.25, t = 3 months
Answer:
Hey there!
Simple interest formula: I=PRT
I=700(8.25)(0.25)
I=1443.75
Hope this helps :)
Answer:
Step-by-step explanation:
I = PRT
I = 700(0.0825)(1/4) = 14.44
Because the interest is usually in percentage and it's impossible to have 825% as your interest rate. So the actual interest rate has to be 0.0825.
The formula above calculated the interest, if you want the total, you will need to add 700 to that number.
[img id="5156824"][/img]Here's a small quick example of the formula that should help.
What is the value of this expression when x = -6 and y = — 1/2? 4(x^2+3) -2y A. -131 B. -35 C. 57 1/2 D. 157
Answer:
D
Step-by-step explanation:
[tex]4(x^2+3)-2y\\\\=4((-6)^2+3)-2(\frac{-1}{2} )\\\\=4(36+3)+1\\\\=4(39)+1\\\\=156+1\\\\=157[/tex]
The value of the expression 4(x² + 3) - 2y is 157, when x = -6 and y = -1/2.
What is an algebraic expression?An algebraic expression is consists of variables, numbers with various mathematical operations,
The given expression is,
4(x² + 3) - 2y
Substitute x = -6 and y = -1/2 to find the value of expression,
= 4 ((-6)² + 3) - 2(-1/2)
= 4 (36 + 3) + 1
= 4 x 39 + 1
= 156 + 1
= 157
The required value of the expression is 157.
To know more about Algebraic expression on:
https://brainly.com/question/19245500
#SPJ2
how to find the roots of a quadratic equation -10x^2 + 0x +250
Answer:
Step-by-step explanation:
The first thing you want to do is to factor in any quadratic equation.
So, -10(x^2-25)
Now, we see this is a special case, whenever we see a equation in this case, x^2 - b^2, we factor it to this (x+b)(x-b)
So, -10(x+5)(x-5)
x = -5 and x = 5