The pattern gets bigger as the light wave length gets longer. other maxima are further from the central one and are wider.
What wavelength does it have?A wavelength is the distance between two identical locations (adjacent crests) in successive cycles in a waveform signals that is transmitted by a wire or in space. Typically, this length is expressed in feet (m), millimeters (cm), or millimeters (mm) in wireless systems (mm).
What do wavelengths and frequencies refer to?The distance that separates two wave crests is known as the wavelength, and it also applies to troughs. The number of vibrations that pass across a certain area in a second, or 60hz (Hz), is the unit of measurement for frequency (Hertz).
To know more about wavelengths visit:
https://brainly.com/question/1852060
#SPJ4
which sentence correctly describes when the triple-alpha process occurs in the life cycle of an average-mass star
Three helium-4 nuclei (alpha particles) are turned into carbon by a series of nuclear fusion processes known as the triple-alpha process.
What results from the triple-alpha procedure as the finished product?
The triple-alpha process and the alpha process are two classes of nuclear fusion reactions that stars use to change helium into heavier elements. The alpha process is also referred to as the alpha ladder. [1] Only helium is used in the triple-alpha process, which also yields carbon.
Which statement concerning alpha particles in an atom is accurate?
Two protons and two neutrons make up alpha particles, which are identical to helium nuclei and have a positive charge.
Learn more about Alpha Particle
Visit:
https://brainly.com/question/17464734
#SPJ4
what are the magnitude and location (with respective to point a) of the resultant force on the horizontal gate? the gate width is w. fluid density is r. you can leave your answer in terms of variables (w, r, and g).
The magnitude and location of the resultant force on the horizontal gate is: F = w * r * g, and Point A.
What is magnitude?Magnitude is a measure of the size or intensity of a physical quantity. It is usually defined as the absolute value of the numerical value of the physical quantity, and is often expressed in terms of a unit of measurement. Magnitude can refer to a variety of different physical quantities, such as size, intensity, brightness, or energy. Magnitude can also refer to the relative size or intensity of two or more physical quantities, when compared to each other.
The resultant force on the horizontal gate is equal to the sum of the hydrostatic forces acting on the gate.
Since the gate is horizontal, the hydrostatic forces acting on the gate will be equal to the pressure difference between the top and bottom of the gate.
This pressure difference is equal to the product of the fluid density, gravitational acceleration, and the gate width.
Therefore, the magnitude of the resultant force on the gate will be:
F = w * r * g
The location of the resultant force on the gate will be at the center of the gate, which is point A.
Therefore, the magnitude and location of the resultant force on the horizontal gate is: F = w * r * g, and Point A.
To learn more about magnitude
https://brainly.com/question/24468862
#SPJ4
based on its surface temperature of 6,000 k, most photons that leave the sun's surface lie in which region of the electromagnetic spectrum?
Most photons that leave the sun's surface have a surface temperature of 6,000 K, which corresponds to the visible light region of the electromagnetic spectrum.
The electromagnetic spectrum is a continuous range of wavelengths and frequencies that includes radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays, and gamma rays. The wavelengths and frequencies of these different types of electromagnetic radiation are all different and correspond to different regions of the spectrum.
The visible light region of the electromagnetic spectrum is the portion of the spectrum that can be seen by the human eye. It ranges from about 400 nanometers (nm) to about 700 nm in wavelength, and corresponds to frequencies of about 7.5 x 10^14 Hz to about 4.3 x 10^14 Hz. Photons with wavelengths and frequencies in this range have enough energy to excite the photoreceptors in the human eye, allowing us to see them.
Learn more about Electromagnetic Spectrum here:
https://brainly.com/question/13803241
#SPJ4
Suppose a 15 N force is applied to the side of a 5.0 kg block that is sitting on a table. The block experiences a frictional force against the force that is applied.
a) What is the weight of the block (FG)?
b) What is the normal force on the block (FN)?
c) If the coefficient of kinetic friction is μk = .10, what is the frictional force on the block (Ff)?
d) What is the net force on the block?
e) What is the acceleration of the block from the net force?
Answer:
Explanation:
Fg = W = mg = (5.0 kg)(9.8 m/s²) = 49 N
Fnormal = W = 49 N
Ff = μFn = (0.10)(49 N) = 4.9 N
Fnet = 15 N - 4.9 N = 10.1 N
a = Fnet/m = (10.1N)/(5.0kg) = 2.02 m/s²
questions 10-11 refer to a ball that is tossed straight up from the surface of a small, spherical asteroid with no atmosphere. the ball rises to a height equal to the asteroid's radius and then falls straight down toward the surface of the asteroid. 10. what forces, if any, act on the ball while it is on the way up?
Only a decreasing gravitational force that acts downward will apply on the ball that is tossed straight up from the surface of a small, spherical asteroid with no atmosphere.
What is gravitational force?All physical things with mass are drawn to the gravitational force, which can be thought of as an attracting force. It is the known natural force that is by far the weakest.The gravitational force, which is what pushes mass-containing objects toward one another. We frequently consider the pull of gravity from the Earth. Your body is kept on the ground by this force. However, all mass-bearing objects are pulled toward each other by gravity.
Hence,
Only a decreasing gravitational force that acts downward will apply on the ball that is tossed straight up from the surface of a small, spherical asteroid with no atmosphere. The ball rises to a height equal to the asteroid's radius and then falls straight down toward the surface of the asteroid.
To know more about gravitational force visit
https://brainly.com/question/3009841
#SPJ4
a wall of a small house is 3 meters by 3 meters and is insulated using material that is similar to styrofoam (see table above). the styrofoam is about 2.5 cm thick. a heater inside the house keeps the temperature at 25 c while it is 0 c outside the shed. how much power in watts does the heater use just to make up for the heat lost through this one wall.
The heater needs to provide 540 W of power just to make up for the heat lost through this one wall.
What is Styrofoam?Styrofoam is a trademarked brand of foam insulation and craft material manufactured by the Dow Chemical Company. It is made from expanded polystyrene (EPS) beads that are fused together with steam and pressure. EPS is a lightweight and rigid material that is used for insulation, packaging, and soundproofing. Its properties make it an ideal material for crafting, floristry, model building, and other art projects. Styrofoam is stable in most environments and is resistant to water, oil, and most chemicals. It can be cut, shaped, and painted easily and is an excellent thermal insulator. In addition, it is also non-toxic and non-carcinogenic, making it a safe and economical choice for many applications.
Assuming that the wall is a perfect insulator, the heater will have to provide enough power to make up for the heat lost due to conduction and convection. The rate of heat loss per unit area is given by:
Q = λ*A*(T2 - T1)/d
Where:
λ = thermal conductivity of styrofoam (see table above)
A = Area of wall (3*3) = 9 m2
T2 = Temperature inside the house (25C)
T1 = Temperature outside the house (0C)
d = thickness of styrofoam insulation (2.5 cm)
Plugging in the values we get:
Q = 0.045*9*(25-0)/0.025 = 540 W
Therefore, the heater needs to provide 540 W of power just to make up for the heat lost through this one wall.
To learn more about Styrofoam
https://brainly.com/question/29332536
#SPJ4
a uniform meter stick of mass 24 g with two weights hanging from it is balanced on a knife edge at the 40 cm mark. a weight of mass 96 g hangs from the 9 cm mark. at which cm mark must the other weight of mass 96 g be located to keep the meter stick balanced?
The second weight of mass 96 g must be located at the 9 cm mark on the meter stick to keep it balanced.
To determine the location of the second weight that will keep the meter stick balanced, we need to consider the principles of equilibrium.
The weight of the meter stick can be calculated as follows:
Weight of meter stick = mass * acceleration due to gravity
= 24 g * 9.8 m/s^2
= 235.2 N
The total weight of the two hanging weights is 96 g + 96 g = 192 g = 1.92 N.
The sum of the forces acting on the meter stick is equal to zero when:
235.2 N + 1.92 N = 0
This equation tells us that the sum of the forces acting on the meter stick is equal to zero when the total weight of the two hanging weights is equal to the weight of the meter stick.
To determine the location of the second weight, we also need to consider the moments about the pivot point. The moment of a force is calculated as the product of the force and the distance from the pivot point. The moments about the pivot point are equal to zero when the sum of the moments of the forces on one side of the pivot point is equal to the sum of the moments of the forces on the other side of the pivot point.
The moment of the weight of the meter stick about the pivot point is calculated as follows:
Moment of the weight of meter stick = force * distance from pivot point
= 235.2 N * 0.4 m
= 94.08 N*m
The moment of the weight hanging from the 9 cm mark about the pivot point is calculated as follows:
Moment of weight hanging from 9 cm mark = force * distance from pivot point
= 1.92 N * 0.09 m
= 0.1728 N*m
To keep the meter stick balanced, the moment of the second weight must be equal in magnitude but opposite in direction to the moment of the weight hanging from the 9 cm mark. The moment of the second weight can be calculated as follows:
Moment of second weight = force * distance from pivot point
= 1.92 N * distance from pivot point
Substituting the value of the force and setting the moment equal to the negative of the moment of the weight hanging from the 9 cm mark, we get the following equation:
1.92 N * distance from pivot point = -0.1728 N*m
Solving for the distance from the pivot point, we find that the second weight must be located at a distance of 0.09 m from the pivot point, or 9 cm. This is the same distance from the pivot point as the weight hanging from the 9 cm mark.
Therefore, the second weight of mass 96 g must be located at the 9 cm mark on the meter stick to keep it balanced.
Learn more about Mass here:
https://brainly.com/question/19385703
#SPJ4
you work at a garden store for the summer. you lift a bag of fertilizer with a force of 131 n, and it moves upward with an acceleration of 0.790 m/s2. (a) what is the mass (in kg) of the fertilizer bag?
Mass of the fertilizer bag is 165.82 kg
Briefing:According to Newton's law,
F = m*a
So, m= F/a
m= 131/0.790
m= 165.82 kg
What is mass?Mass is the measure of matter of a body.
What is Newton's laws?Newton has stated three laws of motion. The first law states that every object will remain at rest or in uniform motion in a straight line unless an external force compels it to change its state of action .
The second law states that the acceleration of an object is dependent upon two variables - the net force acting upon the object and the mass of the object.
The third law states that every action has an equal and opposite reaction.
To know more such numericals, visit :
https://brainly.com/question/14633087
#SPJ4
how long (in s) does it take a child on a swing to complete one swing if her center of gravity is 5.53 m below the pivot?
4.71 s long (in s) does it take a child on a swing to complete one swing if her center of gravity is 5.53 m below the pivot.
What is the center of the gravity?The average position of an object's weight is known as its center of gravity. Any object's travel through space may be entirely explained in terms of how its gravitational center moves from one location to another and, if it is free to spin, how it rotates around that center of gravity. Calculations combining gravitation and dynamics may be made much simpler by treating an object's mass as though it were concentrated at a single location.
Briefing:T=2π√(l/g)
T=2π√(5.53/9.81)
T=4.71
T =4.71 s
To know more about center of gravity visit:
https://brainly.com/question/20662235
#SPJ4
A 100 kg car starts from 20 m/s and speeds up to 41 m/s in 7 seconds. Determine the car's
acceleration.
Answer: 3 m/s^2
Explanation:
Acceleration equals change in velocity (speed) divided by total time.
a = (v2-v1)/t
a = (41 m/s - 20 m/s) / 7 s
a = 3 m/s^2
Mass is irrelevant in this question.
1.
KNOW the UNITS!!!!!! SHOW YOUR WORK
What is the net force exerted on a 150.0kg race-car driver while the race car is accelerating from 0 to 58.7m/s i
3.50s?
Answer:
2515.7N
Explanation:
First step is to find the acceleration:
U = 0 and V =58.7 m/s
a = (V-U)/t
where, t = 3.5s
a = 58.7/3.5
so, in order to find the net force,
F= ma
= 150kg × 58.7/3.5
= 2515.7 N
Hooke's law states that the restoring force of a spring is directly proportional to a small displacement. Students in physics class were conducting an experiment to determine the difference in displacement among various springs. They wanted to determine if displacement not only varied with mass but also with the type of spring used. The class tested twenty springs; they varied in length, circumference, and material. They used an assortment of masses as well. On some springs they used masses of 5g increments; on others, masses of 10g increments. After hanging the masses from each spring, they measured how far the springs stretched. The students concluded that thin, aluminum springs had greater displacement than short, thick, iron springs. How could the students improve the validity of the data in this experiment to better support their conclusion?.
The kind of spring should be held constant so as to improve the validity of the experiment.
What is Hooke's law?Hooke's law states that the force that acts on a spring is directly proportional to the extension of the spring as long as the elastic limit is not exceeded.
As such, we can now understand that we can only be able to talk about the Hooke's law if there is no way in which the material has passed the elastic limit of the material. In this case, we are told that the students just embarked on a kind of experiment and they want to be able to verify the validity of the Hooke's law.
We saw that the masses that were hanged were increased but the springs were also changed. This would not allow us to determine the force constant and the Hooke's law accurately.
Learn more about Hooke's law:https://brainly.com/question/29126957
#SPJ1
QUESTION 8 OF 30
Using equations for KE and GPE, what is the maximum height an object will
reach if it is thrown vertically upwards at 24.0 m/s ? (Answer to 3 sf with unit)
The maximum height an object will reach if it is thrown vertically upwards at 24.0 m/s will be equal to 29.35 meters.
What is kinetic energy?Kinetic energy is the term used in physics to describe the force that a moving item has.
It is described as the amount of effort necessary to accelerate anybody with a particular mass from rest to a given velocity. Except for variations in speed, the body retains the kinetic energy it gains during acceleration.
As per the given information in the question,
The formula of kinetic energy is,
K.E = 1/2 mv² (i)
The formula of gravitational potential energy is,
u = mg (ii)
Equate equations (i) and (ii)
1/2 mv² = mgh
h = 1/2 v²/g
h = 1/2 (24)²/9.81
= 576/19.62
h = 29.35 meters.
To know more about Kinetic energy:
https://brainly.com/question/26472013
#SPJ1
6) Which of the following is NOT true of gravitational force?
A) noncontact
B) depends on mass
C) depends on speed
D) distance
Answer:
D
Explanation:
distance does not factor in when you are calculating the gravitational force of an object
A car travels down a road at a certain velocity, vcar. The driver slows down so that the car is traveling only a third as fast as before. Which of the following is the correct expression for the resulting velocity?
a. 2vcar
b. 1/3vcar
c. -1/2vcar
d. -2vcar
The correct expression for the resulting velocity is -1/2 vcar. The correct option is c.
What is velocity?
The directional speed of an item in motion, as measured by a specific unit of time and observed from a certain point of reference, is what is referred to as velocity.
A car travels down a road at a certain velocity, is Vcar.
Let the initial velocity of the car travel downward be -V car
It is also, given, that the driver slows down so that the car is traveling only half as fast as before.
Resulting velocity = -1/2 vcar
Therefore, the correct option is c. -1/2vcar.
To learn more about velocity, refer to the link:
https://brainly.com/question/18084516
#SPJ1
Which choice below explains what is happening in a liquid as it turns into a gas?
a. The particles speed up and spread apart
b. The particles speed up and come closer together
c. The particles slow down and spread apart
d. The particles slow down and come closer together
Answer:
a
Explanation:
As you add thermal energy the particles spread apart and are moving faster ..... a certain volume of water produces a much larger volume of steam as energy is added.....that is how steam engines work !
boat moves north at a velocity of 2.5 m/s while the current moves downstream at 6.0 m/s east. What is the resultant velocity of the boat, relative to an observer on the shore?
A) 4.5 m/s, NE
B ) 4.5 m/s, SE
C ) 6.5 m/s, NE
D ) 6.5 m/s, SE
E) 8.5 m/s, NE
Relative to the observer in on the shore, the velocity of the boat is 6.5 m/s, NE.
What is relative velocity?
The velocity of an object in relation to another observer is known as its relative velocity.
We cay say that the relative velocity is equal to the vector difference between the velocities of two objects. The relative velocity of A with respect to B= velocity of the body A – velocity of the body B.
The diagram below shows the calculation where AC is relative speed, AB is speed of the boat and BC is the speed of stream.
To learn more about relative velocity from the given link
https://brainly.com/question/19260269
#SPJ1
a simple pendulum is 4.00 m long. (a) what is the period of small oscillations for this pendulum if it is located in an elevator accelerating upward at 6.00 m/s2?
The time period of the small oscillations for the simple pendulum is found to be 3.14 seconds.
The pendulum is located in an elevator that is accelerating upwards with an acceleration of 6m/s² and length of the pendulum is 4m.
Because the elevator is accelerating in the upper direction the net acceleration of the pendulum will be (10 + 6)m/s².
The period of small accelerations for this pendulum will be given by the relation,
T = 2π(l/a)
Where, l is the length of pendulum and a is the net acceleration.
Putting values,
T = 2π(4/16)
T = 2π(1/2)
T = π seconds.
T = 3.14 seconds.
So, the time period of this small oscillations for this pendulum is 3.14 second.
To know more about oscillations, visit,
https://brainly.com/question/12622728
#SPJ4
what is the kinetic energy of a 60.0 g tennis ball traveling at 177.0 kilometers per hour? report your answer in joules (j).
The kinetic energy is 939.87 J.
what is kinetic energy?Kinetic energy is the power that an object has as a result of motion. If we want to accelerate an object, we have to exert force. Applying force requires effort on our part. The object will be moving at a new, constant speed once the work is done because energy has been transferred to it.
A particle, an object, or a collection of particles can move because of kinetic energy, which is the force that drives motion. Kinetic energy is used by objects in motion like a person walking, a baseball being thrown, food falling from a table, and charged particles in an electric field.
Kinetic energy = 1/2mv²
Kinetic energy = 1/2×0.06×177²
Kinetic energy = 939.87 J.
To know more about kinetic energy visit:
https://brainly.com/question/26472013
#SPJ4
a vertical spring has a spring constant of 100 n/m. when an object is attached to the bottom of the spring, the spring changes from its unstretched length of 0.50 to a length of 0.65 m. the magnitude of the weight of the object is
Answer: Hookes law states F=kX where F is the force applied, k is the spring constant, and X is the extension of the spring from its resting point.Substituting the values in, we get:F=100*(0.65-0.5)=100*0.15=15N
a uniform thin rod of length 0.50 m and mass 4.0 kg can rotate in a horizontal plane about its center. a 3.0 gram bullet hits the end of the rod (initially at rest) at an angle of 60 degrees and imbeds in the rod. if the angular speed of the rod is 10. rad/s after the bullet strikes, what is the speed of the bullet before it strikes the rod?
The speed of the bullet before it strikes the rod is 67 m/s. To determine the speed of the bullet before it strikes the rod, we need to consider the conservation of angular momentum.
The moment of inertia of a thin rod about its center is given by the following formula:
I = (1/3) * m * L^2where I is the moment of inertia, m is the mass of the rod, and L is the length of the rod.
Substituting the values given in the problem, we find that the moment of inertia of the rod is
(1/3) * 4.0 kg * (0.50 m)^2 = 0.67 kg*m^2.In this case, the bullet strikes the rod, transferring some of its linear momentum to the rod in the form of angular momentum. The change in angular momentum of the rod is equal to the angular momentum of the bullet.
We can use the conservation of angular momentum to write the following equation:
I1 * w1 + J = I2 * w2where I1 is the initial moment of inertia of the rod, w1 is the initial angular velocity of the rod, J is the angular momentum of the bullet, I2 is the final moment of inertia of the rod, and w2 is the final angular velocity of the rod.
Since the initial angular velocity of the rod is zero, we can simplify the equation as follows:
J = I2 * w2
Substituting the values given in the problem, we find that the angular momentum of the bullet is
0.67 kgm^2 * 10 rad/s = 6.7 kgm^2/s.To determine the speed of the bullet before it strikes the rod, we need to consider the bullet's mass and the angle at which it strikes the rod. The mass of the bullet is given as 3.0 grams, which is equivalent to 0.003 kg. The angle at which the bullet strikes the rod is given as 60 degrees.
We can use the following formula to calculate the speed of the bullet before it strikes the rod:
v = (J/m) * sin(theta)Substituting the values given in the problem, we find that the speed of the bullet before it strikes the rod is (6.7 kg*m^2/s / 0.003 kg) * sin(60 degrees) = 67 m/s. This is the final answer.
Learn more about Angular Momentum here:
https://brainly.com/question/13822610
#SPJ4
A 1.5 kg block is on a 15° frictionless incline plane.
a) What is the normal force?
b) What is the downhill force?
c) What is the acceleration?
Answer:
Below
Explanation:
Normal force will be mg cos 15° = 1.5*9.81 cos 15° Newtons
Downplane force will be mg sin 15° = 1.5 * 9.81 sin 15° N
Acceleration
F = ma
F/m = a
1.5 ( 9.81) sin 15° / 1.5 m/s^2 = a
A heavy piece of hanging sculpture is suspended by a 90 cm long 5.0 g steel wire. When the wind blows hard, the wire hums at its fundamental frequency of 95 Hz.What is the mass of the sculpture?
According to the given statement 16.7kg is the mass of the sculpture.
What is a fundamental frequency in physics?The lowest frequency that could be produced by a particular instrument is known as the fundamental frequency. The fundamental frequency is also known as the instrument's first harmonic.
Briefing:Use the string's tautness' fundamental frequency as a formula.
f = (1/2L)*√(T/μ) .... (Eqn1)
Where
f= frequency in Hertz =80Hz
T = The string's tension equals Mg.
M is a symbol for the substance's mass (sculpture)=?
g= 9.8m/s^2
L= Length of the string=90cm=0.9m
μ= string length divided by mass gives the string's density.
mass of string =5g=0.005kg
L=0.9m
μ=0.005/0.9 = 0.0056kg/m
Using (Eqn1)
95= 1/(2*0.9) √(T/0.0056)
171= √(T/0.0056)
Square both sides
29241= T/0.0056
T= 163.74 N
Recall that T =Mg
163.74= M * 9.8
M=163.74/9.8
M= 16.7kg
Consequently, the sculpture weighs 16.7kg.
To know more about Fundamental frequency visit:
https://brainly.com/question/29264927
#SPJ4
an airplane flies horizontally at a speed of 351 km/h and drops a crate that falls to the horizontal ground below. neglect air resistance.part (a) if the altitude of the plane was 580 m, then how far, horizontally in meters, did the crate move as it fell to the ground?
Refer to the attached photos. I would appreciate a rate :)
what is the current through the heating element of an electric toaster oven if the heater has a resistance of 5 ohms and it is connected to 120 volts?
Answer:
24 A
Explanation:
Ohm's Law: V = IR, so I = V/R
I = 120V/5Ω = 24 A
suppose a woman does 550 j of work and 9800 j of heat transfer occurs into the environment in the process. (a) what is the decrease in her internal energy (in kcal), assuming no change in temperature or consumption of food? (that is, there is no other energy transfer.) -10350 kcal (b) what is her efficiency (in percent)? %
W = -500 J is the work, which is why it's negative because a woman is doing it.
Briefing
The heat transfer into the system,
Q = 9500 J, makes it positive.
(a) Heat and work are added to determine the change in internal energy, which is:
ΔU = Q+W
We replace with:
ΔU = 9500 J-500 J
ΔU = 9000 J\s(b) (b) The quantity of useful work completed given a total energy supply is now what is generally referred to as an efficiency. From this, we may divide the woman's labour by the shift in internal energy, giving us
= 500 j / 9000 j.
We get:
ϵ = 0.0556~ 5.56%
Learn to about Energy
Visit:
https://brainly.com/question/11399976
#SPJ4
A student wants to make a simple model of the solar system to help him compare how long it would take for a spaceship to travel between different planets.
Which of the following things is essential for him to do in order to think about how long it would take?
this are the opions
He must make sure that the model of each planet looks like the planet it represents, but he does not need to accurately represent the relative distances between the planets because the most important thing is that models look like the thing they are modeling.
He must accurately represent the relative distances between the planets, but he does not need to make sure that the model of each planet looks like the planet it represents because only the relevant aspects of the thing being modeled need to be modeled accurately.
He must accurately represent the relative distances between the planets and also make sure that the model of each planet looks like the planet it represents, because a model should be as much like the thing being modeled as possible.
He does not need to accurately represent the relative distances between the planets, and he does not need to make sure that the model of each planet looks like the planet it represents, because there are always some differences between a model and the thing being modeled.
Answer:
To make a simple model of the solar system that can be used to compare the time it would take for a spaceship to travel between different planets, the student must accurately represent the relative distances between the planets. This is because the time it would take for a spaceship to travel between two planets depends on the distance between those planets, so accurately representing the distances between the planets is essential for thinking about how long it would take for a spaceship to travel between them.
It is not necessary for the student to make sure that the model of each planet looks like the planet it represents, although this may help make the model more understandable. The most important thing is that the model accurately represents the relative distances between the planets.
In summary, the student must accurately represent the relative distances between the planets in order to think about how long it would take for a spaceship to travel between different planets in the solar system.
newton's second law in 1 dimension: what magnitude net force is required to accelerate a 1200-kg car uniformly from 0 m/s to 27.0 m/s in 10.0 s?
The required force is F = 3240 N.
As a result,
1200 kg is the car's mass.
Initial speed of the vehicle, u = 0.
The car's final speed is 27 meters per second.
Thus we have to first calculate the acceleration and then substitutes its value in the force formula
Taking time, t = 10 s
F = m a, where a represents the vehicle's acceleration, is the formula for the required force.
a= v - u / t
thus a = 27 - 0/ 10
a = 27/ 10
F = 1200 X 27 / 10
F = 3240 N.
Therefore, this is the necessary solution.
To know more about force you may visit the link:
https://brainly.com/question/28875770
#SPJ4
the rope-and-pulley system of negligible mass shown above supports a block of weight w that is at rest. if the tension throughout the rope is uniform, what is the reading on the spring scale?
The rope-and-pulley system of negligible mass shown above supports a block of weight w that is at rest. if the tension throughout the rope is uniform.
To determine the reading on the spring scale, we can apply Newton's Second Law of Motion to the block of weight w. The net force on the block is equal to the block's mass times its acceleration: F net = ma The only force acting on the block is the force of gravity, which is equal to the weight of the block: F net = F gravity = w The acceleration of the block is zero, since it is at rest: w = ma = m * 0 . This equation tells us that the force of gravity on the block is zero, which means that the block is in equilibrium and the tension in the rope is zero. Therefore, the reading on the spring scale is zero.
to know more about tension
https://brainly.com/question/29763438
#SPJ4
Answer:
W/2
Explanation:
The original question does not include a diagram which is necessary for answering the question.
The diagram shows a spring scale attached to the ceiling. Below the spring, 2 pulleys are attached, holding the block at 2 separate points. As a result, there will be 4 ropes (2 attached to the spring scale, and 2 to the ceiling).
Because the tension is dispersed evenly among the 4 points, we can say that the scale will only read half the weight as the rest of the tension will be held by the ceiling.
Therefore, the spring scale will read W/2
I wish that I can upload the diagram, but unfortunately, I cannot. I assume that you will have access to the diagram.
Hope this helped!
gravel is being dumped from a conveyor belt at a rate of cubic feet per minute. it forms a pile in the shape of a right circular cone whose base diameter and height are always the same. how fast is the height of the pile increasing when the pile is feet high? recall that the volume of a right circular cone with height and radius of the base is given by .
The fast is the height of the pile increasing when the pile is feet high 0.1989 ft/min.
Calculation:
Here given the rate of change in volume DV/DT = 40 actions and we need the rate of change in height when height h = 16.
Putting all values.
40 = π/4 x (16)² x DV/DT
= DV/DT= 40 x 4/ 1×16×16
0.1989 ft/min.
Rate of change in height when height is 16 H is equal to 0.1989 ft/min.
The goal is to get a text from as many modalities as possible so that models trained on The Pile have broader generalization capabilities. For stakes, experts believe it comes from the Latin word pira. Pila loosely translates to the ball. If you've ever seen inflamed hemorrhoid, you'll understand this moniker better. Many hemorrhoids actually look like small round spheres.
Learn more about The pile here:- https://brainly.com/question/14355792
#SPJ4