Answer:
The helicopter costs 54 dollars and 9% of 54 is 4.86.
Step-by-step explanation:
9% of what number = 4.86
... is equivalent to:
9% × ? = 4.86
---------------------------------
- Percent (%) means 'out of one hundred'-
(100 × 4.86) ÷ 9 =
486 ÷ 9 =
54
Which of the following is the constant ratio of the relation shown in the table?
Answer:
hello!
where are you from ?
Step-by-step explanation:
option 4 is correct ...there is no constant ratio.
IM TIMED HALP!!!
Relationship A and Relationship B show the change in the temperature for a pot of water on the stove. Relationship B has a greater rate than Relationship A.
This table represents Relationship A.
Time (min) 2 3 7 9
Temperature (°C) 61.3 64.9 79.3 86.5
What table could represent Relationship B?
Time (min) 2 3 7 9
Temperature (°C) 61.0 64.6 79.0 86.2
Time (min) 2 3 7 9
Temperature (°C) 60.6 64.3 79.1 86.5
Time (min) 2 3 7 9
Temperature (°C) 61.0 64.4 78.0 84.8
Time (min) 2 3 7 9
Temperature (°C) 61.8 65.3 79.3 86.3
Answer:
The table representing Relationship B is option 2
[tex]\begin{array}{ccc}Time \ (min)&&Temperature \ (^{\circ}C)\\2&&60.6\\3&&64.3\\7&&79.1\\9&&86.5\end{array}[/tex]
Step-by-step explanation:
The relationship shown by Relationship A and Relationship B = The change in the temperature for a pot of water om the stove
The rate of Relationship B > The rate of Relationship A
The table for relationship A is given as follows';
[tex]\begin{array}{ccc}Time \ (min)&&Temperature \ (^{\circ}C)\\2&&61.3\\3&&64.9\\7&&79.3\\9&&86.5\end{array}[/tex]
The time in minutes are the x-values, while the temperature in °C Ere the y-values
The rate for Relationship A, [tex]m_A[/tex] = (86.5 - 61.3)/(9 - 2) = 3.6
Therefore, the rate for Relationship B > 3.6
By checking each option, we note that in option 2, the maximum value for the y-value is the same as for Relationship A, which is 86.5°C, while the minimum value for the time, t, is lesser than that for Relationship A, (60.6 minutes < 61.3 minutes) therefore, we get;
The rate for option 2 = (86.5 - 60.6)/(9 - 2) = 3.7
Therefore, the table that represents the Relationship B is the table for option 2
[tex]\begin{array}{ccc}Time \ (min)&&Temperature \ (^{\circ}C)\\2&&60.6\\3&&64.3\\7&&79.1\\9&&86.5\end{array}[/tex]
Determine the area of the triangle.
96.0 square units
16.9 square units
192.0 square units
97.5 square units
Answer:
A. 96.0 square units
Step-by-step explanation:
The formula for the area of a triangle when we know the side length of two sides and the measure of an included angle of a triangle is given as:
A = ½*a*b*Sin C
Where,
a = 13
b = 15
C = 80°
Plug in the values into the formula
A = ½*13*15*Sin 80
A = 96.0187559
A = 96.0 square units (nearest tenth)
Answer:A
Step-by-step explanation: I took the test
PLEASE HELP WILL GIVE BRAINLIEST
Sarah uses 23 of her supply of cheese to make pizza and 19 of her supply of cheese to make lasagna. If Sarah uses 213 pounds of cheese, how many pounds of cheese were in her supply?
A.)3 pounds
B.)6 pounds
C.)8 pounds
D.)9 pounds
Answer:
C.) 8 pounds
Hope that can help
The cost of 5 gallons of ice cream has a variance of 64 with a mean of 34 dollars during the summer. What is the probability that the sample mean would differ from the true mean by more than 1.1 dollars if a sample of 38 5-gallon pails is randomly selected? Round your answer to four decimal places.
Answer:
Probability[(X - μ) < 1.1] = 0.6046
Step-by-step explanation:
Given:
σ² = 64
Mean μ = 34
Find:
Probability[(X - μ) < 1.1]
Computation:
Standard deviation σ = √σ²
Standard deviation σ = √64
Standard deviation σ = 8
Probability[(X - μ) < 1.1] = Probability[-1.1 < (X - μ) < 1.1]
Probability[(X - μ) < 1.1] = Probability[-1.1/(8/√38) < (X - μ) < 1.1/(8/√38)]
Using z table
Probability[(X - μ) < 1.1] = 0.6046
What is the value of y, if the standard deviation of 8, 8, 8, 8, y, 8 is 0?
Answer:
y = 8
Step-by-step explanation:
First, we know that the equation for standard deviation is
σ = √((1/N)∑(xₐ-μ)²), with σ being the standard deviation, N being the count of numbers, xₐ being individual values, and μ being the mean. Working backwards, we have
0 = √((1/N)∑(xₐ-μ)²)
Squaring both sides, we get
0 = (1/N)∑(xₐ-μ)²
Since 1/N cannot be 0, we know that
0 = ∑(xₐ-μ)²
Since (xₐ-μ)² can only be ≥0, this means that each value of xₐ-μ must be equal to 0, so
0 = xₐ-μ for each a
xₐ = μ
This leads to the conclusion that each value is equal to the mean, so the mean must be 8.
The mean is equal to the sum / amount of numbers. There are 6 numbers, and the sum is (40+y). The mean is
8 = (40+y)/6
multiply both sides by 6
6*8 = 40+y
48 = 40 + y
This means that
y = 8
x+3=5 . Find x in the given equation
Answer:
2
Step-by-step explanation:
x + 3 = 5
x = 5 - 3
x = 2
Therefore, x=2 in the given equation
Answer:
2
Step-by-step explanation:
x+3=5
x=5-3
x=2
Hope it helps
Use the quadratic formula to find both solutions to the quadratic equation
given below.
3x2 - x + 4 = 0
Answer:
[tex]x = \dfrac{1 + i\sqrt{47}}{6}[/tex] or [tex]x = \dfrac{1 - i\sqrt{47}}{6}[/tex]
Step-by-step explanation:
[tex] x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a} [/tex]
We have a = 3; b = -1; c = 4.
[tex] x = \dfrac{-(-1) \pm \sqrt{(-1)^2 - 4(3)(4)}}{2(3)} [/tex]
[tex]x = \dfrac{1 \pm \sqrt{1 - 48}}{6}[/tex]
[tex]x = \dfrac{1 \pm \sqrt{-47}}{6}[/tex]
[tex]x = \dfrac{1 + i\sqrt{47}}{6}[/tex] or [tex]x = \dfrac{1 - i\sqrt{47}}{6}[/tex]
Find the value of x that will make A||B
Answer:
7
Step-by-step explanation:
Alternate interior angles must be congruent.
3x - 2 = 2x + 5
x = 7
?
Which graph contains the points of intersection
satisfying this linear-quadratic system of equations?
x2 + y2 = 20
x-y + 2 = 0
Answer:
Step-by-step explanation:
pls help me i’m so stuck
Answer:
Step-by-step explanation:
If a point (x, y) is reflected across y = -x, coordinates of the image point will be,
(x, y)→ (-y, -x)
Following this rule,
Vertices of the triangle will be,
(3, 1) → (-1, -3)
(3, -2) → (2, -3)
(6, -3) → (3, -6)
Therefore, image of the given triangle A will be,
(-1, -3), (2, -3) and (3, -6)
A candy bar box is in the shape of a triangular prism. The volume of the box is 1,200 cubic centimeters.
Answer:
[tex]Height = 12cm[/tex]
Step-by-step explanation:
Given
[tex]Volume = 1200cm^3[/tex]
The dimension of the base is:
[tex]Base =10cm[/tex]
[tex]Sides = 13cm[/tex]
See comment for complete question
Required
The height of the base
To do this, we make use of Pythagoras theorem where:
[tex]Sides^2 = (Base/2)^2 + Height^2[/tex]
So, we have:
[tex]13^2 = (10/2)^2 + Height^2[/tex]
[tex]13^2 = 5^2 + Height^2[/tex]
[tex]169 = 25 + Height^2[/tex]
Collect like terms
[tex]Height^2 = 169 - 25[/tex]
[tex]Height^2 = 144[/tex]
Take square roots of both sides
[tex]Height = 12cm[/tex]
What is (f.g)(x)?
f(x)=x^3 - 4x + 2
g(x)=x^2 + 2
Answer:
f(g(x)) =
[tex] {x}^{6} + 6 {x}^{4} + 8x^{2} + 2[/tex]
Step-by-step explanation:
put g(x) instead of any x in f(x)
[tex] {(x ^{2} + 2) }^{3} - 4( {x}^{2} + 2) + 2[/tex]
What is the equation of the following line?
Answer:
The equation of the line is y=7x
Can someone please help?
Answer:
f(x) = (x + 4)^2 - 5
Step-by-step explanation:
Parent function: f(x) = x^2
To show this in a way that may look more familiar, f(x) = 1(x - 0)^2 + 0
Vertex form: f(x) = a(x - h)^2 + k
We know a = 1, because the slope is the same as the parent function.
Vertex: (h,k)
We can see that the vertex of the graph is (-4, -5)
So h = -4 and k = -5
Now all we need to do is plug the variables into our equation.
f(x) = a(x - h)^2 + k
f(x) = 1(x + 4)^2 - 5
f(x) = (x + 4)^2 - 5
I NEED HELP ASAP!!!!!!!!!!!PLEASE
Answer:
74.8% approximately
Step-by-step explanation:
Area of circle is pi×r^2=pi×4^2=16pi=50.27 approximately
Area of pentagon (assumption regular pentagon)=5/2×apothem×side length=5/2(3.2)(4.7)=37.6
So the probability that it lands in the red is 37.6/50.27 approximately =74.8% approximately
A 90 % confidence interval for the average salary of all CEOs in the electronics industry was constructed using the results of a random survey of 45 CEOs. the interval was ($133, 306, $150, 733). To make useful inferences from the data, it is desired to reduce the width of the confidence interval. Which of the following will result in a reduced interval width?
A) Increase the sample size and increase the confidence level.
B) Decrease the sample size and increase the confidence level.
C) Decrease the sample size and decrease the confidence level.
D) Increase the sample size and decrease the confidence level.
Answer: D) Increase the sample size and decrease the confidence level.
Step-by-step explanation:
A reduced interval width means that the data is more accurate. This can only be achieved if the sample size is increased because a larger sample size is able to capture more of the characteristics of the variables being tested.
A smaller confidence interval will also lead to a reduced interval width because it means that the chances of the prediction being correct have increased.
WILL MARK BRAINLIEST
Please help solve problems with common tangents.
Answer:
not sure, sorry : p
Step-by-step explanation:
People at the state fair were surveyed about which type of lemonade they preferred. The results are shown below. Pink lemonade: 156 males, 72 females Yellow lemonade: 104 males, 48 females The events "prefers pink lemonade" and "female" are independent because P(pink lemonade | female) = P(pink lemonade) = 0.6. P(female | pink lemonade ) = P(pink lemonade) = 0.3. P(pink lemonade | female) = 0.3 and P(pink lemonade) = 0.6. P(female | pink lemonade ) = 0.3 and P(pink lemonade) = 0.6.
Answer:
[tex]P(pink) = P(pink |\ female) = 0.6[/tex]
Step-by-step explanation:
Given
[tex]\begin{array}{ccc}{} & {Male} & {Female} & {Pink} & {156} & {72} \ \\ {Yellow} & {104} & {48} \ \end{array}[/tex]
Required
Why [tex]prefers\ pink\ lemonade[/tex] and [tex]female[/tex] are independent
First, calculate [tex]P(pink |\ female)[/tex]
This is calculated as:
[tex]P(pink |\ female) = \frac{n(pink\ \&\ female)}{n(female)}[/tex]
[tex]P(pink |\ female) = \frac{72}{48+72}[/tex]
[tex]P(pink |\ female) = \frac{72}{120}[/tex]
[tex]P(pink |\ female) = 0.6[/tex]
Next, calculate [tex]P(pink)[/tex]
[tex]P(pink) = \frac{n(pink)}{n(Total)}[/tex]
[tex]P(pink) = \frac{156 + 72}{156 + 72 + 104 + 48}[/tex]
[tex]P(pink) = \frac{228}{380}[/tex]
[tex]P(pink) = 0.6[/tex]
So, we have:
[tex]P(pink) = P(pink |\ female) = 0.6[/tex]
Hence, they are independent
Answer:
P(pink lemonade | female) = P(pink lemonade) = 0.6.
Step-by-step explanation:
A
An item was marked down 64% from its original price,x . The amount discounted was $30. Which equation can be used to find the original price
Answer:
OP = discount amount × 100 / discount %
Step-by-step explanation:
if I understand this correctly, the actual sale price was 36% (100-64) of the originally marked price.
original price (OP) = 100%
64% of OP = 30
1% of OP = 30/64
OP (100%) = 100 × 30/64
this could be simplified to 100 × 15/32, but this hinders is finding the global formula :
OP = discount amount × 100 / discount %
Match the base to the corresponding height.
Answer:
I can't see the picture
Step-by-step explanation:
SORRY :(
What function is graphed below?
Answer:
[tex]y\ =\ \ \tan\theta\ +2[/tex]
Step-by-step explanation:
can anyone help with integers?
Fill in the blanks.
6) 83 + 17 = 17 +
7) |46| – |50| =
8) 42 – 2 + (18 – 10) =
9) 18 – (3 – 1) =
10) 8 - 0 =
Answer:
a) 83,b) -4,c) 48,d) 16,e) 8
PLEASE HELP!
y = 2x − 1
y = 4x - 5
solve both :)
Answer:
x=2
Step-by-step explanation:
We have
y = 2x-1
y= 4x-5
Therefore, as 2x-1=y=4x-5, we can say that
2x-1=4x-5
add 1 to both sides to make one side have only x components
2x = 4x-4
subtract 4x from both sides to separate the x components
-2x = -4
divide both sides by -2 to separate the x
x = 2
I need someone to please explain how to turn this into a simplified fraction. (NOTE: please explain!!) __ 3.541 The repeating sign is only above the 41, not the five
the way to do these recurring decimals is by firstly separating the repeating part or recurring part and then multiply it by some power of 10 so we move it to the left, lemme show
[tex]3.5\overline{41}\implies \cfrac{35.\overline{41}}{10}\qquad \stackrel{\textit{say that the repe}\textit{ating part is }~\hfill }{x = \overline{0.41}\qquad \qquad \textit{so that }35.\overline{41}=35+\overline{0.41}=35+x}[/tex]
now, let's multiply that repeating part by some power of 10 that moves the 41 to the left, well, we have two repeating decimals, 4 and 1, so let's use two zeros, namely 100 or 10², thus
[tex]100\cdot x = 41.\overline{41}\implies 100x - 41+\overline{0.41}\implies 100x = 41+x\implies 99x=41 \\\\\\ \boxed{x =\cfrac{41}{99}}\qquad \qquad \textit{so then we can say that}~~\cfrac{35.\overline{41}}{10}\implies \cfrac{35+\frac{41}{99}}{10} \\\\\\ \cfrac{~~\frac{3506}{99}~~}{10}\implies \cfrac{~~\frac{3506}{99}~~}{\frac{10}{1}}\implies \cfrac{3506}{99}\cdot \cfrac{1}{10}\implies \cfrac{3506}{990}\implies \blacktriangleright \stackrel{\textit{which simplifies to}}{\cfrac{1753}{495}} \blacktriangleleft[/tex]
One triangle has an angle of 81 degrees and the corresponding angle of the other triangle is 2x - 5 degrees, find the value of x?
Answer:
[tex]x=43[/tex]
Step-by-step explanation:
Corresponding angles are equal. It is implied that the two angles referred to in the triangles are equal, otherwise they should not be labelled as corresponding.
Therefore, we can set both equations equal to each other:
[tex]2x-5=81^{\circ}[/tex]
Add 5 to both sides:
[tex]2x=86[/tex]
Divide both sides by 2:
[tex]x=\frac{86}{2}=\boxed{43}[/tex]
Represent pictorially:
3x2/6 = 6/6 or = 1
Answer:
yes is correct 6/6 = 1 / 3*2=6 =1
Answer:
nonsense. what's the difference between 6/6 or 1 .
Let ℤ be the set of all integers and let, (20) 0 = { ∈ ℤ| = 4, for some integer }, 1 = { ∈ ℤ| = 4 + 1, for some integer }, 2 = { ∈ ℤ| = 4 + 2, for some integer }, 3 = { ∈ ℤ| = 4 + 3, for some integer }. Is {0, 1, 2, 3 } a partition of ℤ? Explain your answer.
Answer:
[tex]\{0, 1, 2, 3\}[/tex] is a partition of Z
Step-by-step explanation:
Given
[tex]$$A _ { 0 } = \{n \in \mathbf { Z } | n = 4 k$$,[/tex] for some integer k[tex]\}[/tex]
[tex]$$A _ { 1 } = \{ n \in \mathbf { Z } | n = 4 k + 1$$,[/tex] for some integer k},
[tex]$$A _ { 2 } = { n \in \mathbf { Z } | n = 4 k + 2$$,[/tex] for some integer k},
and
[tex]$$A _ { 3 } = { n \in \mathbf { Z } | n = 4 k + 3$$,[/tex]for some integer k}.
Required
Is [tex]\{0, 1, 2, 3\}[/tex] a partition of Z
Let
[tex]k = 0[/tex]
So:
[tex]$$A _ { 0 } = 4 k[/tex]
[tex]$$A _ { 0 } = 4 k \to $$A _ { 0 } = 4 * 0 = 0[/tex]
[tex]$$A _ { 1 } = 4 k + 1$$,[/tex]
[tex]A _ { 1 } = 4 *0 + 1$$ \to A_1 = 1[/tex]
[tex]A _ { 2 } = 4 k + 2[/tex]
[tex]A _ { 2} = 4 *0 + 2$$ \to A_2 = 2[/tex]
[tex]A _ { 3 } = 4 k + 3[/tex]
[tex]A _ { 3 } = 4 *0 + 3$$ \to A_3 = 3[/tex]
So, we have:
[tex]\{A_0,A_1,A_2,A_3\} = \{0,1,2,3\}[/tex]
Hence:
[tex]\{0, 1, 2, 3\}[/tex] is a partition of Z
Last year there were 221 students and 12 teachers at Hilliard School. This year there are 272 students. The principal wants to keep the same student to teacher ratio as last year. Which proportion can the principal use to find x, the number of teacher needed this year?
Answer:
3264:221
Step-by-step explanation:
If by last year there were 221 students and 12 teachers at Hilliard School, then;
221students = 12teachers
To find the equivalent ratio for 272students, we can say;
272students = x teachers
Divide both expressions
221/272 = 12/x
Cross multiply
221 * x = 272 * 12
221x = 3264
x = 3264/221
x = 3264:221
This gives the required proportion
3 - 11 x = - 118
what is the answer?
Answer:
x = 11
Step-by-step explanation:
I assume you want x, so I simply rearranged the terms, subtracted, and simplified.