Answer:
0.5
Step-by-step explanation:
E to E'
(0, 3) to (0, 1.5) each term of E' is ½ of the corresponding term of E
N to N'
(-1, 1) to (-0.5, 0.5) each term of N' is ½ of the corresponding term of N
U to U'
(2, -2) to (1, -1) each term of U' is ½ of the corresponding term of U
V to V'
(1, -3) to (0.5, -1.5) each term of V' is ½ of the corresponding term of V
Show all work to identify the asymptotes and zero of the function f(x)=6x/x^2-36
9514 1404 393
Answer:
asymptotes: x = ±6
zero: x = 0
Step-by-step explanation:
The vertical asymptotes of the function will be at the values of x where the denominator is zero. The denominator is x^2 -36, so has zeros for values of x that satisfy ...
x^2 -36 = 0
x^2 = 36
x = ±√36 = ±6
The vertical asymptotes of the function are x = -6 and x = +6.
__
The zero of the function is at the value of x that makes the numerator zero. This will be the value of x that satisfies ...
6x = 0
x = 0 . . . . . divide by 6
The zero of the function is x=0.
__
As a check on this work, we have had a graphing calculator graph the function and identify the zero.
One book is 4cm thick, find out how many such books can be placed in a space of 53cm.
HELP ASAP PLEASE I WILL MARK BRAINLEST
Show all work to identify the asymptotes and zero of the function f of x equals 6 x over quantity x squared minus 36.
Answer:
vertical asymptotes
x=6, x=-6
horizontal asymptotes
y=0
zeros (0,0)
Step-by-step explanation:
f(x) = 6x / ( x^2 - 36)
First factor
f(x) = 6x / ( x-6)(x+6)
Since nothing cancels
The vertical asymptotes are when the denominator goes to zero
x-6 = 0 x+6=0
x=6 x= -6
Since the numerator has a smaller power than the denominator (1 < 2), there is an asymptote at y = 0
To find the zeros, we find where the numerator = 0
6x=0
x=0
[tex]\\ \rm\Rrightarrow y=\dfrac{6x}{x^2-36}[/tex]
The h orizontal asymptote
As x has less degree than x²
y=0 is a asymptoteVertical asymptote
x²-36=0x²=36x=±6when 18 is subtracted from six times a certain number the result is 96 what is the number
Let the number be x
ATQ
[tex]\\ \sf\twoheadrightarrow 6x-18=96[/tex]
[tex]\\ \sf\twoheadrightarrow 6x=96+18[/tex]
[tex]\\ \sf\twoheadrightarrow 6x=112[/tex]
[tex]\\ \sf\twoheadrightarrow x=\dfrac{112}{6}[/tex]
[tex]\\ \sf\twoheadrightarrow x=7[/tex]
Anna earned $9 an hour babysitting. She wants
to buy a 16 GB iPod that is $120. Anna has
saved $45 so far. How many more hours of
babysitting does she need to do to earn the rest
to purchase the iPod
Answer:
8.33 hours
Step-by-step explanation:
120-45 = 75
75 ÷ 9 = 8.33
A manufacturer claims that its drug test will detect steroid use (that is, show positive for an athlete who uses steroids) 95% of the time. Further, 15% of all steroid-free individuals also test positive. 10% of the rugby team members use steroids. Your friend on the rugby team has just tested positive. The correct probability tree looks like
Answer:
The probability tree is;
0.95 [tex](+)[/tex]
[tex](S)[/tex]
0.1 0.05 [tex](-)[/tex]
[ P ]
0.9 0.15 [tex](+)[/tex]
[tex](S_{no})[/tex]
0.85 [tex](-)[/tex]
Step-by-step explanation:
Given the data in the question;
10% of the rugby team members use steroids
so Probability of using steroid; P( use steroid ) = 10% = 0.10
Probability of not using steroid; P( no steroid use ) = 1 - 0.10 = 0.90
Since the test show positive for an athlete who uses steroids, 95% of the time.
Probability of using steroids and testing positive = 95% = 0.95
Probability of using steroids and testing Negative = 1 - 0.95 = 0.05
Also from the test, 15% of all steroid-free individuals also test positive.
so
Probability of not using steroids and testing positive = 15% = 0.15
Probability of not using steroids and testing negative = 1 - 0.15 = 0.85
To set up the probability tree, Let;
[tex](S)[/tex] represent steroid use
[tex](S_{no})[/tex] represent no steroid use
[tex](+)[/tex] represent test positive
[tex](-)[/tex] represent test negative
so we have;
0.95 [tex](+)[/tex]
[tex](S)[/tex]
0.1 0.05 [tex](-)[/tex]
[ P ]
0.9 0.15 [tex](+)[/tex]
[tex](S_{no})[/tex]
0.85 [tex](-)[/tex]
Dividing integers
7. (-154) ➗ (-14) =
11. (-40) ➗10=
15. 90 ➗ (-15)=
16. 108 ➗ (-9)=
17. (-48) ➗ (-6)=
18. (-105) ➗ 7=
first we shall learn the rules.when numbers with same sign are divided it gives pisitive sign but, when numbers of different signs are divided it gives negetive sign.
here,
7. (-154) ➗ (-14) =11
11. (-40) ➗10=-4
15. 90 ➗ (-15)=-6
16. 108 ➗ (-9)=-12
17. (-48) ➗ (-6)=8
18. (-105) ➗ 7=-15
hope it helps you......
Given: 3x+11=y, solve for x if y = 29
answer is 6
Step-by-step explanation:
3x+11=y
y=29
3x+11=29
3x=29-11
3x=18
x=18÷3
x=6
Answer:6
Step-by-step explanation:
3x+11=29
3x=29-11
3x=18
X=18/3
X=6
Which expression is equivalent to:
15x + 20y
5(4x+3y)
5(3x+4y)
5y(3x + 4)
Answer:
5(3x+4y)
Step-by-step explanation:
HELP PLEASE!
The length of a rectangle is 2V5. The width of the same rectangle is 5V5. Find the perimeter and area of the rectangle.
Answers:
[tex]\text{Perimeter} = 14\sqrt{5}\\\\\text{Area} = 50\\\\[/tex]
=======================================================
Work Shown:
[tex]L = 2\sqrt{5} = \text{length}[/tex]
[tex]W = 5\sqrt{5} = \text{width}[/tex]
P = perimeter
[tex]P = 2*(L+W)\\\\P = 2*(2\sqrt{5}+5\sqrt{5})\\\\P = 2*(7\sqrt{5})\\\\P = 14\sqrt{5}\\\\[/tex]
-------------
A = area
[tex]A = L*W\\\\A = (2\sqrt{5})*(5\sqrt{5})\\\\A = (2*5)(\sqrt{5}*\sqrt{5})\\\\A = 10\sqrt{5*5}\\\\A = 10\sqrt{25}\\\\A = 10*5\\\\A = 50\\\\[/tex]
Find the final amount of money in an account if $7, 200 is deposited at 2.5 % interest compounded
quarterly (every 3 months) and the money is left for 9 years.
The final amount is $
Round answer to 2 decimal places
The final amount is $7,615.27
A = P(1 + r/n)^t
Where,
A = Final amount
P = principal = $7, 200
r = interest rate = 2.5% = 0.025
n = number of periods = 4
t = time = 9 years
A = P(1 + r/n)^t
= 7,200(1 + 0.025/4)^9
= 7,200(1 + 0.00625)^9
= 7,200(1.00625)^9
= 7,200(1.0576769512798)
= 7,615.2740492152
Approximately,
A = $7,615.27
https://brainly.com/question/14003110
what is Collatz conjecture?
Is Collatz conjecture always true?
What so special about 3x+1 ?
Answer:
Step-by-step explanation:
The Collatz Conjecture is one of the most intreging of all the possible simple statements in mathematics.
Simply put it says
if a number is even, divide by 2If a number is odd, multiply by 3 and add1. or 3x + 1The result will always wind up in a loop. Neat huh!!! Where you wind up going over the same numbers over and over. You can't escape the loop.Try 5
It's odd so triple it and add 1. You get 1616 is even. Divide by 2. You get 88 is even. Divide by 2. You get 44 is even. Divide by 2. You get 22 is even. Divide by 2. You get 11 is odd. Triple it and add 1. You get 4. You can see you wind up doing 4 2 1 forever. The Collatz conjecture has not been proved, but every number up to 2^68 has been shown to go to this loop eventually.Try another one -- 15. On the 16th move it goes from 4 to 2 to 1 and then keeps on repeating those 3 digits.
Take 15It's odd. Triple it and add 1. That gives 46.46 is even. Divide by 223 which is odd. Triple it and add 1 = 7070 is even. Divide by 2. 3535 is odd. Triple and add 1. 106 which is even53 which is odd. Triple it and add 1. You get 160160 is even. Divide by 2. You get 8080 is even Divide by 2. You get 4040 is even. Divide by 2. You get 2020 is even. Divide by 2. You get 1010 is even. Divide by 2. You get 55 is odd. Triple it and add 1. You get 1616 is even. Divide by 2. You get 88 is even. Divide by 2. You get 44 is even. Divide by 2.. You get 2.2 is even. Divide by 2. You get 11 is odd and you are in the loop because you get 4 which you have already done.What is the slope-intercept equation of the line below?
10 minutes left
Answer:
y=-3x+4
Step-by-step explanation:
The y intercept is 4 because the line crosses the y axis at the 4 tic mark
The slope will be -3 because the y decreases by 3 every time the x incerases by 1
y=mx+b
y=-3x+4
In how many ways can a committee of 3 men and 2 women can be formed from 7 men and 5 women?
Answer:
in five (5) ways a committee can be formed from 7 men and 5 women
5765865876+5737555586=
Answer:
5765865876+5737555586=11503421462
Question 8 plz show ALL STEPS
Answer:
Substitute the functions and the value of the functions.
Step-by-step explanation:
Doing all will be long, so i'll present a and d
Here,(no a)
f(x)=3x-1, g(x)=x^2+2
Now,
f(g(x))=f(x^2+2)=3(x^2+2)-1=3x^2+6-1=3x^2+5
g(f(x))=g(3x-1)=(3x-1)^2+2=9x^2-6x+1+2=9x^2-6x+3
Here, (no d)
f(x)=x^2-9, g(x)=√(x+4)
Now,
f(g(x))=f(√(x+4))=(√(x+4))^2-9=x+4-9=x-5
g(f(x))=g(x^2-9)=√(x^2-9+4)=√(x^2-5)
Instructions: Find the measure of the indicated angle to the nearest degree.
Answer:
? = 13.6
Step-by-step explanation:
Let the unknown angle be y
so
tan y= p/b
tan y =8/33
y = tan‐¹(8/33)
y = 13.62699486
y = 13.6
The number formed by subtracted 1 from smallest 7-digit number is
Step-by-step explanation:
the number formed by subtracting 1 from the smallest 7 digit number is largest 6 digit number.
Instructions: Given the following constraints, find the maximum and minimum values for
z
.
Constraints: 2−≤124+2≥0+2≤6 2x−y≤12 4x+2y≥0 x+2y≤6
Optimization Equation: =2+5
z
=
2
x
+
5
y
Maximum Value of
z
:
Minimum Value of
z
:
Answer:
z(max) = 16
z(min) = -24
Step-by-step explanation:
2x - y = 12 multiply by 2
4x - 2y = 24 (1)
4x + 2y = 0 add equations
8x = 24
x = 3
4(3) + 2y = 0
y = -6
so (3, -6) is a common point on these two lines
z = 2(3) + 5(-6) = -24
4x - 2y = 24 (1)
x + 2y = 6 add equations
5x = 30
x = 6
6 + 2y = 6
y = 0
so (6, 0) is a common point on these two lines
z = 2(6) + 5(0) = 12
4x + 2y = 0 multiply by -1
-4x - 2y = 0
x + 2y = 6 add equations
-3x = 6
x = -2
-2 + 2y = 6
y = 4
so (-2, 4) is a common point on these two lines
z = 2(-2) + 5(4) = 16
13 is subtracted from the product of 4 and a certain number. The result is equal to the sum of 5 and the original number. Find the number.
Answer:
The number is 6.
Step-by-step explanation:
[tex]4x-13=x+5\\3x-13=5\\3x=18\\x=6[/tex]
what is the main protein of a scientific investigation A. To form an opinion B. to test a hypothesis C. To persuade a bias D. To teach a lesson
Answer:
D.To teach a lesson
Step-by-step explanation:
Hope it helps you
find the area of the shaded regions. ANSWER IN PI FORM AND DO NOT I SAID DO NOT WRITE EXPLANATION
Answer: 18π
okokok gg
Step-by-step explanation:
Here angle is given in degree.We have convert it into radian.
[tex] {1}^{\circ} =( { \frac{\pi}{180} } )^{c} \\ \therefore \: {80}^{\circ} = ( \frac{80\pi}{180} ) ^{c} = {( \frac{4\pi}{9} })^{c} \: = \theta ^{c} [/tex]
radius r = 9 cmArea of green shaded regions = A
[tex] \sf \: A = \frac{1}{2} { {r}^{2} }{ { \theta}^{ c} } \\ = \frac{1}{2} \times {9}^{2} \times \frac{4\pi}{9} \\ = 18\pi \: {cm}^{2} [/tex]
What are the factors of 60 ???
Answer:
Factors are 1,2,3,4,5,6,10,12,15,20,30,60
Step-by-step explanation:
Hope this helps
Factors refers to those numbers which muntiplied that no.here, numbers that muntiply 60 are 1,2,3,4,5,6,10,12,15,20,30,60.
thus these numbers are factors of 60.
The 4th of an AP is 15 and the 9th term is 35. find the 15th term
Consecutive terms in this sequence are separated by a constant c, so if the 4th term is 15, then the next terms would be
5th: 15 + c
6th: (15 + c) + c = 15 + 2c
7th: (15 + 2c) + c = 15 + 3c
and so on. More generally, since any given number in the sequence depends on the number that came before it, we can write the n-th term in terms of the 4th term,
n-th: 15 + (n - 4) c
Then the 9th term in the sequence is
15 + (9 - 4) c = 35
and solving for c gives
15 + 5c = 35 ==> 5c = 20 ==> c = 4
Then the 15th term would be
15 + (15 - 4)×4 = 15 + 11×4 = 15 + 44 = 59
Train X traveled 216.6 kilometers in 38 minutes. How many miles per hour was it traveling?
Answer:
210 miles in 1 hour
Step-by-step explanation:
steps are in picture
f(x) = 3x3
3.3 – 2.02 + 4x - 5
g(x) = 6x - 7
Find (f + g)(x).
Answer:
C) (f+g)(x)= 3x^3-2x^2+10x-12
find the LCM of 210, 280, 360 by prime factorisation
Answer:
Step-by-step explanation:
210=2x3x5x7
280=2x2x2x5x7
360=2x2x2x3x3x5
Answer:
210= 2×3×5×7
280=2×2×2×5×7
360=2×2×2×3×3×5
common factors=2×2×2×3×5×7=840
uncommon factors=3
L.C.M=Common factors× uncommon factors
L.C.M=840×3
L.C.M=2520
Step-by-step explanation:
i hope it will be helpful
plzz mark as brainliest
n a history class there are 88 history majors and 88 non-history majors. 44 students are randomly selected to present a topic. What is the probability that at least 22 of the 44 students selected are non-history majors
Answer:
0.5675 = 56.75% probability that at least 22 of the 44 students selected are non-history majors.
Step-by-step explanation:
The students are chosen without replacement from the sample, which means that the hypergeometric distribution is used to solve this question. We are working also with a sample with more than 10 history majors and 10 non-history majors, which mean that the normal approximation can be used to solve this question.
Hypergeometric distribution:
The probability of x successes is given by the following formula:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
In which:
x is the number of successes.
N is the size of the population.
n is the size of the sample.
k is the total number of desired outcomes.
Combinations formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Approximation:
We have to use the mean and the standard deviation of the hypergeometric distribution, that is:
[tex]\mu = \frac{nk}{N}[/tex]
[tex]\sigma = \sqrt{\frac{nk(N-k)(N-n)}{N^2(N-1)}}[/tex]
In this question:
88 + 88 = 176 students, which means that [tex]N = 176[/tex]
88 non-history majors, which means that [tex]k = 88[/tex]
44 students are selected, which means that [tex]n = 44[/tex]
Mean and standard deviation:
[tex]\mu = \frac{44*88}{176} = 22[/tex]
[tex]\sigma = \sqrt{\frac{44*88*(176-88)*(176-44)}{176^2(175-1)}} = 2.88[/tex]
What is the probability that at least 22 of the 44 students selected are non-history majors?
Using continuity correction, as the hypergeometric distribution is discrete and the normal is continuous, this is [tex]P(X \geq 22 - 0.5) = P(X \geq 21.5)[/tex], which is 1 subtracted by the p-value of Z when X = 21.5. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{21.5 - 22}{2.88}[/tex]
[tex]Z = -0.17[/tex]
[tex]Z = -0.17[/tex] has a p-value of 0.4325
1 - 0.4325 = 0.5675
0.5675 = 56.75% probability that at least 22 of the 44 students selected are non-history majors.
Please answer! These r my last questions
Answer:
8. -2a+14
9. w=3/2
Step-by-step explanation:
8.
The distributive property states that we can multiply each component in the parenthesis separately by the number on the outside, and then add that up to get our final answer.
For -2(a-7), this means that we can multiply -2 by a and then -2 by -7 (as 2 is the number on the outside, and a and -7 are the components in the parenthesis), add them up, and get our answer. This can be expressed as
-2 * a + (-2) * (-7) = final answer
= -2 * a + 14
We know that -2 * -7 = 14 because 2 * 7 = 14, and the two negatives in multiplication cancel each other out
9.
Using the subtraction property of equality, we can isolate the variable (w) and its coefficient (-2/3) by subtracting 5, resulting in
(-2/3)w = 4-5 = -1
Next, we can use the multiplication property of equality to isolate the w. To isolate the w, we can multiply its coefficient by its reciprocal. The reciprocal is the fraction flipped over. For (-2/3), its reciprocal is (-3/2), flipping the 2 and 3. We can multiply both sides by (-3/2) to get
w = (-3/2)
To check this, we can plug (-3/2) for w in our original equation, so
(-2/3) * (-3/2) + 5 = 4
-1 + 5 = 4
4 = 4
This works!
This figure shows △ABC. BD¯¯¯¯¯ is the angle bisector of ∠ABC.
What is AD?
Answer:
AD = 8/3 units
Step-by-step explanation:
Based on the angle bisector theorem, angle bisector BD divides AC into AD and CD such that they are proportional to AB and CB.
This implies:
AB/AD = CB/CD
AB = 8
CB = 10
Set AD equal to x
AD = x
CD = 6 - x
Substitute the values
8/x = 10/(6 - x)
8(6 - x) = 10(x)
48 - 8x = 10x
48 - 8x + 8x = 10x + 8x
48 = 18x
48/18 = 18x/18
8/3 = x
x = 8/3
AD = 8/3 units
Answer:8/3
Step-by-step explanation:
I just took the quiz