To prepare a buffer solution of pH = 10.54, the relative masses of dimethyl amine and dimethyl ammonium chloride needed are 0.079 g and 0.067 g respectively.
A buffer solution is a solution that has the ability to resist changes in pH upon the addition of small amounts of acid or base. A buffer solution contains a weak acid and its conjugate base or a weak base and its conjugate acid. It can be prepared by mixing equal volumes of a weak acid and its conjugate base or a weak base and its conjugate acid.
Dimethyl amine is an organic compound with the formula (CH3)2NH. It is a weak base and can act as a proton acceptor. Dimethyl ammonium chloride is an organic compound with the formula (CH3)2NH2Cl. It is a salt of a weak base and a strong acid and can act as a proton donor.
Calculation of relative masses:
The pKa of dimethyl amine is 10.73.
To prepare a buffer solution of pH = 10.54,
the ratio of [A-]/[HA] should be 1/9.
Using the Henderson-Hasselbalch equation;
pH = pKa + log([A-]/[HA])10.54 = 10.73 + log([A-]/[HA])
log([A-]/[HA]) = -0.19[A-]/[HA] = 0.67/1.00
The sum of the masses of dimethyl amine and dimethyl ammonium chloride is 0.146 g. The ratio of their masses is 0.67:1.00.
So, the relative masses of dimethyl amine and dimethyl ammonium chloride needed are 0.079 g and 0.067 g respectively.
To know more about Buffer solution refer here :
https://brainly.com/question/13076037
#SPJ11
If 50 grams of water are saturated at 90°C with potassium nitrate and then cooled to 40°C, how much will precipitate?
Answer:
43.1gramms
Explanation:
change the temperatures to kelvin
90--363
40--313
50grams of water are saturated at 90 degree celcius.
then,
50___363
x_____313
then cross multiply
363x=15650
divide both sides by 363
x=43.1gramms
Emma prepared two glasses of water at two different temperatures. She added a spoonful of table salt to the cold water in glass #1 and spoonful of rock salt to the hot water in glass #2. She observed that the spoonful of table salt in glass #1 dissolved faster than the spoonful of rock salt in glass #2. Based on this observation, Emma concluded that salt dissolves faster in cold water than in hot water.
What question was Emma trying to investigate in her experiment?
Are table salt and rock salt soluble or insoluble in cold and hot water without stirring?
Does surface area affect the rate of dissolving of a substance in water?
Does temperature affect the rate of dissolving of a substance in water?
What type of salt dissolves faster in water when stirred at different temperatures?
Answer: Does temperature affect the rate of dissolving a substance in water?
What procedures can be performed on trials 2 and 3 so that the rate of dissolving is the same as trial 1? A student wants to determine how different factors affect the rate of dissolving solid in water: Trial Size of Particles Rate_of_Dissolving small 10 sec medium 20 sec large 30 sec 2 3 What procedures can be performed on trials 2 and 3 so that the rate of dissolving is the same as trial 1? A_ the student can increase the pressure B. the student can decrease the pressure C the student can decrease the temperature D. the student can increase the temperature'
The size of particles has an effect on the rate of dissolving, but temperature is also a significant factor that affects how quickly a solid will dissolve in water. Lowering the temperature slows down the movement.
What is the temperature ?Temperature is a measure of the average kinetic energy of the particles in a substance or system. In simpler terms, it is a measure of how hot or cold something is. The temperature of a substance or system is commonly measured in degrees Celsius (°C) or degrees Fahrenheit (°F), and it can be influenced by various factors such as heat transfer, pressure, and the presence of other substances. Temperature is an important physical property that affects many aspects of daily life, including weather patterns, cooking, and the functioning of electronic devices. It is also a critical factor in many scientific processes, such as chemical reactions, phase transitions, and the behavior of materials at the atomic and molecular level.
To know more about temperature visit:
https://brainly.com/question/11464844
#SPJ1
which scientist conducted the gold foil experiment and discovered that the atom has a positively charged nucleus?
Ernest Rutherford, a New Zealand physicist, conducted the gold foil experiment and discovered that the atom has a positively charged nucleus.
In 1911, he conducted an experiment in which he fired alpha particles at a thin sheet of gold foil. The majority of the particles went straight through the gold foil, but a small percentage of the particles bounced back. He discovered that the bouncing back was caused by a small, positively charged nucleus at the center of the atom. Rutherford's experiment was crucial to our understanding of the structure of the atom. Prior to his experiment, the prevailing model of the atom was that it was a solid, indivisible sphere.
However, Rutherford's experiment showed that the atom was mostly empty space, with a positively charged nucleus at its center. This discovery paved the way for future research into atomic structure and helped to lay the foundation for the development of nuclear physics.
For more questions on Ernest Rutherford
https://brainly.com/question/28809146
#SPJ11
Which one of the following salts, when 1 mole is dissolved in water, produces the solution with a pH closest to 7.00? A) NH4BR B) NaHSO4 C) NaF D) Ba O E) LiOH
When NaF is dissolved in water, it undergoes hydrolysis to form Na+ and F- ions. The resulting solution is slightly basic, with a pH slightly greater than 7. The correct answer is C) NaF.
What are salts?Salts are ionic compounds formed from the reaction between an acid and a base. They are composed of positively charged ions (cations) and negatively charged ions (anions). Salts are typically solid at room temperature and have high melting and boiling points.
When dissolved in water, salts can dissociate into their component ions, allowing them to conduct electricity. Some common examples of salts include table salt (NaCl), baking soda (NaHCO3), and Epsom salt (MgSO4).
When NaF is dissolved in water, it undergoes hydrolysis to form Na+ and F- ions. The F- ions react with water molecules to form HF and OH- ions. The resulting solution is slightly basic, with a pH slightly greater than 7.
Learn more about salts here https://brainly.com/question/13818836
#SPJ1
Electrons that inhabit different orbitals must have a different value for the:
a. principal quantum number
b. angular momentum quantum number
c. spin quantum number
d. none of the above
Answer:
D
Explanation:
I had this question before :)
According to the following reaction, how many moles of hydrogen iodide will be formed upon the complete reaction of 0.283 moles of hydrogen gas with excess iodine?hydrogen (g) + iodine (s) → hydrogen iodide (g)
0.566 moles of hydrogen iodide will be formed upon the complete reaction of 0.283 moles of hydrogen gas with excess iodine.
To determine how many moles of hydrogen iodide will be formed, we need to use stoichiometry.
The balanced chemical equation for the given reaction is:-
H₂ (g) + I₂ (s) → 2HI (g)
From the balanced chemical equation, we know that 1 mole of hydrogen reacts with 1 mole of iodine to produce 2 moles of hydrogen iodide.
Since the number of moles of hydrogen is given as 0.283 moles, therefore, the number of moles of iodine required is also 0.283 moles.
Therefore, the number of moles of hydrogen iodide formed = 2 x 0.283 mol= 0.566 mol.
Learn more about moles:
https://brainly.com/question/15356425
#SPJ11
a solution of was heated at for several hours. after some time the concentration of was determined. answer the following questions: a) what is the maximum amount of work ( ) from/for this reaction when ?
The maximum amount of work from/for this reaction a solution of was heated at for several hours is -8.69 KJ.
What is solution ?A solution is a type of homogeneous mixture composed of two or more substances in chemistry. A solute in such a mixture is a substance that has been dissolved in another substance known as a solvent. If the attractive forces between the solvent and solute particles are stronger than the attractive forces holding the solute particles together, the solvent particles separate and surround the solute particles. These encircled solute particles then move away from the solid solute and into solution. The mixing of a solution occurs at a scale where the effects of chemical polarity are involved, resulting in solvation-specific interactions. When the solvent is the greater fraction of the solution, the solution usually has the state of the solvent.
using the formula
ΔG = ΔG° + RT ln(Q)
Work done = -8.69 KJ
To know more about solutions, visit;
brainly.com/question/30665317
#SPJ1
Tripling the concentration of a reactant increases the rate of a reaction nine times. With this knowledge, answer the following questions: (a) What is the order of the reaction with respect to that reactant?
(b) Increasing the concentration of a reactant by a factor of four increases the rate of a reaction four times. What is the order of the reaction with respect to that reactant?
Answer:
a) Tripling the concentration of a reactant increases the rate of a reaction nine times.the order of the reaction with respect to that reactant is 2
b)Increasing the concentration of a reactant by a factor of four increases the rate of a reaction four times.the order of the reaction with respect to that reactant is 1.
Explanation:
a) The order of the reaction with respect to that reactant is 2. The rate law of the reaction with the stoichiometric coefficients a, b, and c would be as follows:
rate = k[A]^x[B]^y[C]^z
Where k is the rate constant and x, y, and z are the orders of the reaction with respect to the corresponding reactants. When [A] is tripled, the rate increases nine times, indicating that the rate is proportional to [A]^2. Therefore, the order of the reaction with respect to [A] is 2.
b) The order of the reaction with respect to that reactant is 1. The rate law of the reaction with the stoichiometric coefficients a, b, and c would be as follows:
rate = k[A]^x[B]^y[C]^z
When [A] is quadrupled, the rate increases four times, indicating that the rate is proportional to [A]. Therefore, the order of the reaction with respect to [A] is 1.
To know more about concentration of a reactant refer here:https://brainly.com/question/4600091#
#SPJ11
Can any help with this chemistry question?? I have an exam tomorrow
Answer:
Explanation:
To calculate the standard enthalpy of formation for TICL(I), we need to use the given thermochemical equations and Hess's law. The equation for the formation of TICL(I) is:
C(s) + TiO₂ (s) + 2Cl(g) → TICL(I) + CO(g)
Using the given equations for the formation of CO(g) and TiO2(s), we can manipulate them to get the necessary reactants for the formation of TICL(I):
Ti(s) + O₂(g) → TiO₂(s) (reverse the equation)
C(s) + 1/2O₂(g) → CO(g) (multiply by 2)
Adding these two equations, we get:
Ti(s) + 2C(s) + O₂(g) → TiO₂(s) + 2CO(g)
This equation is the reverse of the equation given for the formation of TICL(I), so we need to flip its sign to get the correct value for the enthalpy change:
TICL(I) → C(s) + TiO₂ (s) + 2Cl(g) + CO(g)
ΔH° = -(-394 kJ/mol + 286 kJ/mol + 0 + (-221 kJ/mol))
ΔH° = -(-329 kJ/mol)
ΔH° = +329 kJ/mol
Therefore, the correct value for the standard enthalpy of formation for TICL(I) is +329 kJ/mol, which is option D.
vinegar is a solution of acetic acid, hc2h3o2, dissolved in water. a 5.54-g sample of vinegar was neutralized by 30.10 ml of 0.100 m naoh. what is the percent by weight of acetic acid in the vinegar?
The percent by weight of acetic acid in the vinegar is 3.27% for the given 5.54-g sample of vinegar was neutralized by 30.10 ml of 0.100 m NaOH.
What is the percent of weight of acetic acid?Vinegar is a solution of acetic acid, HC₂H₃O₂, dissolved in water. A 5.54-g sample of vinegar was neutralized by 30.10 mL of 0.100 M NaOH. Find the percentage of acetic acid by weight in vinegar. As per the question, vinegar is a solution of acetic acid, HC₂H₃O₂, dissolved in water.
A 5.54-g sample of vinegar was neutralized by 30.10 mL of 0.100 M NaOH.
Since NaOH and HC₂H₃O₂ reacts in a 1:1 molar ratio, moles of NaOH used = moles of HC₂H₃O₂ in vinegar
So,0.100 mol/L solution of NaOH = 0.100 mol/L solution of HC₂H₃O₂ in vinegar (as they react in 1:1 ratio).
Also, Volume of NaOH = 30.10 mL = 30.10/1000 = 0.0301L
Thus, Amount of HC₂H₃O₂ in vinegar = 0.100 mol/L × 0.0301 L = 0.00301 mol.
Molar mass of HC₂H₃O₂ = 60.05 g/mol.
Weight of HC₂H₃O₂ in 5.54 g vinegar = 0.00301 mol × 60.05 g/mol = 0.18086 g.
Percentage by weight of acetic acid in the vinegar = 0.18086 / 5.54 × 100 = 3.27%.
Read more about moles here:
https://brainly.com/question/15356425
#SPJ11
How would the Rf of eugenol increase or decrease if you ran your TLC plate in 40% ethyl acetate in hexanes? a.The Rf value would increase. b. The Rf value would decrease.c. The Rf would remain the same.
Answer: B (The Rf value would decrease)
Explanation:
The Rf (retention factor) value is a ratio of the distance traveled by the compound to the distance traveled by the solvent front in thin-layer chromatography (TLC). The polarity of the solvent affects the Rf value of a compound.
In general, if a more polar solvent is used in TLC, the Rf value of a compound will decrease, and if a less polar solvent is used, the Rf value will increase.
In this case, using 40% ethyl acetate in hexanes means using a more polar solvent compared to a pure hexanes solvent. As eugenol is a moderately polar compound, the increased polarity of the solvent will likely result in a decrease in the Rf value.
Therefore, the correct answer is b. The Rf value would decrease.
The density of a gas is the mass per unit volume of the gas in the units of, for example, grams per litre. By finding the mass of one litre (assume 1.00L) of gas you can calculate the density of the gas. knowledge of the densities of the gas compared to the density of air (1.2 g/l), can save your life.
A) what is the density of carbon monoxide gas at 20C and 98 kPa in your home.
The density of carbon monoxide gas at 20°C and 98 kPa is 1.145 g/L.
The ideal gas law is PV = nRT
where P is the pressure, V is the volume, n is the number of moles of gas, R is the gas constant, and T is the temperature in kelvin.
To find the density of carbon monoxide gas at 20°C and 98 kPa, we can use the ideal gas law to find the number of moles of gas in 1 L of gas at these conditions and then divide the mass of 1 mole of gas by the number of moles to get the density.
First, we need to convert the temperature to kelvin:
20°C + 273.15 = 293.15 K
Rearranging the ideal gas law, we get:
n = PV/RT
We can assume that the volume is 1 L, so:
n = (98 kPa)(1 L) / [(0.0821 L·atm/mol·K)(293.15 K)] = 0.0413 mol
The molar mass of carbon monoxide is 28.01 g/mol, so the mass of 0.0413 mol is:
0.0413 mol x 28.01 g/mol = 1.152 g
Therefore, the density of carbon monoxide gas at 20°C and 98 kPa is:
1.152 g / 1 L = 1.145 g/L
What is density?
Density is a physical property of matter that relates to the amount of mass per unit of volume of a substance. It is typically expressed in units such as grams per cubic centimeter (g/cm³) or kilograms per cubic meter (kg/m³).
To know more about density, visit:
https://brainly.com/question/29775886
#SPJ1
What is the hybridization of the carbon that is attached to the oxygens in CH;COOH (acetic acid)? 4) Which molecule has the greatest dipole moment? A. CCl B. CH,Clz C. CFa D. BrzCClz CH,Fz
The carbon that is attached to the oxygens in CH₃COOH (acetic acid) is sp2 hybridized. This is because it is attached to three atoms (one oxygen and two hydrogens) and has a trigonal planar geometry.
The molecule with the greatest dipole moment is CH₂Cl₂(dichloromethane) because it has a tetrahedral geometry and the two C-Cl bonds are oriented in opposite directions, creating a net dipole moment. The other molecules (CCl₄, CF₄, and Br₂CCl₂) are all symmetric and have zero dipole moment.
A chemical concept known as hybridization describes the bonding and geometry of molecules. It entails combining atomic orbitals to create hybrid orbitals, which can more accurately capture the bonding in a molecule. The number of hybrid orbitals formed is equal to the number of atomic orbitals combined. Atomic orbitals with similar energy levels are merged to create the hybrid orbitals. An atom's geometry, bond angles, and polarity can all be impacted by hybridization, which can then have an impact on the molecule's reactivity and physical characteristics. Foreseeing the forms and characteristics of molecules as well as explaining their chemical behaviour requires an understanding of atom hybridization.
Learn more about hybridization here:
https://brainly.com/question/30010106
#SPJ4
The Chernobyl nuclear disaster led to the release of massive radiation, specifically iodine-131 and cesium-137, which has been connected to a variety of environmental problems in the 30 years following the disaster. A meltdown in which of the following structures at a nuclear power plant, such as Chernobyl, would most likely lead to the accidental release of radiation?
Cooling tower
Turbine
Generator
Reactor core
Reactor core
Answer:
The meltdown in which of the following structures at a nuclear power plant, such as Chernobyl, would most likely lead to the accidental release of radiation is reactor core. Answer:e
Explanation:
What is the Chernobyl nuclear disaster?
The Chernobyl nuclear disaster was a catastrophic nuclear accident that occurred on April 26, 1986, at the No. 4 reactor in the Chernobyl Nuclear Power Plant, located in the northern Ukrainian Soviet Socialist Republic.
The explosion and subsequent fires resulted in the release of significant amounts of radioactive material into the atmosphere, as well as widespread contamination of the environment.
What was the cause of the Chernobyl nuclear disaster?
During a reactor systems test, an unforeseen combination of factors caused the core of one of Chernobyl's reactors to overheat and explode, releasing radioactive material into the surrounding area. The resulting steam explosion and fires killed two plant workers at the time of the accident and injured hundreds of others.
The explosion also resulted in the deaths of dozens of firefighters and other emergency workers in the aftermath of the disaster.
What was the impact of the Chernobyl nuclear disaster on the environment?
The Chernobyl nuclear disaster resulted in the release of significant quantities of radioactive material, including iodine-131 and cesium-137, which have been linked to a variety of environmental issues. These substances are still present in the environment, and their long-term effects on humans and wildlife are still being investigated.
However, the disaster has had a significant impact on the environment in the years following the accident, including the contamination of water and soil, the displacement of wildlife, and the potential long-term health effects on local populations.
To know more about Chernobyl nuclear disaster refer here:https://brainly.com/question/10116000#
#SPJ11
a regular tetrahedron is a pyramid with four faces, each of which is an equilateral triangle. let $v$ be the volume of a regular tetrahedron whose sides each have length $1$. what is the exact value of $v^2$ ?
For the regular tetrahedron, the exact value of $v^2$ is $\frac{1}{144}$.
The regular tetrahedron is a pyramid with four faces, each of which is an equilateral triangle. Let $v$ be the volume of a regular tetrahedron whose sides each have length 1. A regular tetrahedron is a three-dimensional object with four triangular faces that are congruent. It has four vertices, six edges, and four faces that are equilateral triangles. Let us find the length of height of the tetrahedron using Pythagoras theorem.
$$Height^2=1^2-\left(\frac{1}{2}\right)^2$$
$$\Rightarrow Height^2=1-\frac{1}{4}$$
$$\Rightarrow Height=\frac{\sqrt3}{2}$$
Now, the volume of a tetrahedron is given as,
$$v=\frac{1}{3} \times Area_{base} \times Height$$T
he base of the tetrahedron is an equilateral triangle. We know that the area of an equilateral triangle with side $a$ is,
$$Area=\frac{\sqrt3}{4}a^2$$
For the given tetrahedron, the area of the base is,
$$Area_{base}=\frac{\sqrt3}{4} \times 1^2$$
$$\Rightarrow Area_{base}=\frac{\sqrt3}{4}$$
Now, the volume of the given tetrahedron is,
$$v=\frac{1}{3} \times \frac{\sqrt3}{4} \times \frac{\sqrt3}{2}$$
$$\Rightarrow v=\frac{\sqrt3}{12}$$
Thus, the square of the volume of the given tetrahedron is,
$$v^2=\left(\frac{\sqrt3}{12}\right)^2$$
$$\Rightarrow v^2=\frac{1}{144}$$
Therefore, the exact value of $v^2$ is $\frac{1}{144}$.
Learn more about Tetrahedron:
https://brainly.com/question/14493233
#SPJ11
The idea of __________ asserts that some evolutionary changes may not even involve intermediate forms.
punctuated equilibrium
The idea of punctuated equilibrium asserts that some evolutionary changes may not even involve intermediate forms.
What is punctuated equilibrium?The idea of punctuated equilibrium is a theory in evolutionary biology that proposes that most evolutionary changes occur relatively rapidly, with long periods of stability punctuated by rare instances of rapid evolutionary change.
The theory was first introduced by Niles Eldredge and Stephen Jay Gould in 1972 as a challenge to the traditional Darwinian theory of gradualism, which posits that evolution proceeds slowly and steadily over long periods of time.
According to punctuated equilibrium, some evolutionary changes may not even involve intermediate forms.
There are several examples of punctuated equilibrium in the fossil record, including the Cambrian explosion, which saw the sudden appearance of most major animal phyla in a relatively short period of time, and the rapid diversification of mammals following the extinction of the dinosaurs at the end of the Cretaceous period.
Learn more about Punctuated equilibrium here:
brainly.com/question/4430933
#SPJ11
students conducting research observe the rate of an enzyme-catalyzed reaction under various conditions with a fixed amount of enzyme in each sample. when will increasing the substrate concentration likely result in the greatest increase in the reaction rate?
Increasing the substrate concentration will likely result in the greatest increase in the reaction rate when the substrate concentration is lower than the concentration of the enzyme.
The concentration of the substrate affects the rate of reaction since there is a direct correlation between the number of enzyme-substrate complexes that are formed and the rate of reaction.
When there is more substrate, more enzyme-substrate complexes can form, resulting in an increase in the rate of reaction.
So, it is highly likely that when the substrate concentration is low, increasing the substrate concentration will result in the greatest increase in the reaction rate.
However, when the substrate concentration is already high, the reaction rate may not continue to increase as a result of increasing the substrate concentration.
Learn more about substrate concentration here:
https://brainly.com/question/22428921
#SPJ11
Predict the molecular shape for each of these compounds. Remember to consider all of the outer electrons before you make your choice.A. Tetrahedral- MethaneB. Trigonal Pyramidal- AmmoniaC. Trigonal Planar- Sulfur TrioxideD. Bent- Water, OzoneE. Linear- Carbon Dioxide
(a) Methane -the molecular shape is tetrahedral shape.
(b) Ammonia - the molecular shape is trigonal pyramidal.
(c) Sulfur trioxide - the molecular shape is trigonal planar shape.
(d) Water - the molecular shape is bent shape.
(e) Carbon dioxide - the molecular shape is a linear shape.
What is a molecular shape?Molecular shape refers to the three-dimensional arrangement of atoms in a molecule. It describes the relative positions of the atoms and the angles between the chemical bonds that connect them.
The shape of a molecule is determined by the arrangement of its electrons and the way in which the atoms share these electrons to form chemical bonds. The shape of a molecule can have a significant impact on its physical and chemical properties, such as its polarity, reactivity, and solubility.
Learn more about molecular shapes here: https://brainly.com/question/11985101
#SPJ1
11. C2 JUN 06 Q3
Classify the type of reaction occurring below.
CH₂CH₂CHCH₂OH
CH,
→CH₂CH₂C=CH₂ + H₂O
CH,
12.a) Draw the displayed formula, and name the ester formed when ethanoic acid reacts with propan-1-ol
in the presence of a suitable catalyst.
Name:
b) State the name of a suitable catalyst for this reaction.
[1]
24
...[2]
..[1]
Answer:
11.The type of reaction occurring is an elimination reaction.
12. a) The displayed formula and name of the ester formed when ethanoic acid reacts with propan-1-ol in the presence of a suitable catalyst are:
Displayed formula:
H H
│ │
H-C-C-OH + H-C-C-H → H-C-C-OC-C-H + H₂O
│ │
H CH₃
Name: Propan-1-yl ethanoate or propyl acetate
b) A suitable catalyst for this reaction is concentrated sulfuric acid (H₂SO₄).
Assume that the mass of the Cu electrode changes by "x" grams in a certain period of time. Write a mathematical expression for the change in mass of the Zn electrode during the same time.
Given information:
Cu^2+ +Zn ---> Cu+Zn^2+ (net-ionic equation for the reaction in the cell)
Ecell is 1. 10 V
Please tell me if there is any other information you need to solve the problem
The change in mass of the Zn electrode is, y = (x * molar mass of Zn) / molar mass of Cu.
The reaction in the cell involves the transfer of electrons from zinc (Zn) to copper (Cu). The net ionic equation for the reaction is:
Cu²⁺ + Zn --> Cu + Zn²⁺
During the reaction, the mass of the Cu electrode decreases due to the loss of Cu^2+ ions, while the mass of the Zn electrode increases due to the gain of Zn^2+ ions. The change in mass of the Zn electrode can be related to the change in mass of the Cu electrode using the stoichiometry of the reaction.
From the net ionic equation, we can see that for every Zn atom oxidized (loses electrons), one Cu^2+ ion is reduced (gains electrons). Therefore, the moles of Cu lost must be equal to the moles of Zn gained. We can use the molar mass of Cu and Zn to relate the change in mass of the Cu electrode (x grams) to the change in mass of the Zn electrode (y grams) as follows,
moles of Cu lost = moles of Zn gained
(x grams of Cu) / (molar mass of Cu) = (y grams of Zn) / (molar mass of Zn)
Solving for y, the change in mass of the Zn electrode is:
y = (x * molar mass of Zn) / molar mass of Cu
To know more about electrode, here
brainly.com/question/17060277
#SPJ4
. describe how to prepare 15 ml of a 0.25 m cacl2 solution using deionized water and cacl2 salt. the molecular weight of cacl2 is 110.98 g/mol. show your work. (recall: m
To prepare 15 ml of a 0.25 M CaCl₂ solution using deionized water and CaCl₂ salt, the following steps must be followed.
1. Calculate the amount of CaCl₂ salt needed:
Moles = Molarity * Volume (L)
Moles = 0.25M x 0.015L = 0.003750 moles
Mass of CaCl₂ salt = 0.003750 x 110.98 g/mol = 0.41637 g
2. Measure out 0.41637 g of CaCl₂ salt and add it to a clean beaker.
3. Measure out 15 ml of deionized water and add it to the beaker with the CaCl₂ salt.
4. Stir the mixture until the CaCl₂ salt has fully dissolved.
5. The solution is now ready to use.
It is important to remember to use caution when handling and measuring the chemicals and to always wear safety goggles and gloves when working with chemicals.
To know more about CaCl₂ solution, refer here:
https://brainly.com/question/28950352#
#SPJ11
PLEASE HELP ASAP!!!!!
The option that has the correct electron configuration for vanadium is:
A. 1[tex]s^{2}[/tex] 2[tex]s^{2}[/tex] 2[tex]p^{4}[/tex] 3[tex]s^{2}[/tex] 3[tex]p^{6}[/tex] 4[tex]s^{2}[/tex] 3[tex]d^{5}[/tex]
The electron configuration for vanadium (V) is:
1[tex]s^{2}[/tex] 2[tex]s^{2}[/tex] 2[tex]p^{6}[/tex] 3[tex]s^{2}[/tex] 3[tex]p^{6}[/tex] 4[tex]s^{2}[/tex] 3[tex]d^{3}[/tex]
For only the 3d sublevel, the configuration would be 3d3.
So, the option that has the correct electron configuration for vanadium is:
A. 1[tex]s^{2}[/tex] 2[tex]s^{2}[/tex] 2[tex]p^{4}[/tex] 3[tex]s^{2}[/tex] 3[tex]p^{6}[/tex] 4[tex]s^{2}[/tex] 3[tex]d^{5}[/tex]
What is an electron?
An electron is a subatomic particle that carries a negative electric charge. It is one of the fundamental particles that make up atoms, along with protons and neutrons. Electrons are found outside the nucleus of an atom in regions called shells or energy levels, and they are responsible for chemical bonding and the conduction of electricity.
What is vanadium?
Vanadium is a chemical element with the symbol V and atomic number 23. It is a hard, silvery-grey, ductile, and malleable transition metal that is found in various minerals and mineral ores. Vanadium has several important industrial uses, including as an alloying agent in steel and as a catalyst in the production of sulfuric acid. It is also used in the production of titanium alloys for aerospace and other high-performance applications, as well as in the manufacture of rechargeable batteries. Vanadium has biological functions in some organisms and is considered an essential trace element in the human diet.
To know more about vanadium, visit:
https://brainly.com/question/14247240
#SPJ1
The acceleration of a particle in an electric field depends on the charge-to-mass ratio of the particle.(a) compute e / m for a proton and find its acceleration in a uniform electric field of magnitude 100 n / c. (b) find the time it takes for a proton initially at rest in such a field to reach the speed of 0.01c
Answer:91
Explanation:because I am just very smart and this is the answer <3
calculate the total percent recovery. show calculation with units and correct significant digits. why do we expect that the percent recovery will be less than 100 % for this experiment?
The percent recovery is the ratio of the actual amount of the desired substance to the original amount present. The total percent recovery can be calculated by using the formula given below.
The units and the correct significant digits should be used in the calculation. We expect that the percent recovery will be less than 100 % for this experiment because of the loss of product due to impurities or mistakes in the experimental procedure. For example, if the product is left on the filter paper while washing, then the actual yield will be less than the theoretical yield.
Calculate the total percent recovery. show calculation with units and correct significant digits. The percent recovery formula is:
Percent recovery = Actual yield ÷ Theoretical yield × 100%
Given, Actual yield = 70 theoretical yield = 80
percentage recovery = Actual yield ÷ Theoretical yield × 100 %
Percentage recovery = 70 ÷ 80 × 100 %
Percentage recovery = 0.875 × 100 %
Percentage recovery = 87.5 %
Therefore, the total percent recovery is 87.5 % with the correct significant digits. Why do we expect that the percent recovery will be less than 100 % for this experiment? We expect that the percent recovery will be less than 100 % for this experiment because of the loss of product due to impurities or mistakes in the experimental procedure.
Learn more about percent recovery at brainly.com/question/14972210
#SPJ4
A gas mixture contains each of the following gases at the indicated partial pressures:
N2= 215 torr
O2= 102 torr
He= 117 torr
a) What is the total pressure of the mixture?
b) What mass of each gas is present in a 1.35 L sample of this mixture at 25.0 C ?
a) The total pressure of the mixture is 434 torr
b) The mass of each gas is, N₂ = 40.56 g, O₂ = 21.76 g, He = 3.20 g
a) The total pressure of the mixture is calculated by adding all the values of partial pressures of the N₂, O₂, and He
215 torrs of N₂ + 102 torr of O₂ + 117 torr of He
= 434 torr
Thus, the total pressure of the mixture is 434 torr
b) The mass of each gas in the 1.35 L sample of the mixture at 25.0 C can be calculated using the ideal gas law: PV = nRT.
The amount of each gas present is equal to the total moles of gas, n, in the sample.
n = (PV)/(RT)
where P is the partial pressure of the gas in the mixture,
V is the volume of the sample (1.35 L),
R is the ideal gas constant (0.08206 L atm mol⁻¹ K⁻¹), and
T is the temperature in Kelvin (298.15 K).
For N₂: n = (215 torr x 1.35 L)/(0.08206 L atm mol⁻¹ K⁻¹ x 298.15 K) = 1.45 moles
For O₂: n = (102 torr x 1.35 L)/(0.08206 L atm mol⁻¹ K⁻¹ x 298.15 K) = 0.68 moles
For He: n = (117 torr x 1.35 L)/(0.08206 L atm mol⁻¹ K⁻¹ x 298.15 K) = 0.80 moles
The mass of each gas is equal to the moles multiplied by the molar mass of the gas:
For N₂: 1.45 moles x 28.01 g/mol = 40.56 g
For O₂: 0.68 moles x 32.00 g/mol = 21.76 g
For He: 0.80 moles x 4.00 g/mol = 3.20 g
Thus, the mass of each gas is, N₂ = 40.56 g, O₂ = 21.76 g, He = 3.20 g.
Learn more about partial pressure here:
https://brainly.com/question/14119417
#SPJ11
Two protons are fired toward each other in a particle accelerator, with only the electrostatic force acting. Which of the following statements must be true about them as they move closer together? (There could be more than one correct choice.)
a. Their kinetic energy keeps increasing.
b. Their acceleration keeps decreasing.
c. Their kinetic energy keeps decreasing.
d. Their electric potential energy keeps decreasing.
e. Their electric potential energy keeps increasing.
When two protons are fired toward each other in a particle accelerator, with only the electrostatic force acting, then their kinetic energy keeps increasing, acceleration keeps decreasing, kinetic energy keeps decreasing, electric potential energy keeps decreasing.
How does the electrostatic force act?The electrostatic force is a force that arises between electrically charged objects. It is the force exerted on a charged particle by other charged particles or electromagnetic fields. It is a fundamental force in nature that has an infinite range and can be either attractive or repulsive. The strength of the electrostatic force is proportional to the inverse square of the distance between the charged particles. As two charged particles move closer together, the force between them increases. Therefore, as the two protons move closer together, their kinetic energy and electric potential energy will increase.
According to Coulomb's law, the electrostatic force is inversely proportional to the square of the distance between the two charges. Therefore, as the distance between the two protons decreases, the electrostatic force acting between them will increase. As a result, their acceleration will keep decreasing. At the same time, as the protons move closer together, their kinetic energy will keep increasing while their electric potential energy will keep decreasing.
Learn more about Electrostatic force here:
https://brainly.com/question/9774180
#SPJ11
an exothermic chemical reaction between a solid and a liquid results in gaseous products. spontaneous?
An exothermic chemical reaction between a solid and a liquid results in gaseous products. It is a spontaneous reaction.
What is an exothermic reaction?When a chemical reaction takes place with the release of heat, it is known as an exothermic chemical reaction. An exothermic chemical reaction is a chemical reaction that releases energy in the form of heat, light, or sound during the process. The burning of paper is an example of an exothermic chemical reaction. When paper burns, heat and light are produced, which we can feel or observe.
The reaction is spontaneous if the Gibbs free energy, delta G is negative. A reaction will be spontaneous if its delta G is negative. The reaction will proceed from left to right if delta G is negative, and it will proceed from right to left if delta G is positive. A reaction will be at equilibrium if delta G is zero.The reaction mentioned in the question is an exothermic chemical reaction because it results in the release of heat. As a result, the reaction is spontaneous. The production of gaseous products indicates that a gas is formed during the reaction. Therefore, this reaction is spontaneous.
Learn more about Exothermic reaction here:
https://brainly.com/question/10373907
#SPJ11
what is BEFORE and AFTER when you put the baking soda in vinegar?
When you mix baking soda and vinegar, a chemical reaction occurs that produces carbon dioxide gas, water, and a type of salt called sodium acetate.
What happens at the mixing of baking soda in vinegar?Before: Before mixing baking soda and vinegar, they are both in their separate states. Baking soda is a white powder, and vinegar is a clear liquid.
During: When you mix the baking soda and vinegar, the baking soda (sodium bicarbonate) reacts with the vinegar (acetic acid) to produce carbon dioxide gas (CO2), water (H2O), and sodium acetate (NaC2H3O2).
After: After the chemical reaction has taken place, you will see bubbles of carbon dioxide gas being released. The solution will also become cloudy as the sodium acetate precipitates out. The resulting mixture may feel warmer due to the exothermic nature of the reaction (meaning it releases heat).
Learn more about baking soda in vinegar:https://brainly.com/question/2427021
#SPJ1
How many moles of fe3o4 can be produced when 12. 00 mol fe react with 6. 00 mol o2?
When the 12. 00 mol Iron react with 6.00 mol O2 then 4.00 mol of Fe3O4 can be produced.
In order to know how many moles of Fe3O4 can be produced from the reaction of 12.00 mol Fe with 6.00 mol O2, we first need to get balance the chemical equation for the reaction:
4 Fe + 3 O2 -----> 2 Fe3O4
From the balanced equation, we can see that for every 4 moles of Fe that react, we need 3 moles of O2. Therefore, the limiting reactant in this case is O2, since we only have 6.00 mol available, while we need 8.00 mol to react with all 12.00 mol of Fe. This means that Fe will be in excess and we can calculate the amount of Fe3O4 produced based on the amount of O2 that reacts.
To do this, we can use the mole ratio from the balanced equation:
3 mol O2 --------> 2 mol Fe3O4
So, for every 3 moles of oxygen that react, we can produce 2 moles of Fe3O4. Since we have 6.00 mol of O2, we can obtain the moles of Fe3O4 produced as follows:
6.00 mol O2 x (2 mol Fe3O4 / 3 mol O2) = 4.00 mol Fe3O4
Therefore, it can be concluded that 4.00 mol of Fe3O4 can be produced when 12.00 mol Iron reacts with 6.00 mol O2.
Learn more Molarity :
https://brainly.com/question/15948514
#SPJ4