what
Step-by-step explanation:
pretty sure its 25 percent
Answer:
25%
Step-by-step explanation:
if you take half of 50 it is 25 so all of it is used or 25%
Hope this helps <3 Comment if you want more thanks and be sure to give brainliest (4 left) <3
А _______ equation can be written in the form ax2 + bx+c=0 where a, b, and c are real numbers, and a is a nonzero number.
Fill in the blank.
A) quadratic
B) quartic
C) linear
D) cubic
Wrong answers WILL be reported. Thanks!
Answer:
A) quadratic
Step-by-step explanation:
ax2 + bx+c=0
Since the highest power of the equation is 2
A) quadratic -2
B) quartic- 4
C) linear- 1
D) cubic-3
Identify the segments that are parallel, if any, if ∠ADH≅∠ECK.
A. AE || CB
B. AD|| CB
C. none of these
D. AC|| CD
9514 1404 393
Answer:
C. none of these
Step-by-step explanation:
The given information tells us ΔACD is isosceles, but gives no information about any lines that might conceivably be parallel.
The sum of two binomials is 12x2 − 5x. If one of the binomials is x2 − 2x, the other binomial is:
1. 11x2 − 7x.
2. 12x2 − 3x.
3. 11x2 − 3x.
4. None of these choices are correct.
Answer:
C. 11x² - 3x
Step-by-step explanation:
(12x² - 5x) - (x² - 2x)
12x² - 5x - x² + 2x
12x - x² - 5x + 2x
11x² - 3x
The lines shown below are parallel. If the green line has a slope of -2, what is
the slope of the red line?
Answer:
Hi! There's no picture, but we don't need that to find the answer. Parallel lines always have the same slope. I suppose you're saying that the green and red line are parallel -- so, the red line's slope is also -2.
-2 <--
Hope this helps!! Have a nice day & please mark brainliest if you don't mind!
helppp .....................
Answer:
D represents a proportional relationship
Step-by-step explanation:
Proportional graphs always intersect with zero
Directions: Use the figure to write the symbol for each.
1. I ray
2. a plane
А
3. 3 points
4. 2 lines
5. 3 angles
6. 3 line segments
D
Geometry
156
Total Math Grade 6
I need help ASAP please due tomorrow 6th grade geometry
Amanda has 1 3/4yds of red ribbon and 7/8yds of green
ribbon. What is the total amount of ribbon that
Amanda has? (write answer as a fraction)
Answer:
21/8 yds or 2 5/8 yds
Step-by-step explanation:
First turn 1 3/4 yards into an improper fraction so you can add it to 7/8 yards.
1 3/4 as an improper fraction is 7/4 yds
7/4 yds = 14/8 yds
14/8 yds + 7/8 yds = 21/8 yds
So the total amount of ribbon Amanda has is 21/8 yds or 2 5/8 yds
PAIesung
0 Weber
chool Careers
Reading list
- Blake bought a motorcycle for $550 last year and sold it for $330 this year. What is his sale
price as a percentage of his purchase price?
Answer:
The sale price was 60% of the purchase price.
Step-by-step explanation:
Given that Blake bought a motorcycle for $ 550 last year and sold it for $ 330 this year, to determine what is his sale price as a percentage of his purchase price, the following calculation must be performed:
550 = 100
330 = X
330 x 100/550 = X
33000/550 = X
60 = X
Therefore, the sale price was 60% of the purchase price.
The winter group provides tax advice
what? ;-;.............
URGENT HELP
The gradient of the tangent to the curve y = ax + bx^3 at the point (2, -4) is 6.
Determine the unknowns a and b.
a=?
b=?
Answer:
a = -6
b = 1
Step-by-step explanation:
The gradient of the tangent to the curve y = ax + bx^3, will be:
dy/dx = a + 3bx²
at (2, -4)
dy/dx = a+3b(2)²
dy/dx = a+12b
Since the gradient at the point is 6, then;
a+12b = 6 ....1
Substitute x = 2 and y = -4 into the original expression
-4 = 2a + 8b
a + 4b = -2 ...2
a+12b = 6 ....1
Subtract
4b - 12b = -2-6
-8b = -8
b = -8/-8
b = 1
Substitute b = 1 into equation 1
Recall from 1 that a+12b = 6
a+12(1) = 6
a = 6 - 12
a = -6
Hence a = -6, b = 1
The work done by a machine in 2 minutes is 480J. Calculate the power of the machine
Answer:
I think the power is 4
Step-by-step explanation:
480J / 120 = 4
Put 2 mins into seconds which is 120 seconds
Sorry if it is wrong :)
Answer:
[tex]4\text{ watts}[/tex]
Step-by-step explanation:
In physics, the power of a machine is given by [tex]P=\frac{W}{\Delta t}[/tex], where [tex]W[/tex] is work in Joules and [tex]\Delta t[/tex] is time in seconds.
Convert 2 minutes into seconds:
2 minutes = 120 seconds.
Substitute [tex]W=480[/tex] and [tex]\Delta t=120[/tex] to solve for [tex]P[/tex]:
[tex]P=\frac{480}{120}=\boxed{4\text{ watts}}[/tex]
can you help me with these high rated questions
I wish you will help me with his highlighted questions
Answer:
52 is (a)
55 is.( d)
56. is (d)
Workbook
WB-21
38. What is the circumference of a circle that has a diameter of 12 inches? (Use
3.14 for 1.)
a. 15.14 inches
b. 37.68 inches
c. 376.8 inches
d. 9.42 inches
Answer:
37.68
Step-by-step explanation:
Formula for finding the circumference of a circle is C = 2πr
If you substitute the numbers in you should get 37.68.
You need to design a rectangle with a perimeter of 14.2 cm. The length must be 2.4 cm. What is the width of the
rectangle? (You might want to draw a picture.)
a) Let w = the width of the rectangle. Write the equation you would use to solve this problem.
b) Now solve your equation
* cm.
The width of the rectangle must be. Cm
Part (a)
Answer: 2(2.4+w) = 14.2--------------
Explanation:
L = 2.4 = length
W = unknown width
The perimeter of any rectangle is P = 2(L+W)
We replace L with 2.4, and replace P with 14.2 to get 14.2 = 2(2.4+w) which is equivalent to 2(2.4+w) = 14.2
========================================================
Part (b)
Answer: w = 4.7--------------
Explanation:
We'll solve the equation we set up in part (a)
2(2.4+w) = 14.2
2(2.4)+2(w) = 14.2
4.8+2w = 14.2
2w = 14.2-4.8
2w = 9.4
w = 9.4/2
w = 4.7
The width must be 4.7 cm.
distance between 4, -4 and -7, -4
Step-by-step explanation:
here's the answer to your question
Answer: Distance = 11
Step-by-step explanation:
Concept:
Here, we need to know the idea of the distance formula.
The distance formula is the formula, which is used to find the distance between any two points.
If you are still confused, please refer to the attachment below for a clear version of the formula.
Solve:
Find the distance between A and B, where:
A (4, -4)B (-7, -4)[tex]Distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex]Distance=\sqrt{(4+7)^2+(-4+4)^2}[/tex]
[tex]Distance=\sqrt{(11)^2+(0)^2}[/tex]
[tex]Distance=\sqrt{121+0}[/tex]
[tex]Distance=\sqrt{121}[/tex]
[tex]Distance=11[/tex]
Hope this helps!! :)
Please let me know if you have any questions
Mr. Thomas invested an amount of ₱13,900 divided in two different schemes A and B at the simple interest rate of 14% p.a. and 11% p.a. respectively. If the total amount of simple interest earned in 2 years be ₱3508, what was the amount invested in Scheme B?
9514 1404 393
Answer:
₱6400
Step-by-step explanation:
Let 'b' represent the amount invested in scheme B. Then 13900-b is the amount invested in scheme A. The total interest for 2 years is then ...
14%(13900-b)(2) +11%(b)(2) = 3508
1946 -0.03b = 1754 . . . . . . divide by 2, simplify
-0.03b = -192 . . . . . . . . . subtract 1946
b = 6400 . . . . . . . . . . . divide by -0.03
The amount invested in scheme B was ₱6400.
Use the procedures developed to find the general solution of the differential equation. (Let x be the independent variable.)
2y''' + 15y'' + 24y' + 11y= 0
Solution :
Given :
2y''' + 15y'' + 24y' + 11y= 0
Let x = independent variable
[tex](a_0D^n + a_1D^{n-1}+a_2D^{n-2} + ....+ a_n) y) = Q(x)[/tex] is a differential equation.
If [tex]Q(x) \neq 0[/tex]
It is non homogeneous then,
The general solution = complementary solution + particular integral
If Q(x) = 0
It is called the homogeneous then the general solution = complementary solution.
2y''' + 15y'' + 24y' + 11y= 0
[tex]$(2D^3+15D^2+24D+11)y=0$[/tex]
Auxiliary equation,
[tex]$2m^3+15m^2+24m +11 = 0$[/tex]
-1 | 2 15 24 11
| 0 -2 - 13 -11
2 13 11 0
∴ [tex]2m^2+13m+11=0[/tex]
The roots are
[tex]$=\frac{-b\pm \sqrt{b^2-4ac}}{2a}$[/tex]
[tex]$=\frac{-13\pm \sqrt{13^2-4(11)(2)}}{2(2)}$[/tex]
[tex]$=\frac{-13\pm9}{4}$[/tex]
[tex]$=-5.5, -1$[/tex]
So, [tex]m_1, m_2, m_3 = -1, -1, -5.5[/tex]
Then the general solution is :
[tex]$= (c_1+c_2 x)e^{-x} + c_3 \ e^{-5.5x}$[/tex]
Onetta goes to the food court to get a salad and sandwich for lunch. The Daily Deli has 8 varieties of sandwiches and 3 salads. Better Bites has 2 varieties of sandwiches and 7 salads. The Lunch Spot has 5 varieties of sandwiches and 8 salads. Determine the number of ways Onetta can select a sandwich and a salad.
Answer:
Onetta can salect a sandwich and a salad in 78 different ways.
Step-by-step explanation:
Since Onetta goes to the food court to get a salad and sandwich for lunch, and the Daily Deli has 8 varieties of sandwiches and 3 salads, while Better Bites has 2 varieties of sandwiches and 7 salads, and the Lunch Spot has 5 varieties of sandwiches and 8 salads, to determine the number of ways Onetta can select a sandwich and a salad, the following calculation must be performed:
8 x 3 + 2 x 7 + 5 x 8 = X
24 + 14 + 40 = X
78 = X
Therefore, Onetta can salect a sandwich and a salad in 78 different ways.
What error, if any, did Noah make?
Answer:
breathing, jk buddy
Step-by-step explanation:
Find the values of c such that the area of the region bounded by the parabolas y = 4x2 − c2 and y = c2 − 4x2 is 32/3. (Enter your answers as a comma-separated list.)
Answer:
-2,2
Step-by-step explanation:
Let
[tex]y_1=4x^2-c^2[/tex]
[tex]y_2=c^2-4x^2[/tex]
We have to find the value of c such that the are of the region bounded by the parabolas =32/3
[tex]y_1=y_2[/tex]
[tex]4x^2-c^2=c^2-4x^2[/tex]
[tex]4x^2+4x^2=c^2+c^2[/tex]
[tex]8x^2=2c^2[/tex]
[tex]x^2=c^2/4[/tex]
[tex]x=\pm \frac{c}{2}[/tex]
Now, the area bounded by two curves
[tex]A=\int_{a}^{b}(y_2-y_1)dx[/tex]
[tex]A=\int_{-c/2}^{c/2}(c^2-4x^2-4x^2+c^2)dx[/tex]
[tex]\frac{32}{3}=\int_{-c/2}^{c/2}(2c^2-8x^2)dx[/tex]
[tex]\frac{32}{3}=2\int_{-c/2}^{c/2}(c^2-4x^2)dx[/tex]
[tex]\frac{32}{3}=2[c^2x-\frac{4}{3}x^3]^{c/2}_{-c/2}[/tex]
[tex]\frac{32}{3}=2(c^2(c/2+c/2)-4/3(c^3/8+c^3/28))[/tex]
[tex]\frac{32}{3}=2(c^3-\frac{4}{3}(\frac{c^3}{4}))[/tex]
[tex]\frac{32}{3}=2(c^3-\frac{c^3}{3})[/tex]
[tex]\frac{32}{3}=2(\frac{2}{3}c^3)[/tex]
[tex]c^3=\frac{32\times 3}{4\times 3}[/tex]
[tex]c^3=8[/tex]
[tex]c=\sqrt[3]{8}=2[/tex]
When c=2 and when c=-2 then the given parabolas gives the same answer.
Therefore, value of c=-2, 2
27. Which statement is true about the system x+3y=11 y=r-7 a. (8,-1) is a solution to both equations, so it is a solution to the system b. (8,-1) is a solution to one equation but not the other, so it is a solution to the system C. (8,-1) is a solution to one equation but not the other so it is not the solution to the system d. (8,-1) is not a solution to either equation, so it is not a solution to the system
Answer:b. (8,-1) is a solution to one equation but not the other, so it is a solution to the system
Step-by-step explanation:
27. Which statement is true about the system
x+3y=11
y=r-7
a. (8,-1) is a solution to both equations, so it is a solution to the system
b. (8,-1) is a solution to one equation but not the other, so it is a solution to the system
C. (8,-1) is a solution to one equation but not the other so it is not the solution to the system
d. (8,-1) is not a solution to either equation, so it is not a solution to the system
3w2 – 21w = 0
Need some help.
Answer:
The solutions are w=0 ,7
Step-by-step explanation:
3w^2 – 21w = 0
Factor out 3w
3w(w-7) =0
Using the zero product property
3w=0 w-7=0
w =0 w=7
The solutions are w=0 ,7
Open the graphing tool one last time. Compare the graphs of y=log (x-k) and y=log x+k in relation to their domain, range, and asymptotes. Describe what you see.
Answer:
sorry I don't know the answer
Answer:
For the equation y=log(x-k), the domain depends on the value of K. Sliding K moves the left bound of the domain interval. The range and the right end behavior stay the same. For the equation y=log x+k, the domain is fixed, starting at an x-value of 0. The vertical asymptote is also fixed. The range of the equation depends on K.
Step-by-step explanation:
At the city museum, child admission is S5.80 and adult admission is $9.20. On Monday, twice as many adult tickets as child tickets
were sold, for a total sales of $895.40. How many child tickets were sold that day?
[tex]You can call c the number of children and a for adults; you get:5.20c+8.50a=1097.60anda=4c meaning that the number of adults was four times the children.Substituting this value of a into the first equation we get:5.2c+8.5(4c)=1097.65.2c+34c=1097.6rearranging:c=1097.639.2=28and so:a=4c=4⋅28=112[/tex]
I got: 28 children and 112 adults.
5 = –6x2 + 24x
5 = –6(x2 – 4x)
inside the parentheses and
.
–19 = –6(x – 2)2
StartFraction 19 Over 6 EndFraction = (x – 2)2
Plus or minus StartRoot StartFraction 19 Over 6 EndFraction EndRoot = x – 2
The two solutions are
Plus or minus StartRoot StartFraction 19 Over 6 EndFraction EndRoot.
Answer:
x = 2 - sqrt(19/6)
x = 2 + sqrt(19/6)
Step-by-step explanation:
Answer:
add 4
subtract 24 from 5
2
Step-by-step explanation:
At the end of 2 years, P dollars invested at an interest rater compounded annually increases to an amount, A dollars, given by the following formula.
A = P(1+r)?
Find the interest rate if $192 increased to $363 in 2 years. Write your answer as a percent..
-
Annual compound interest rate = % (Type an integer or a decimal.)
Answer:
37.5%
Step-by-step explanation:
A=P(1+r)^t
363=192*(1+r)^2
1.375=1+r, r=0.375=37.5%
simplify
log(125) + log(625) / log(25) - log(5)
Answer:
3.39794000867
Step-by-step explanation:
first add log 125 and 625 and divide the answer by log 25 and minus the answer by 5
Answer:
The answer is 7.
Find m/c.
A
18 in
12 in
C
B
28 in
Suppose 5 men and 7 women are on a crowded elevator. At the next floor, four people get off the elevator. Find the probability that three are women.
0.010
0.354
0.424
0.25
Answer:
B. 0.354Step-by-step explanation:
Combination of 4 out of 5 + 7 = 12 is:
12C4 = 12!/8!4! = 495Combination of 1 man and 3 women is:
5C1*7C3 = 5*7!/4!3! = 5*35 = 175Required probability:
P(3W) = 175/495 ≈ 0.353Correct choice is B
f (-10) = ?
Evaluate piecewise functions
Answer:
f(- 10) = 150
Step-by-step explanation:
f(- 10) with t = - 10 corresponds to t ≤ - 10 with f(t) = t² - 5t , then
f(- 10) = (- 10)² - 5(- 10) = 100 + 50 = 150
for t=-10
f(t)=t²-5tSo
f(-10)
(-10)²-5(-10)100+50150