Answer:
NON-METAL
Explanation:
Phosphorus is a non-metal that sits just below nitrogen in group 15 of the periodic table. This element exists in several forms, of which white and red are the best known.
If the balance were not tared prior to weighing out the KHP.... how would you expect this to affect the molarity of NaOH calculated? What type of error is this?
Answer:
Following are the response to the given question:
Explanation:
In the given scenario, When the balance has never been tainted before the KHP is weighted, which can affect the molar concentration of NaOH because its molarity is directly proportional to the weight including its substance. In this question it is the mistake is systemic because it may be corrected by modifying balancing parameters.
A bio catalyst that increases the rate of the reaction without being changed
a) Aluminum oxide. b) Silicon dioxide. c) Enzyme. d) Hydrogen peroxide
43. What is the
than the reaction substrate.
42. A
Explanation:
Enzymes are proteins functioning as catalysts that speed up reactions by lowering the activation energy. A simple and succinct definition of an enzyme is that it is a biological catalyst that accelerates a chemical reaction without altering its equilibrium.
Using the following equation for the combustion of octane calculate the heat associated with the formation of 100.0 g of carbon dioxide. The molar mass of octane is 114.33 g/mole.
2C8H18 + 25O2 → 16 CO2 + 18 H2O
ΔH°rxn = -11018 kJ
Answer:
The right solution is "-602.69 KJ heat".
Explanation:
According to the question,
The 100.0 g of carbon dioxide:
= [tex]\frac{100.0 \ g}{114.33\ g/mole}[/tex]
= [tex]0.8747 \ moles[/tex]
We know that 16 moles of [tex]CO_2[/tex] formation associates with -11018 kJ of heat, then
0.8747 moles [tex]CO_2[/tex] formation associates with,
= [tex]-\frac{0.8747}{16}\times 11018 \ KJ \ of \ heat[/tex]
= [tex]-0.0547\times 11018[/tex]
= [tex]-602.69 \ KJ \ heat[/tex]
Choose the correct statement
a) The maximum value of principal quantum number (n) is 7
b) The angular quantum number (l) can receive value from 1 to (n-1)
c) The magnetic quantum number (ml) shows the energy of electron
d) The magnetic quantum number (ml) show how many orbitals in each subshell
Answer:
maybe number b is correct. ...thank you
A sample of a compound is found to consist of 0.44g H and 6.92g O what’s its formula
Answer:
Explanation:
H = 0.44/1.01 = 0.4356
O = 6.92/16 = 0.4319
This gives a 1:1 ratio. So the closest thing you could say is the formula is 0H
Going to your chemical storage room, you could justify that it is H2O2 or hydrogen peroxide. The question needs one more fact to make the answer certainty.
(GIVING BRAINIEST!)
Which of the following compares the rainforest and the tundra environments correctly?
A. A rainforest is hotter than the tundra because it is closer to the equator.
B. A rainforest is less humid than the tundra because of its higher elevation.
C. A tundra has higher temperatures than the rainforest because it receives more
sunshine.
D. A tundra has higher humidity than the rainforest because of its proximity to water bodies.
For Science BTW!
Answer:
A
Explanation:
A rain forest is hotter than the tundra because it is closer to the equator
Nitric acid can be formed in two steps from the atmospheric gases nitrogen and oxygen, plus hydrogen prepared by reforming natural gas. In the first step, nitrogen and hydrogen react to form ammonia: N2 (g) + 3H2 (g) â 2NH3 (g) =ÎHâ92.kJ In the second step, ammonia and oxygen react to form nitric acid and water:
NH3 (g) + 2O2 (g) â HNO3 (g) + H2O (g) =ÎHâ330.kJ
Required:
Calculate the net change in enthalpy for the formation of one mole of nitric acid from nitrogen, hydrogen and oxygen from these reactions.
Answer:
-376 kJ
Explanation:
The first step equation:
[tex]\mathsf{N_{2(g)} + 3H_2{(g)} \to 2NH_3{(g)} \ \ \ \Delta H = -92\ kJ}[/tex] ---- (1)
The second step equation:
[tex]\mathsf{NH_{3(g)} + 2O_2{(g)} \to HNO_3{(g)} +H_2O_{(g)} \ \ \ \Delta H = -330\ kJ}[/tex] ---- (2)
To determine the enthalpy of formation for 1 mole of HNO₃ (nitric acid), we have the following.
From the above equations; let multiply equation (1) by 1 and equation (2) by 2.
[tex]\mathsf{N_{2(g)} + 3H_2{(g)} \to 2NH_3{(g)} \ \ \ \Delta H = -92\ kJ}[/tex] ---- (3)
[tex]\mathsf{2NH_{3(g)} + 4O_2{(g)} \to 2HNO_3{(g)} +2H_2O_{(g)} \ \ \ \Delta H = 2(-330)\ kJ}[/tex] ----- (4)
adding the above two equations, we have:
[tex]\mathsf{N_{2(g)} + 3H_2{(g)}+ 2NH_{3(g)} + 4O_{2(g)} \to 2HNO_{3(g)} + 2NH_3{(g)} +2H_2O_{(g)} \ \ \ \Delta H = (-660 \ kJ -92\ kJ)}[/tex][tex]\mathsf{N_{2(g)} + 3H_2{(g)} + 4O_{2(g)} \to 2HNO_{3(g)} +2H_2O_{(g)} \ \ \ \Delta H = (-752 \ kJ)}[/tex]
Now, from the recent equation, we have:
2 moles of nitric acid = -752 kJ
∴
1 mole of nitric acid will be: = (1 mole × (-752 kJ)) ÷ 2 moles
1 mole of nitric acid will be: = -376 kJ
calculate the hydrogen ion concentration of a solution who's pH is 2.4
Answer:
I don't know sorry yyyyyyy6yyyyyyyyyyyyyyyyyyyyyyyyyyy
ort
Which is a primary alcohol?
0 3-pentanol
2-propanol
1-ethanol
4-octanol
urvey
Lig A Moving to another question will save this response.
Answer:
1 ethanol is right answer
Explanation:
CH3- CH2-OH
The sample concentration was measured at 50mg/ml. The loading concentration needs to be 10mg/ml. The final volume needs to be 25ul. What is the volume of sample needed and the amount of buffer needed to reach 25ul
Answer:
a) [tex]V_1=5ul[/tex]
b) [tex]v=20ul[/tex]
Explanation:
From the question we are told that:
initial Concentration [tex]C_1=50mg/ml[/tex]
Final Concentration [tex]C_2=10mg/ml[/tex]
Final volume needs [tex]V_2 =25ul[/tex]
Generally the equation for Volume is mathematically given by
[tex]C_1V_1=C_2V_2[/tex]
[tex]V_1=\frac{C_1V_1}{C_2}[/tex]
[tex]V_1=\frac{10*25}{50}[/tex]
[tex]V_1=5ul[/tex]
Therefore
The volume of buffer needed is
[tex]v=V_2-V_1\\\\v=25-5[/tex]
[tex]v=20ul[/tex]
In what areas of the periodic table do you find the most highly reactive elements?
Answer:
The elements toward the bottom left corner of the periodic table are the metals that are the most active in the sense of being the most reactive.
The most highly reactive elements are typically found at the far left (Group 1) and far right (Group 17) of the periodic table.
Highly reactive elements in the periodic tableGroup 1 elements, also known as alkali metals, are located on the far left of the periodic table. They have one electron in their outermost energy level and are highly reactive due to their tendency to lose that electron to achieve a stable electron configuration. This makes them very reactive with water and other substances.
Group 17 elements, known as halogens, are located on the far right of the periodic table. They have seven electrons in their outermost energy level and are highly reactive due to their strong tendency to gain one electron to achieve a stable electron configuration. This makes them reactive with metals and other elements.
More on the periodic table can be found here: https://brainly.com/question/28747247
#SPJ3
A/An is a type of blood cell that's also called a red blood cell. a) Jeukocyte O b) thrombocyte c) plasma d) erythrocyte
Answer:
option a
Explanation:
pls mark me as brainliest
To prepare a standard (calibration) curve for a spectroscopy experiment, start by preparing ___________ with ______________ Then, measure the ______________ of each solution at _____________ and create a plot of ____________ for the measured values. Finally, find the best-fit line of the data set.
Answer: See explanation
Explanation:
The calibration curve is the method used for the determination of the concentration of a substance such that the unknown sample will be compared to some standard samples of the known concentration.
To prepare a standard (calibration) curve for a spectroscopy experiment, start by preparing (multiple solutions) with (different known concentrations). Then, measure the (absorbance) of each solution at (thesame wavelength) and create a plot of (absorbance vs. concentration) for the measured values. Finally, find the best-fit line of the data set.
Suppose you are studying the Ksp of CaCl2, which has a molar mass of 110.98 g/mol, at multiple temperatures. You dissolve 4.99 g of CaCl2 in 10.0 mL of water at 100 oC and cool the solution. At 90 oC, a solid begins to appear. What is the Ksp of CaCl2 at 90 oC
Answer:
Hence the Solubility product,
Ksp = [Ca2+] [Cl-]2
or, Ksp = (4.5) (9)2
or, Ksp = 364.5
Explanation:
Mass of CaCl2 = 4.99 g
Molar mass of CaCl2 = 110.98 g/mol
Moles of CaCl2
= given mass/ molar mass
= 4.99/ 110.98
= 0.045
Volume = 10.0 mL = 0.01 L
CaCl2 dissociates into its ion as:
CaCl2 (s) \rightleftharpoons Ca2+ (aq) + 2 Cl- (aq)
At 90°C, the solution is saturated with Ca2+ and Cl- ions.
Moles of Ca2+ = Moles of CaCl2 dissolved = 0.045
Moles of Cl- = 2 x ( Moles of CaCl2 dissolved) = 2 x 0.045 = 0.09
[Ca2+] = Moles/ Volume = 0.045/ 0.01 = 4.5 M
[Cl-] = 0.09/ 0.01 = 9 M
Solubility product,
Ksp = [Ca2+] [Cl-]2
or, Ksp = (4.5) (9)2
or, Ksp = 364.5
What process occurs during the corrosion of iron?
Answers
A.
Iron is oxidized.
B.
Iron is reduced.
C.
Iron (III) is oxidized.
D.
Iron (III) is reduced.
Answer:
A
Explanation:
The iron corrodes so it oxidized
When equal moles of an acid and a base are mixed, after reaction the two are compounds are said to be at the _______________. Select one: Indicator point Stoichiometric point Equilibrium point End point
Answer:
when equal moles of an acid and base are mixed,after reaction the two are compounds are said to be at the Equivalent point.
Lead of mass 0.75kg is heated from 21°c to its melting point and continues to be heated unit it has all melted. Calculate how much energy is supplied to the lead. [Melting point of lead 372.5°c specific latent heat of fusion of lead = 23000 Jkg 'k ']
Answer:
65.5J
Explanation:
ML=Q
ML=MC(change in temperature)
0.75 X 23000 =0.75 X 351 X C
C= 65.5J
The energy supplied to the lead to melt from 21°c to its melting point is 51521 Joules.
What is the specific heat capacity?Specific heat is the amount of heat energy supplied to change the temperature of one unit mass of a substance by 1 °C. The SI unit of the specific heat capacity of a substance is J/Kg.
The mathematical expression for the specific heat capacity can be written as:
Q = mCΔT Where C is the specific heat of the substance.
The specific heat capacity depends upon the starting temperature and is an intensive characteristic of the material.
Given, the melting point of the lead T₂ = 327.5° C
The initial temperature of the lead, T₁ = 21° C
The latent heat of the lead given, L = 230000 J/Kg K
The specific heat of the lead, C = 130 J/Kg K
The heat required to melt the lead from 12°C to 327.5 °C is :
Q = m× [C × (T₂ - T₁) + L ]
Q = 0.75 × [0.130 (327.5 - 21) + 23000]
Q = 51521 J
Learn more about specific heat, here:
brainly.com/question/11297584
#SPJ5
Could someone please help me out???
Answer:
Time is 2.2 seconds.
Explanation:
Time:
[tex]{ \boxed{ \bf{time = \frac{distance}{speed} }}}[/tex]
Substitute into the formula:
speed = 715 km/h = 198.61 m/s
[tex]{ \tt{time = \frac{435}{198.61} }} \\ { \tt{time = 2.2 \: seconds}}[/tex]
In the reoxidation of QH2 by purified ubiquinone-cytochrome c reductase (Complex III) from heart muscle, the overall stoichiometry of the reaction requires 2 mol of cytochrome c per mole of QH2 because:
Answer: Options related to your question is missing below are the missing options
a. cytochrome c is a one-electron acceptor, whereas QH2 is a two-electron donor.
b. cytochrome c is a two-electron acceptor, whereas QH2 is a one-electron donor.
c. cytochrome c is water soluble and operates between the inner and outer mitochondrial membranes
d. heart muscle has a high rate of oxidative metabolism, and therefore requires twice as much cytochrome c as QH2 for electron transfer to proceed normally.
e. two molecules of cytochrome c must first combine physically before they are catalytically active.
answer:
cytochrome c is a one-electron acceptor, whereas QH2 is a two-electron donor. ( A )
Explanation:
The overall stoichiometry of the reaction requires 2 mol of cytochrome per mole of QH2 because a cytochrome is simply a one-electron acceptor while QH2 is not a one-electron donor ( i.e. it is a two-electron donor )
An electron donor in a reaction is considered a reducing agent because it donates its electrons to another compound thereby self oxidizing itself in the process.
Given the equation representing a nuclear reaction in
which X represents a nuclide:
232Th → He + x
Which nuclide is represented by X?
A) 236
B) 228
Ra
SS
C) 236
Ra
92
U
92
D) 228
.
Ss U
The nuclide represented as X is thorium and this is an alpha decay.
The equation shown represents an alpha decay. In an alpha decay, an alpha particle is given off.
The atomic number of the parent nuclide is greater than that of the daughter nuclide by two units while the mass number of the parent is greater than that of the daughter nuclide by four units.
Hence the equation occurs as follows;
[tex]\frac{232}{92} Th ------> \frac{228}{88} Ra + He[/tex]
https://brainly.com/question/14081292
Which of the following ligands is not capable of exhibiting linkage isomerism?
a. NCO-
b. -OH
c. -CN
d. -SCN
Answer:
a
...
........
...........
In practice, the second law of thermodynamics means that:
a. Systems move from ordered behavior to more random behavior.
b. Systems move from random behavior to more ordered behavior.
c. Systems move between ordered and random behavior patterns based on temperature.
d. Systems are constantly striving to reach equilibrium.
Answer:
Systems move from ordered behavior to more random behavior.
Explanation:
Entropy refers to the degree of disorderliness in a system. The second law of thermodynamics can be restated in terms of entropy as follows; “any spontaneous process in any isolated system always results in an increase in the entropy of that system.''(science direct)
According to this law, systems tend towards a more disorderly behaviour (increase in entropy) hence the answer given above.
GM 2 all ,What is an atom define it .Good Day
Answer:
An atom is the smallest particle of an element that can take part in chemical reaction.
Explanation:
hope it will help u Amri
If a buffer is composed of 23.34 mL of 0.147 M acetic acid and 33.66 mL of 0.185 M sodium acetate, how many mL of 0.100 M NaOH can be added before the buffer capacity is reached
Answer:
25.5mL of 0.100M NaOH are needed to reach buffer capacity.
Explanation:
The buffer capacity is reached when the ratio between moles of conjugate base (Sodium acetate) and moles of weak acid (Acetic acid) is 10:
Moles sodium acetate / Moles Acetic acid = 10
The reaction of acetic acid, HA, with NaOH, to produce sodium acetate, NaA is:
HA + NaOH → H2O + NaA
That means the moles of NaOH added = Moles of HA that are being subtracted and moles of NaA that are been produced.
The initial moles of each species is:
Acetic acid:
23.34mL = 0.02334L * (0.147mol / L) = 0.00343 moles Acetic Acid
Sodium Acetate:
33.66mL = 0.03366L * (0.185mol / L) = 0.00623 moles Sodium Acetate
We can write the moles of each species when NaOH is added as:
Moles sodium acetate / Moles Acetic acid = 10
0.00623 moles + X / 0.00343 moles - X = 10
Where X are moles of NaOH added
Solving for X:
0.00623 moles + X = 0.0343 moles - 10X
11X = 0.0281
X = 0.00255 moles of NaOH are needed
In Liters:
0.0255mol NaOH * (1L / 0.100mol) = 0.0255L of 0.100M NaOH are needed =
25.5mL of 0.100M NaOH are needed to reach buffer capacity
……….is strong due to the ……………..between positive ions and negative delocalized electrons
Answer:
atom &bond
Explanation:
atom is strong due to the bond
CH3CH2OH
______ions
in an aqueous solution.
А
forms
B
does not form
Answer:
When ionic compounds dissolve, they break apart into ions which are then able to conduct a current ( conductivity ). ... Many molecular compounds, such as sugar or ethanol, are nonelectrolytes. When these compounds dissolve in water, they do not produce ions.
Explanation:
Ethanol is an organic compound with an alcoholic functional group and is nonelectrolytes. Ethanol (CH₃CH₂OH) does not form ions in an aqueous solution. Thus, option B is correct.
What are nonelectrolytes?Nonelectrolytes are substances that do not dissociate readily to yield ions and also are poor conductors of electricity and heat due to a lack of charged ions.
Ethanol is a nonelectrolyte that does not show conductivity and can be dissolved in water without producing ions. They cannot forms ions upon dissociation as covalent bonds are present.
Instead of ions that have covalent compounds that lack the ability to transfer the electron to conduct the electrical charge. Glucose, ethanol, etc. are some examples of a nonelectrolyte.
Therefore, option B. ethanol does not form ions is the correct blank.
Learn more about nonelectrolytes here:
https://brainly.com/question/14633704
#SPJ2
An ordinary gasoline can measuring 30.0 cm by 20.0 cm by 15.0 cm is evacuated with a vacuum pump.
1a. Assuming that virtually all of the air can be removed from inside the can, and that atmospheric pressure is 14.7 psi, what is the total force (in pounds) on the surface of the can?
1b. Do you think that the can could withstand the force?
Answer:
Explanation:
From the given information:
The surface area of the can = (30 × 20 × 2) +(20× 15 × 2) +(30 × 15 × 2)
= 1200 + 600 + 900
= 2700 cm²
Since 1 inch² = 0.155 inch²
The surface area in inches² = 2700 × 0.155 inch²
= 418.5 inches²
The total force can be determined by using the expression:
Force = Pressure ×Area
Force = 14.7 psi × 418.5 inches²
Force = 6151.95 lbs
Yes, the gasoline can will be able to withstand the force.
What would be the name of this compound?
Answer:
2,3 Dimethyl hexane
Explanation:
First, start the count from which side is given the CH3 smallest number
first; the longest carbon chain in this compound is 6
and you don't have any double and triple bonds or functional groups so it is Hexane
you start to count from the right side to give the branch molecules the smallest number ..
CH3 = methyl
and you have 2 methyl in this compound ..
and 2 mean you must write ( Di )
you write the name in this way
2,3 Dimethyl hexane
hope this helps you.
stay safe ...
công thức phân tử của glucozo
C₆H₁₂O₆ is the molecular formula of gulcozo.
Titration of 25.0 mL of an HCl solution of unknown concentration requires 14.8 mL of 0.100 M NaOH. What is the molar concentration of the HCl solution