Answer:
If you know the current and voltage across the whole circuit, you can find total resistance using Ohm's Law: R = V / I.
Explanation:
Convert 385k to temperature of
Answer:
233.33°F
Explanation:
(385K - 273.15) * 9/5 + 32 = 233.33°F
Calculate the equivalent of 30 degrees Celsius and 50 degrees Celsius on a Kelvin
[tex]\boxed{\sf 1°C=273K}[/tex]
Sol:-1
[tex]\\ \sf\longmapsto 30°C[/tex]
[tex]\\ \sf\longmapsto 273+30[/tex]
[tex]\\ \sf\longmapsto 303K[/tex]
Sol:-2
[tex]\\ \sf\longmapsto 50°C[/tex]
[tex]\\ \sf\longmapsto 50+273[/tex]
[tex]\\ \sf\longmapsto 323K[/tex]
describe four energy changes that happen in the process.
Driving a motor........
chemical energy is converted into kinetic energy.
Falling off of cliff
.........gravitational potential energy is converted into kinetic energy.
Hydroelectric energy generation
.......gravitational potential energy is converted into kinetic energy (i.e. driving a generator), which is then converted into electrical energy.
Nuclear power generation
.........mass is converted into energy, which then drives a steam turbine, which is then converted into electrical energy.
When you shine a beam of light, which is composed of just two different colors, red and green, onto a diffraction grating which color gets diffracted more
Answer:
The diffraction grating separates light into colors as the light passes through the many fine slits of the grating. This is a transmission grating. ... The prism separates light into colors because each color passes through the prism at a different speed and angle.
which characteristic of nuclear fission makes it hazardous?
Answer:The radioactive waste
Explanation:Fission is the splitting of a heavy unstable nucleus into two Lighter nuclei
A roller coaster uses 800 000 J of energy to get to the top of the first hill. During this climb, it gains 500 000 J of potential energy and pauses (velocity = 0) for a fraction of a second at the very top before heading down the other side.
a) Draw a sankey diagram for a roller coaster's climb.
A roller coaster uses 800 000 J of energy to get to the top of the first hill. During this climb, it gains 500 000 J of potential energy and pauses for a fraction of a second at the very top before heading down the other side. At the top of the hill total, the kinetic energy of the roller coaster would be zero as the velocity is zero at the top of the hill, therefore the total mechanical energy is only because of potential energy.
What is mechanical energy?Mechanical energy is the combination of all the energy in motion represented by total kinetic energy and the total stored energy in the system which is represented by total potential energy.
The expression for total mechanical energy is as follows
ME= KE+PE
As total mechanical energy is the sum of all the kinetic as well as potential energy stored in the system.As given in the problem a roller coaster uses 800000 J of energy to get to the top of the first hill. During this climb, it gains 500 000 J of potential energy which means 300000 J of energy is lost in the frictional energy while climbing the hill,
Thus at the top of the hill, the total energy of the roller coasters is only due to the potential energy.
Learn more about mechanical energy from here brainly.com/question/12319302
#SPJ2
A particle moves along the x axis. In order to calculate the torque on the particle, you need to know:
a. the rotational inertia of the particle
b. the velocity of the particle
c. the mass of the particle
d. the kinetic energy of the particle
e. the point about which the torque is to be calculated
Answer:
e. the point about which the torque is to be calculated
Explanation:
torque is the product of a force and a distance
the point about which the torque is calculated is required to know the distance.
None of the other terms are relevant as they refer to mass or its equivalent, and velocity. Force is not mentioned in any of them.
A particle moves along the x-axis. In order to calculate the torque on the particle, you need to know the point about which the torque is to be calculated. Therefore, option E is correct.
What is torque ?The rotating equivalent of force is torque. Depending on the subject of study, it is also known as the moment, moment of force, rotating force, or turning effect. It illustrates how a force can cause a change in the body's rotational motion.
Ancient Romans gave these necklaces the term "torque" by describing them as twisted and spiral screw-shaped using the Latin word "torquere," which also means "twisting" and "turning."
It's critical to realize that torque, which has to do with your motor's power in terms of rotational force, is not the same thing as speed. Find a motor with a top speed if you require more motor speed, and a motor with a motor torque that is maximized if you need more rotational force.
Thus, option E is correct.
To learn more about torque, follow the link;
https://brainly.com/question/9270821
#SPJ2
A regulation soccer field for international play is a rectangle with a length between 100 m and a width between 64 m and 75 m. What are the smallest and largest areas that the field could be?
Answer:
The smallest and largest areas could be 6400 m and 7500 m, respectively.
Explanation:
The area of a rectangle is given by:
[tex] A = l*w [/tex]
Where:
l: is the length = 100 m
w: is the width
We can calculate the smallest area with the lower value of the width.
[tex] A_{s} = 100 m*64 m = 6400 m^{2} [/tex]
And the largest area is:
[tex] A_{l} = 100 m*75 m = 7500 m^{2} [/tex]
Therefore, the smallest and largest areas could be 6400 m and 7500 m, respectively.
I hope it helps you!
Answer:
the largest areas that the field could be is [tex]A_l[/tex]=7587.75 m
the smallest areas that the field could be is [tex]A_s[/tex]=6318.25 m
Explanation:
to the find the largest and the smallest area of the field measurement error is to be considered.
we have to find the greatest possible error, since the measurement was made nearest whole mile, the greatest possible error is half of 1 mile and that is 0.5m.
therefore to find the largest possible area we add the error in the mix of the formular for finding the perimeter with the largest width as shown below:
[tex]A_l[/tex]= (L+0.5)(W+0.5)
(100+0.5)(75+0.5) = (100.5)(75.5) = 7587.75 m
To find the smallest length we will have to subtract instead of adding the error factor value of 0.5 as shown below:
[tex]A_s[/tex]= (L-0.5)(W-0.5)
(100-0.5)(64-0.5) = (99.5)(63.5) = 6318.25 m
name a device that converts mechanical energy into electrical energy.
Answer:
Electric generator is the device that converts mechanical energy into electrical energy
how will be electric lines of force where intensity of electric field is maximum ?
a. wider
b. +ve to -ve
c. narrow
d. -ve to +ve
i'm pretty sure the answer is A wider
Electric lines of force where intensity of electric field is maximum when its wider.
What is Electric field?The physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them, is known as an electric field (also known as an E-field. It can also refer to a system of charged particles' physical field.
Electric charges and time-varying electric currents are the building blocks of electric fields. The electromagnetic field, one of the four fundamental interactions (also known as forces) of nature, manifests itself in both electric and magnetic fields.
Electrical technology makes use of electric fields, which are significant in many branches of physics. For instance, in atomic physics and chemistry, the electric field acts as an attracting force to hold atoms' atomic nuclei and electrons together.
Therefore, Electric lines of force where intensity of electric field is maximum when its wider.
To learn more about electric field, refer to the link:
https://brainly.com/question/1443103
#SPJ2
A sports car accelerates uniformly from rest to 24 m/s in 6 seconds. Calculate the acceleration of the car
Answer:
a = 4m/s^2
Explanation:
Velocity(V) = uniform = 24m/s
time(t) = 6sec
Acceleration(a) = V/t
= 24/6
= 4m/s^2
When a sports car accelerates uniformly from rest to 24 m/s in 6 seconds,then acceleration of the car would be 4 m/s²
What are the three equations of motion?There are three equations of motion given by Newton
The first equation is given as follows
v = u + at
the second equation is given as follows
S = ut + 1/2×a×t²
the third equation is given as follows
v² - u² = 2×a×s
Note that these equations are only valid for a uniform acceleration.
As given problem sport car accelerates uniformly from rest to 24 m/s in 6 seconds then the acceleration of the car can be calculated by using the first equation of motion
v = u + at
As given the initial velocity u= 0
The final velocity v = 24 m/s
The time taken is t= 6 seconds
By substituting the respective values of velocity and time
24 = 0+ a*6
a = 24/6
a = 4 m/s²
Thus, when a sports car accelerates uniformly from rest to 24 m/s in 6 seconds,then acceleration of the car comes out to be 4 m/s²
Learn more about equations of motion from here
brainly.com/question/5955789
#SPJ2
Trình bày những hiểu biết của em về đại lượng vận tốc dài, vận tốc góc(định nghĩa, công thức, ý nghĩa, đơn vị, loại đại lượng).
A liquid is poured into a vessel to a depth of 16cm when viewed from the top, the bottom appears to be raised 4cm. What is the refractive index of the liquid?
Answer:
Solution
Verified by Toppr
Correct option is
C
3 cm
RI=apparent depthreal depth
Substituting, 34=apparentdepth12
Therefore, apparent depth=412×3=9
The height by which it appears to be raised is 12−9=3cm
Was this answer helpful?
71
0
SIMILAR QUESTIONS
A coin is placed at the bottom of a glass tumbler and then water is added. It appeared that the depth of the coin has been reduced because
Medium
View solution
>
A tank is filled with water to a height of 12.5 cm. The apparent depth of a needle lying at the bottom of the tank is measured by a microscope to be 9.4 cm. What is the refractive index of water? If water is replaced by a liquid of refractive index 1.63 up to the same height, by what distance would the microscope have to be moved to focus on the needle again?
Light of frequency f falls on a metal surface and ejects electrons of maximum kinetic energy K by the photoelectric effect. If the frequency of this light is doubled, the maximum kinetic energy of the emitted electrons will be
The question is incomplete, the complete question is;
Light of frequency f falls on a metal surface and ejects electrons of maximum kinetic energy K by the photoelectric effect.
Part A If the frequency of this light is doubled, the maximum kinetic energy of the emitted electrons will be If the frequency of this light is doubled, the maximum kinetic energy of the emitted electrons will be
K/2.
K.
2K.
greater than 2K.
Answer:
2K
Explanation:
Given that the kinetic energy of photo electrons is given by;
K= E -Wo
Where;
K = kinetic energy
E= energy of incident photon
Wo = work function
But;
E= hf
Wo = fo
h= Plank's constant
f= frequency of incident photon
fo= Threshold frequency
So:
K= hf - hfo
Where the frequency of incident light is doubled;
K= 2hf - hfo
Hence, maximum kinetic energy of the emitted electrons in this case will be 2K
In the following experiments, identify the independent and dependent variable.
Answer:
in what experements
Explanation:
when a boron is added to a pure semi conducter it becomes
Answer:
it becomes a p-type conductor
Explanation:
answer from gauth math
how does laser works ?
Explanation:
Lasers produce a narrow beam of light in which all of the light waves have very similar wavelengths. The laser's light waves travel together with their peaks all lined up, or in phase. This is why laser beams are very narrow, very bright, and can be focused into a very tiny spot.
An airplane which intends to fly due south at 250 km/hr experiences a wind blowing westward at 40 km/hr. What is the actual speed of the airplane relative to the ground?
Answer:
simple is rumple a daily ok I'll be
A ball is launched from the ground with a horizontal speed of 30 m/s and a vertical speed of 30 m/s. How far horizontally will it travel in 2 seconds?
A. 30 m
B. 90 m
C. 45 m
D. 60 m
Answer:
It will travel Vx * t = 30 m/s * 2 s = 60 m
Si un resorte de constante elástica 1300 n/m se comprime 12 cm ¿Cuanta energía almacena? Y si estira 12cm ¿Cuanta energía almacena?
La energía que almacena el resorte cuando se comprime y estira 12 cm es 9,4 J.
La energía potencial elástica del resorte se puede calcular con la siguiente ecuación:
[tex] E_{p} = \frac{1}{2}kx^{2} [/tex]
En donde:
k: es la constante del resorte = 1300 N/m
x: es la distancia de compresión o de elongación = 12 cm = 0,12 m
Dado que la energía es proporcional al cuadrado de la distancia recorrida por el resorte (x), la energía almacenada por el resorte durante la compresión será la misma que la energía almacenada por la elongación.
Por lo tanto, la energía almacenada es:
[tex]E_{p} = \frac{1}{2}kx^{2} = \frac{1}{2}1300 N/m*(0,12 m)^{2} = 9,4 J[/tex]
Entonces, la energía del resorte cuando se comprime y cuando se estira es la misma, a saber 9,4 J.
Para saber más sobre energía potencial visita este link: https://brainly.com/question/156316?referrer=searchResults
Espero que te sea de utilidad!
Answer:
Al comprimirse o estirarse 12 centímetros desde su posición sin deformar, el resorte almacena 9,360 joules.
Explanation:
La Energía Potencial Elástica almacenada por el resorte ([tex]U_{e}[/tex]), en joules, se calcula a partir de la Ley de Hooke, la definición de Trabajo y el Teorema del Trabajo y la Energía, cuya expresión se presenta abajo:
[tex]U_{e} = \frac{1}{2}\cdot k\cdot (x_{f}^{2}-x_{o}^{2})[/tex] (1)
Donde:
[tex]k[/tex] - Constante elástica del resorte, en newtons por metro.
[tex]x_{o}[/tex] - Posición inicial del resorte, en metros.
[tex]x_{f}[/tex] - Posición final del resorte, en metros.
Nótese que el resorte sin deformar tiene una posición de cero, la tensión tiene un valor positivo y la compresión, negativo.
Asumiendo que en ambos casos el resorte se encuentra inicialmente sin deformar, se reduce (1) a una forma de función par, es decir, una función que cumple con la propiedad de que [tex]f(x) = f(-x)[/tex], se encuentra que al comprimirse o estirarse en la misma medida almacena la misma cantidad de energía.
La cantidad de energía a almacenar es:
[tex]U_{e} = \frac{1}{2}\cdot \left(1300\,\frac{N}{m} \right)\cdot (0,12\,m)^{2}[/tex]
[tex]U_{e} = 9,360\,J[/tex]
Al comprimirse o estirarse 12 centímetros desde su posición sin deformar, el resorte almacena 9,360 joules.
2. The vector sums of and the Ark witar must se rue our the directions and maintedes at an Bit CB? What meast le tue about the directions and magnitudes and it cor
Check attached photo
Check attached photo
What is the percentage of the population that wanted both the swimming pool and the soccer complex? Use your knowledge
of the addition rule and the Venn diagram to answer.
Answer:
The percentage of people who wanted both the swimming pool and the soccer complex is 0.6 + 0.6 – 0.95 = 0.25. This can also be seen in the Venn diagram.
Explanation:
Edmentum
Identify the factors that affect the intensity of radiation detected from a radioactive source. Select one or more: The color of the source Type of emission from the source Distance of the detector from the source Type of materials between the source and the detector
The intensity of radiation is the defined as amount of energy per surface angle which can be used to determine the amount of energy emitting from a source that will hit another surface.
The factors that affect the intensity of radiation are
Type of emission from the source :This can be alpha, gamma, beta or electromagnetic rays etc
Distance of the detector from the source: The shorter the distance between the source and the detector, the more the effect and vice versa for the longer the distance.
Type of materials between the source and the detector: The type of material between the source and the detector will tell how absorbing and penetrating the radiation is.
Read more on Radiation Intensity here: https://brainly.com/question/10148635
As a roller coaster car crosses the top of a 40-m-diameter loop-the-loop, its apparent weight (the normal force) is the same magnitude as the car's weight. What is the car's speed at the top?
Answer:
40 because if it is the same weight then there is no weight to make the ride slower so it 40
Explanation:
As the speed of a particle approaches the speed of light, the momentum of the particle Group of answer choices approaches zero. decreases. approaches infinity. remains the same. increases.
Answer:
approaches infinity
Explanation:
There are two momentums, the classical momentum which is equal to the product of mass and velocity, and the relativistic momentum, the one we should look at when we work with high speeds, and this happens because massive objects have a speed limit, in this case, we are approaching the speed of light, so we need to work with the relativistic momentum instead of the classical momentum.
The relativistic momentum can be written as:
[tex]p = \frac{1}{\sqrt{1 - \frac{u^2}{c^2} } } *m*u[/tex]
where
u = speed of the object relative to the observer, in this case we have that u tends to c, the speed of light.
m = mass of the object
c = speed of light.
So, as u tends to c, we will have:
[tex]\lim_{u \to c} p = \frac{1}{\sqrt{1 - \frac{u^2}{c^2} } } *m*u[/tex]
Notice that when u tends to c, the denominator on the first term tends to zero, thus, the relativistic momentum of the object will tend to infinity.
Then the correct option is infinity, as the particle speed approaches the speed of light, the relativistic momentum of the particle tends to infinity.
1. A sequence of potential differences v is applied accross a wire (diameter =0.32 mm length = 11 cm and the resulting current I are measured as follows: V 0.1 0.2 0.3 0.4 0.5 I (MA) 72 144 216 288 360 2) a) plot a graph of v against I.
b) determine the wire's resistence , R.
c) State ohm's law and try to relate it . your results.
Answer:
a. Find the graph in the attachment
b. 720 kΩ
c. The ratio V/I gives us our resistance which is 720 kΩ
Explanation:
a) plot a graph of V against I.
To plot the graph of V against I, we plot the corresponding points against each other. With the voltage V measured in volts and the current I measured in mA, the plotted graph is in the attachment.
b) Determine the wire's resistance , R.
The resistance of the wire is determined as the gradient of the graph.
R = ΔV/ΔI = (V₂ - V₁)/(I₂ - I₁)
Taking the first two corresponding measurements. V₁ = 72 V, I₁ = 0.1 mA, V₂ = 144 V and I₂ = 0.2 mA
R = (144 V - 72 V)/(0.2 - 0.1) mA
R = 72 V/0.1 mA
R = 72 V/(0.1 × 10⁻³ A)
R = 720 × 10³ V/A
R = 720 kΩ
c) State ohm's law and try to relate it your results.
Ohm's law states that the current flowing through a conductor is directly proportional to the voltage across it provided the temperature and all other physical conditions remain constant.
Mathematically, V ∝ I
V = kI
V/I = k = R
Since the ratio V/I = constant, from our results, the ratio of V/I for each reading gives us the resistance. Since we have a linear relationship between V and I, the gradient of the graph is constant and for each value of V and I, the ratio V/I is constant. So, the ratio V/I gives us our resistance which is 720 kΩ.
Since V/I is constant, we thus verify Ohm's law.
A wire, 0.60 m in length, is carrying a current of 2.0 A and is placed at a certain angle with respect to the magnetic field of strength 0.30 T. If the wire experiences a force of 0.18 N, what angle does the wire make with respect to the magnetic field
Answer:
[tex]\theta=30 \textdegree[/tex]
Explanation:
From the question we are told that:
Current [tex]I=2.0A[/tex]
Length [tex]L=0.60m[/tex]
Magnetic field [tex]B=0.30T[/tex]
Force [tex]F=0.18N[/tex]
Generally the equation for Force is mathematically given by
[tex]F = BIL sin\theta[/tex]
[tex]sin\theta=\frac{F}{BIL}[/tex]
[tex]\theta=sin^{-1}\frac{0.18}{0.3*2*0.6}[/tex]
[tex]\theta=30 \textdegree[/tex]
An object is made of glass and has the shape of a cube 0.13 m on a side, according to an observer at rest relative to it. However, an observer moving at high speed parallel to one of the object's edges and knowing that the object's mass is 3.3 kg determines its density to be 8100 kg/m3, which is much greater than the density of glass. What is the moving observer's speed (in units of c) relative to the cube
Answer:
[tex]v=0.9833\ c[/tex]
Explanation:
The density changes means that the length in the direction of the motion is changed.
Therefore,
[tex]$\text{Density} = \frac{m}{lwh}$[/tex]
Given :
Side, b = h = 0.13 m
Mass, m = 3.3 kg
Density = 8100 [tex]kg/m^3[/tex]
So,
[tex]$8100=\frac{3.3}{l \times 0.13 \times 0.13}$[/tex]
[tex]$l=\frac{3.3}{8100 \times 0.13 \times 0.13}$[/tex]
l = 0.024 m
Then for relativistic length contraction,
[tex]$l= l' \sqrt{1-\frac{v^2}{c^2}}$[/tex]
[tex]$0.024= 0.13 \sqrt{1-\frac{v^2}{c^2}}$[/tex]
[tex]$0.184= \sqrt{1-\frac{v^2}{c^2}}$[/tex]
[tex]$0.033= 1-\frac{v^2}{c^2}}$[/tex]
[tex]$\frac{v^2}{c^2}= 0.967$[/tex]
[tex]$\frac{v}{c}=0.9833$[/tex]
[tex]v=0.9833\ c[/tex]
Therefore, the speed of the observer relative to the cube is 0.9833 c (in the units of c).
What about Iceland's location makes it particularly well-suited to produce electricity from geothermal energy
Answer:
Iceland lies on a boundary where two plates are moving away from each other. Heat from Earth’s interior rises through this plate boundary at a fast rate. This fact makes Iceland well-suited to producing electricity using its abundance of geothermal energy.
Explanation:
Edmentum sample answer.
Use the pressure meter to read the pressure in Fluid A at the bottom of the tank. Do not move the pressure meter. Switch to Fluid B and read the pressure in fluid B. Based on the two readings, compare the density of fluid B to the density of fluid A. Which statement is correct?
Answer:
[tex]P_b = \frac{\rho_b}{\rho_a} \ P_a[/tex]
Explanation:
The pressure at a depth of a fluid is
P = ρ g y
where ρ is the density of the fluid, y the depth of the gauge measured from the surface of the fluid.
In this case the pressure for fluid A is
Pa = ρₐ g y
the pressure for fluid B is
P_b = ρ_b g y
depth y not changes as the gauge is stationary
if we look for the relationship between these pressures
[tex]\frac{P_a}{P_b} = \frac{ \rho_a}{\rho_b}[/tex]
[tex]P_b = \frac{\rho_b}{\rho_a} \ P_a[/tex]
therefore we see that the pressure measured for fluid B is different from the pressure of fluid A
if ρₐ < ρ_b B the pressure P_b is greater than the initial reading
ρₐ> ρ_b the pressure in B decreases with respect to the reading in liquid A