with no further informations, just go by looking at it.
it's 90°, all other options are too far off
The differential equation of a certain system is 20y′′+cy′+80y=0
, where c is called damping constant for what value of c critical damping hapens
Options:
110
64
50
60
Answer:
c=80
Step-by-step explanation:
Based on my reading the critical damping occurs when the discriminant of the quadratic characteristic equation is 0.
So let's see that characteristic equation:
20r^2+cr+80=0
The discriminant can be found by calculating b^2-4aC of ar^2+br+C=0.
a=20
b=c
C=80
c^2-4(20)(80)
We want this to be 0.
c^2-4(20)(80)=0
Simplify:
c^2-6400=0
Add 6400 on both sides:
c^2=6400
Take square root of both sides:
c=80 or c=-80
Based on further reading damping equations in form
ay′′+by′+Cy=0
should have positive coefficients with b also having the possibility of being zero.
Armando's carpet has an area of 220 square feet. He hires the Carpet Pro carpet cleaning service, which is able to clean 9 square feet of his carpet every minute. Therefore, in the first minute, CarpetPro is able to clean 9 square feet of Armando's carpet (leaving 211 square feet remaining to be cleaned). In the second minute, the cleaner is again able to clean 9 square feet of carpet (leaving 202 square feet to be cleaned), etc. Which of the following functions expresses the number of square feet that still remain to be cleaned after t minutes from the time that the carpet cleaner began cleaning this carpet.
a. A(t) = 220 - 9
b. A(t) = 220 - 0.1
c. A(t) = 220(0.1)
d. A(t) = 220(0.96)
e. A(t) 220 - 0.96
Answer:
The answer is A
Step-by-step explanation:
The answer needs to be in slope-intercept form or y=mx+b because the amount of carpet being cleaned every minute is a constant decrease of 9 square feet.
So our b value (or how much carpet cleaned at 0 minutes) is 220
And our m value (or slope or how much carpet is being cleaned every minute) is 9
So if we plug the variables with the tangible numbers we get A(t) = -9x+220 or A(t) = 220-9x.
provided by gauth math
The sum of 'n' terms of an arithmetic sequence is 4n^2+3n. What is the first term, the common difference, and the sequence?
Answer:
The sequence has first term 7 and common difference is 8.
So the sequence is f(n)=7 + 8(n-1)
Step-by-step explanation:
Let a be the first term.
Let a+d be the second term where d is the common difference.
Then a+2d is the third....
And a+(n-1)d is the nth term.
Adding these terms we get:
an+(n-1)(n)/2×d
For the first term of this sum I seen we had n amount of a's and for the second term I used the well known identity sum of the first n positive integers is n(n+1)/2.
Let's simplify:
an+(n-1)(n)/2×d
Distribute:
an+(n^2d/2)-(nd/2)
Find common denominator:
(2an/2)+(n^2d/2)-(nd/2)
Combine terms into one:
(2an+n^2d-nd)/2
Reorder terms:
(n^2d+2an-nd)/2
Regroup terms:
(n^2d+(2a-d)n)/2
We want the following sum though:
4n^2+3n
This means d/2=4 (so d=8) and (2a-d)/2=3.
So plug d=8 into second equation to solve for a.
(2a-8)/2=3
2a-8=6
2a=14
a=7
The sequence has first term 7 and common difference is 8.
So the sequence is f(n)=7 + 8(n-1).
The table of values represents a linear function g(x), where x is the number of days that have passed and g(x) is the balance in the bank account:
Part A: Find and interpret the slope of the function. (3 points)
Part B: Write the equation of the line in point-slope, slope-intercept, and standard forms. (3 points)
Part C: Write the equation of the line using function notation. (2 points)
Part D: What is the balance in the bank account after 5 days? (2 points)
Answer:
see below
Step-by-step explanation:
Part A
The slope is found by
m = ( y2-y1)/(x2-x1)
= ( 1200-1500)/(4-0)
= -300/4
=-75
Part B
point slope y-y1 = m(x-x1) where m is the slope and (x1,y1) is a point on the line
y-1200 = -75(x-4)
slope intercept y = mx+b where m is the slope and b is the y intercept
y = -75x + 1500
standard form Ax+By =C
75x + y = 1500
Part C
Change y to g(x) in the slope intercept form
g(x) = -75x + 1500
Part D
Let x = 5
g(5) = -75(5) + 1500
=-375+1500
=1125
Put the following equation of a line into slope-intercept form, simplifying all fractions 2x-2y=14
Answer: y = x - 7
Slope intercept form: y = mx + b
[tex]2x-2y=14\\\\-2y=-2x+14\\\\y=\frac{-2x+14}{-2} =\frac{-2(x-7)}{-2} =x-7[/tex]
B is the midpoint of line segment AD, and C is the midpoint of line segment BD. If AD = 12, what is BC?
A. 1.5
B. 3
C. 4
D. 6
PLEASE HELP
Solve the equation for y. Identify the slope and y-intercept then graph the equation.
Y=-3x+1
Y=
M=
B=
Please Include a picture of the graph and show your work if you can
The equation is already solved for y
It's in y = mx+b form where
m = -3 = slope
b = 1 = y intercept
The graph is shown below. It's a straight line through the two points (0,1) and (1,-2).
Note that (0,1) is the y intercept. We use the slope = -3 = -3/1 to move 3 units down and 1 unit to the right to arrive at (1,-2).
Susan has an investment account which compounds interest annually at a rate of 3.2%. After 6 years, she has 86125 in the
account. How much money did she initially place in the account? Round your answer to the nearest whole number. Do not
include a s in your answer.
Provide your answer below:
Answer:
10610
Step-by-step explanation:
Given,
T=6years
R=3.2%
A=86125
Now,
CA=P[1+R/10]^T
or,P=86125/[1+3.2/10]^6
=86125/5.29
=10610
what is heavier ten tons of wool or ten tons of steel
find the common ratio of the geometric sequence 4,3,9/4
Answer:
3/4
Step-by-step explanation:
To find the common ratio, take the second term and divide by the first term
3/4
Check with the third and second terms
9/4 ÷3
9/4 *1/3= 3/4
The common ratio is 3/4
A bag contains 8 red balls and 3 white balls. Two balls are drawn without replacement. (Enter your probabilities as fractions.) (a) What is the probability that the second ball is white, given that the first ball is red
Answer:
12/55
Step-by-step explanation:
Probability is the ratio of the number of possible outcomes to the number of total outcomes.
Given that the bag contains 8 red balls and 3 white balls, the probability of picking a red ball
p(r) = 8/(8+3) = 8/11
Probability of picking a white ball
= 3/11
when a red ball is picked first, the total number of balls reduces to 10 hence the probability that the second ball is white, given that the first ball is red
=8/11 * 3/10
= 24/110
= 12/55
What is the measure of the angle in red?
70°
Answer:
See pic below.
Answer: C. 380°
Step-by-step explanation:
Which of the following quadratic equations is written in general form?
The 3rd one
Step-by-step explanation:
Reason being that it has no factors, meaning it cannot be simplified any further, but quadratic method can be used to attain factors.
hope it makes sense :)
Cars arrive at an automatic car wash system every 10 minutes on average. The cars inter-arrival times are exponentially distributed. Washing time for each is 6 minutes per car and is purely deterministic (i.e., the waiting line system is M/D/c). Assuming that the car wash has a single bay to serve the cars, what is the average number of cars waiting in line (L.)?
Answer:
the average number of cars waiting in line L[tex]q[/tex] is 0.45
Step-by-step explanation:
Given the data in the question;
Cars arrive at an automatic car wash system every 10 minutes on average.
Car arrival rate λ = 1 per 10 min = [ 1/10 × 60 ]per hrs = 6 cars per hour
Washing time for each is 6 minutes per car
Car service rate μ = 6min per car = [ 1/6 × 60 ] per hrs = 10 cars per hour
so
P = λ/μ = 6 / 10 = 0.6
Using the length of queue in M/D/1 system since there is only one service bay;
L[tex]q[/tex] = [tex]\frac{1}{2}[/tex][ P² / ( 1 - P ) ]
so we substitute
L[tex]q[/tex] = [tex]\frac{1}{2}[/tex][ (0.6)² / ( 1 - 0.6 ) ]
L[tex]q[/tex] = [tex]\frac{1}{2}[/tex][ 0.36 / 0.4 ]
L[tex]q[/tex] = [tex]\frac{1}{2}[/tex][ 0.9 ]
L[tex]q[/tex] = 0.45
Therefore, the average number of cars waiting in line L[tex]q[/tex] is 0.45
Convert 110101 in base 2 to base 10
Answer:
base-2 base-10
110011 = 51
110100 = 52
110101 = 53
110110 = 54
21 more rows
15. Five boys went to see the CIRCUS. Four of them had Rs.5 each and the fifth boy had Re.1 more than the entrance ticket price. IF with the whole amount (which the 5 boys had), the boys were able to just buy the entrance ticket for all the 5, cost of the entrance ticket per person was
Answer:
20+(x+1) = 5x
x=21/4
x= 5.25
The entrance ticket per person can be calculated using algebraic equation. We have create the algebraic expression as per the question.
The entrance ticket per person is Rs. 5.25.
Given:
Total boys are 5
4 boys has 5 rupee each so total rupee are [tex]=5\times 4=20[/tex].
Let the entrance ticket per boy is [tex]x[/tex].
One boy had 1 rupee more than entrance ticket [tex](x+1)[/tex].
Write the algebraic expression to calculate the entrance ticket per person.
[tex]5x=20+(x+1)\\5x=20+x+1\\5x-x=20+1\\4x=21\\x=5.25[/tex]
Thus, the entrance ticket per person is Rs. 5.25.
Learn more about algebraic expression here:
https://brainly.com/question/953809
The coordinates of the preimage are:
A(−8,−2)
B(−4,−3)
C(−2,−8)
D(−10,−6)
Now let’s find the coordinates after the reflection over the x-axis.
A′(−8,
)
B′(−4,
)
C′(−2,
)
D′(−10,
)
And now find the coordinates after the reflection over the y-axis.
A′′(
,2)
B′′(
,3)
C′′(
,8)
D′′(
,6)
This is also the same as a rotation of 180∘.
9514 1404 393
Answer:
A'(-8, 2) ⇒ A"(8, 2)B'(-4, 3) ⇒ B"(4, 3)C'(-2, 8) ⇒ C"(2, 8)D'(-10, 6) ⇒ D"(10, 6)Step-by-step explanation:
Reflection over the x-axis changes the sign of the y-coordinate. Reflection over the y-axis changes the sign of the x-coordinate. We can summarize the transformations as ...
preimage point ⇒ reflection over x ⇒ reflection over y
A(−8,−2) ⇒ A'(-8, 2) ⇒ A"(8, 2)
B(−4,−3) ⇒ B'(-4, 3) ⇒ B"(4, 3)
C(−2,−8) ⇒ C'(-2, 8) ⇒ C"(2, 8)
D(−10,−6) ⇒ D'(-10, 6) ⇒ D"(10, 6)
Given parallelogram ABCD, diagonals AC and BD intersect at point E. AE=2x, BE=y+10, CE=x+2 and DE=4y−8. Find y.
A. 16
B. 6
C. 18
D. 32
9514 1404 393
Answer:
B. 6
Step-by-step explanation:
The diagonals of a parallelogram intersect at their midpoints, so ...
DE = BE
4y -8 = y +10
3y = 18 . . . . . . . add 8-y
y = 6 . . . . . . . . divide by 3
__
Additional comment
The value of x is found the same way:
2x = x+2 ⇒ x = 2
The figure below is a rectangular prism.
Which edge is parallel to segment BD?
A. HK
B. BM
C. DK
D. AH
What is 1.25 x 10^8 in standard form?
Answer:
125000000
Step-by-step explanation:
1.25 x 10^8
Move the decimal 8 places to the right
1.25
We can move it two places
125
We need to add 6 more zeros
125000000
Answer: 125,000,000
Step-by-step explanation:
The sum of two numbers is 41. The larger number is 17 more than the smaller number. What are the numbers?
Larger number:
Smaller number:
____________ is/are when data is analyzed in order to make decisions about the population behind the data.
A. Experiments
B. Simulations
C. Surveys
D. Statistics
Answer:
statistics are when data analyzed in order to make decisions about the population behind the data.
The correct answer to the question is Statistics (Option D).
What is statistics?
Statistics is a field of study in mathematics which deals with raw data. It is a tool which refines the data to produce meaningful results and a pathway to better understanding of it.
Some examples of raw data can be population sample which loves to see a particular TV show or a sample of students getting so and so marks in Math test.
Data is analyzed mainly by three different measure of central tendency that is mean, median and mode.
Mean is the average value of given discrete data.Median is the middle value when the data is sorted in ascending or descending order.Mode is the value that has highest frequency.Therefore, Statistics the correct answer.
To know more about statistics refer:https://brainly.com/question/10734660
#SPJ2
The height of a projectile launched upward at a speed of 48 feet/second from a height of 160 feet is given by the function h(t)=-16sup(t,2)+48t+160. How long will it take the projectile to hit the ground?
Answer:
Hello,
5 s
Step-by-step explanation:
[tex]h(t)=-16t^2+48t+160\\=-16(t^2-3t-10)\\=-16(t^2-5t+2t-10)\\=-16(t(t-5)+2(t-5))\\=-16(t-5)(t+2)\\\\h(t)=0 \Longleftrightarrow\ t=-2\ or\ t=5\\\\Only\ t=5\ is \ a\ answer.(time\ must\ be\ positive)[/tex]
simplify 7-(3n+6)+10n
Answer:
1 + 7n
Step-by-step explanation:
7-(3n+6)+10n
7 - 3n - 6 + 10 n
1 - 7n
Answered by Gauthmath
Find the surface area of this triangular prism.
Answer:
96
Step-by-step explanation:
Surface area=2*Area of triangle+Area of different rectangular strips
Surface area=2*(1/2)*(48)+2*8+2*6+2*10=48+48=96
Please help me solve the question...
Answer:
All of area is πr²
Step-by-step explanation:
and we should write the area kind of radian. So if all area is π*(12)²= 144π - this for 360°- and 240° is 96π
but we must add area of the triangle which has two same side and has 6 high so it's area is 6*12√3/2 = 36✓3
our answer is 96π+ 36✓3
1. Ten times the sum of -270 and a number gives -20.
9514 1404 393
Answer:
equation: 10(-270 +n) = -20number: 268Step-by-step explanation:
If n represents the number, we have ...
10(-270 +n) = -20 . . . an equation for n
__
The solution can be found as ...
-270 +n = -2 . . . . . divide by 10
n = 268 . . . . . . . add 270
The number is 268.
I need help please. Thank you
Answer:
0.0009765625
Step-by-step explanation:
This is what i got its probally incorrect
What is one thousand minus on hundred and ten
Answer:
The answer is 890 . ...... :D
Suppose that a category of world-class runners are known to run a marathon in an average of 147 minutes with a standard deviation of 12 minutes. Consider 49 of the races. Find the probability that the runner will average between 146 and 150 minutes in these 49 marathons. (Round your answer to two decimal places.)
Answer:
0.6524 = 65.24% probability that the runner will average between 146 and 150 minutes in these 49 marathons.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
Average of 147 minutes with a standard deviation of 12 minutes.
This means that [tex]\mu = 147, \sigma = 12[/tex]
Consider 49 of the races.
This means that [tex]n = 49, s = \frac{12}{\sqrt{49}} = \frac{12}{7} = 1.7143[/tex]
Find the probability that the runner will average between 146 and 150 minutes in these 49 marathons.
This is the p-value of Z when X = 150 subtracted by the p-value of Z when X = 146. So
X = 150
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{150 - 147}{1.7143}[/tex]
[tex]Z = 1.75[/tex]
[tex]Z = 1.75[/tex] has a p-value of 0.9599
X = 146
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{146 - 147}{1.7143}[/tex]
[tex]Z = -0.583[/tex]
[tex]Z = -0.583[/tex] has a p-value of 0.3075.
0.9599 - 0.3075 = 0.6524.
0.6524 = 65.24% probability that the runner will average between 146 and 150 minutes in these 49 marathons.