what is the sum of the complex numbers -9-i, and -5-i?

Answers

Answer 1

Answer:

-14-2i

Step-by-step explanation:

-9-i+(-5-i)

collect like terms(real-real, imaginary-imaginary)

=(-9-5)+(-i-i)

=-14-2i


Related Questions

I need help ASAP thank you guys

Answers

Answer:

The fraction is undefined when x=-2

Step-by-step explanation:

The fraction will be undefined when the denominator is zero

x+2 = 0

x+2-2 = 0-2

x = -2

The fraction is undefined when x=-2

Answer:

as to me 5

Step-by-step explanation:

ask someone else to say that I am not sure if you have any questions or need any further information please contact me at the end of the world

Which equation can she use as statement 5? 60:x = 48:(48 + 36) 60 + x = 48 + 36 60 − x = 48 − 36 60:(60 + x) = 48:(48 + 36)

Answers

The answer is 48:(48 + 36)

Ram and his sister Kalpana win a prize of Rs 2000. They decide to share the prize in the ratio of their ages. Ram is 15 years old and Kalpana is 10 years old. How much do each of them receive​

Answers

9514 1404 393

Answer:

Ram -- ₹1200Kalpana -- ₹800

Step-by-step explanation:

Their age total is 15+10=25, so Ram will get 15/25 = 0.6 of the total. Kalpana will get the remaining 0.4 of the total.

  Ram receives 0.6 × ₹2000 = ₹1200

  Kalpana receives 0.4 × ₹2000 = ₹800

The distance from the plane to the building __ meters

Answers

Answer:

1200 ×90÷8 is not correct ans

Which of the following pairs of functions are inverses of each other?
A. f(x) = 5 + x and g(x) = 5 - x
B. f(x) = 2x -9 and g(x)=x+9/2
C. f(x) = 3-6 and g(x)=x+6/2
D. f(x)= x/3+4 and g(x) = 3x - 4​

Answers

The pair of functions that are inverses of each other is B. f(x) = 2x - 9 and g(x) = x + 9/2.

To determine if two functions are inverses of each other, we need to check if the composition of the functions results in the identity function, which is f(g(x)) = x and g(f(x)) = x.

Let's analyze the given options:

A. f(x) = 5 + x and g(x) = 5 - x

To check if they are inverses, we compute f(g(x)) = f(5 - x) = 5 + (5 - x) = 10 - x, which is not equal to x. Similarly, g(f(x)) = g(5 + x) = 5 - (5 + x) = -x, which is also not equal to x. Therefore, these functions are not inverses.

B. f(x) = 2x - 9 and g(x) = x + 9/2

By calculating f(g(x)) and g(f(x)), we find that f(g(x)) = x and g(f(x)) = x, which means these functions are inverses of each other.

C. f(x) = 3 - 6 and g(x) = x + 6/2

Similar to option A, we compute f(g(x)) and g(f(x)), and find that they are not equal to x. Hence, these functions are not inverses.

D. f(x) = x/3 + 4 and g(x) = 3x - 4

After evaluating f(g(x)) and g(f(x)), we see that f(g(x)) = x and g(f(x)) = x. Therefore, these functions are inverses of each other.

In summary, the pair of functions that are inverses of each other is B. f(x) = 2x - 9 and g(x) = x + 9/2.

Learn more about function here:

https://brainly.com/question/782311

#SPJ8

If $ 10000 is deposited at an "interest rate" of 4% per year, annually compounded, what amount will depositors get after 5 years?

Answers

Answer:

PTR upon hundreds .by putting these formulas you can solve ti and is 2000

write your answer in simplest radical form​

Answers

Answer:

[tex]9\sqrt{3}[/tex]

Step-by-step explanation:

This is a 30-60-90 triangle.

It's good to remember this. The side length opposite to the 60 degree angle is always the base multiplied by [tex]\sqrt{3}[/tex]

Answer:

9√3.

Step-by-step explanation:

tan 60 = √3

So w/9 =√3

w = 9√3

Square root 1.000441

Answers

Answer: 1.00022048

Step-by-step explanation:

the answer is 1.0002204757

A regular polygon is drawn in a circle so that each vertex is on the circle and is connected to the center by a radius.
Each of the central angles has a measure of 40°. How many sides does the polygon have?
THE
9

Answers

Answer: 90 sides

Step-by-step explanation:

Let's say the circle has a center at  A and B and C are at the vertices of a polygon. Since this figure is inscribed in a circle, we can draw two radii through the vertices. Because all radii are congruent, we know segment BA is congruent to Segment CA. If a triangle has at least 2 congruent sides, we can identify the triangle as an isosceles triangle. With this we can conclude <ACB is congruent to <ABC. By the definition of congruent angles, m<ACB = M<ABC. Let's say m<ACB = x. By the Triangle Sum Theorem, 40 + x + m<ABC = 180. By substitution, 40 + x + x = 180. When we solve we get x =70. Since radii bisect interior angles we know that each interior angle of this polygon is 140 degrees. If we plug in 140 to our equation, [tex]\frac{(n-2)180}{n}[/tex]  where n is the number of sides, we get n = 90. So we can conclude this polygon has 90 sides

Answer is 90 sides

Explanation
(7/2)-2=40
40*2

Is the relationship shown by the data linear? If so, model the data with an equation.

Answers

Answer:

4th option

Step-by-step explanation:

The relationship is linear,

putting the value of x in the right side of the equation of option 4, you'll get the value of the left side

putting, x=1

y+4=-1/2(x-1)

y=-1/2(1-1)-4

y=-4

putting, x=7

y+4=-1/2(7-1)

y=-1/2(6)-4

y=-6/2-4

y=-3-4

y=-7

I need help guys thanks so much

Answers

Answer:

2

Step-by-step explanation:

8 ^ (5/3) ^ 1/5

We know a^b^c = a^(b*c)

8^ (5/3*1/5)

8^ 1/3

Rewriting 8 as 2^3

2^3 ^1/3

2 ^(3*1/3)

2^1

2

Answer:

2

Step-by-step explanation:

((2^3)^5/3)^1/5

= (2^5)^1/5

= 2

Answered by Gauthmath

tính công thức Taylo đến x^13

Answers

Answer:

أنت مجنون ، هل تعرف ذلك؟

Step-by-step explanation:

بنسلفانيا

find the solution to the system of equations.
y= -7x + 3

y= -x - 3

Answers

Answer:

x = 1       y = -4

Step-by-step explanation:

-7x + 3 = -x - 3

-7x = -x - 6

-6x = -6

x = 1

y = - (1) - 3

y = -1 - 3

y = -4

The sum of four
consecutive odd number is 8o. Find the number​

Answers

Answer:

The sum of 4 consecutive odd number is 80

Let X be the first of these numbers

Then the next odd number is X+2

The third is X+4The fourth is X+6

All of these add up to 80

(X) + (X+2) + (X+4) + (X+6) = 80

Using the commutative and associative laws, let's transform this equation into

(X + X + X + X) + (2 + 4 + 6) = 804X + 12 = 80

Subtract 12 from both sides of the equation gives4X = 68

Divide both sides by 4 gives

X = 17

Going back to the original question:What are the 4 consecutive odd numbers: 17, 19, 21, 23Checking our answer:17 + 19 + 21 + 23 = 80 Correct!

Ray’s weight increased by 11% in the last two years. If he gained 16.5 pounds, what was his weight two years ago?

Answers

Answer:

Ray weighed 150 pounds two years ago.

Step-by-step explanation:

11/100 = 16.5/x

11x = 16.5(100)

11x = 1,650

(11x)/11 = (1,650)/11

x = 150

About time that he should start going to the gym!

If a person invested half of her money at 9% and half at 7% and received $160 interest, find the total amount of money invested.

Answers

Answer:

$2000

Step-by-step explanation:

let x be the money she invested

lets assume this was for 1 year

0.09(x/2) + 0.07(x/2) = 160

multiply each side by 2 to cancel the denominators:

0.09x + 0.07x = 320

0.16x = 320

x = 2000

Answer: $2000

Let the amount of money she invested be x

Lets assume the time of investment as 1 year

ATQ

0.09(x/2) + 0.07(x/2) = 160

0.09x + 0.07x = 320

0.16x = 320

x = 2000

Must click thanks and mark brainliest

The carpet in the school library needs to be replaced. The dimensions of the library floor or shell each square foot of cart bit cost $1.25. What is the total cost of the new carpet for the library

Answers

To find the cost, we must:

First, find the area of the carper. It can be found dividing the carper into a rectangle and a right triangle.Then, with the area, in square foot, we have the cost per square foot, which makes it possible to find the total cost.

Doing this, we get that the cost is: $3,815, and the correct option is B.

Carpet:

The carpet can be divided into:

A rectangle of dimensions 56 ft and 38 ft.A right triangle of legs 71 - 38 = 33 ft and 56 ft.

----------------------------------------------

Area of the rectangle:

The area of a rectangle of dimensions l and w is given by:

[tex]A_r = lw[/tex]

In this question, the dimensions are l = 56 ft, w = 38 ft, so the area, in square feet, is:

[tex]A_r = 56*38 = 2128[/tex]

-------------------------------------------

Area of a right triangle:

The area of a right triangle of legs a and b is given by:

[tex]A_t = \frac{ab}{2}[/tex]

In this question, the legs are a = 56, b = 38, so the area, in square feet, is:

[tex]A_t = \frac{56(33)}{2} = 924[/tex]

----------------------------

Total area:

The total area is the sum of the area of the rectangle with the area of the right triangle, thus:

[tex]A = A_r + A_t = 2128 + 924 = 3052[/tex]

-------------------------

Cost:

Each square foot costs $1.25.

There are 3,052 square feet. So, the cost is:

[tex]C = 1.25*3052 = 3815[/tex]

Thus, the cost is $3,815, and the correct option is B.

A similar question is found at https://brainly.com/question/13209573

A certain model of automobile has its gas mileage (in miles per gallon, or mpg) normally distributed, with a mean of 28 mpg and a standard deviation of 4 mpg. Find the probability that a car selected at random has the following gas mileages. (Round your answers to four decimal places.) (a) less than 26 mpg (b) greater than 34 mpg (c) between 22 and 34 mpg

Answers

Answer:

Step-by-step explanation:

We are finding the probability, which is a percentage, of each of these intervals on our standard bell curve. In order to find this percentage, we need to find the z-score that provides this percentage. To find the z-score:

[tex]z=\frac{x_i-\bar{x}}{\sigma}[/tex] which is the number in question minus the mean, all divided by the standard deviation. We're first looking for the probability that the gas mileage on a certain model of car is less than 26 mpg.

To find this z-score:

[tex]z=\frac{26-28}{4}=-.5[/tex] Depending upon which table you look at for the z-score determines how you will find it. The z-score that measure from the value and to the left of it is what we need. This decimal is .3085375, or 30.8538%.

Onto b., which is for the percentage of cars that have gas mileage over 34 mpg. Find the z-score, and this time, we look to the right of the value for the percentage:

[tex]z=\frac{34-28}{4}=1.5[/tex] and to the right of 1.5 standard deviations we will find .0668072, or 6.68072%

Then finally c., which wants the probability that the gas mileage on one of these cars is greater than 22 but less than 34 mpg. To do this we have to find the z-scores of each and then do some subtracting. First the z-scores:

[tex]z=\frac{22-28}{4}=-1.5[/tex] The percentage of data that lies to the right of that z-score is .9331927

The z-score for the other value, 34, was already found as 1.5, having .0668072 of the data to the right of that z-score. We subtract the smaller from the larger to determine what's left in-between:

.9331972 - .0668072 = .86639, or as a percentage, 86.639% of the cars fall into this interval for gas mileage.

find the mid-point of the line segment joining the points (10, 13) and (-7, 7)? ​

Answers

Answer:

(3/2,10)

Step-by-step explanation:

Mid point is ((10-7)/2,(13+7)/2)=(1.5,10)

how do I do this?????????????????????????????

Answers

Use the Pythagorean theorem to find the length of the third side (AB), and then subtract 17.6 away from the total length of AB.

What are the zeros of the polynomial function f(x)=x3-7x2+8x+16

Answers

Answer: x=4, -1

Step-by-step explanation:

Assuming you meant [tex]x^3-7x^2+8x+16[/tex], the zeros of the question are x = 4 and -1.

Step 1. Replace f(x) with y.

[tex]y = x^3-7x^2+8x+16[/tex]

Step 2. To find the roots of the equation, replace y with 0 and solve.

[tex]0 = x^3-7x^2+8x+16[/tex]

Step 3. Factor the left side of the equation.

[tex](x-4)^2 (x+1)=0[/tex]

Step 4. Set x-4 equal to 0 and solve for x.

[tex]x-4=0[/tex]

Step 5. Set [tex]x+1[/tex] equal to 0 and solve for x.

[tex]x=-1[/tex]

The solution is the result of [tex]x-4=0[/tex] and [tex]x+1=0[/tex].

[tex]x=4,-1[/tex]

The manufacturer of cans of salmon that are supposed to have a net weight of 6 ounces tells you that the net weight is actually a normal random variable with a mean of 6.05 ounces and a standard deviation of .18 ounces. Suppose that you draw a random sample of 36 cans.
a. Find the probability that the mean weight of the sample is less than 5.97 ounces.
b. Suppose your random sample of 36 cans of salmon produced a mean weight that is less than 5.97 ounces. Comment on the statement made by the manufacturer.

Answers

Answer:

a) 0.0038 = 0.38% probability that the mean weight of the sample is less than 5.97 ounces.

b) Given a mean of 6.05 ounces, it is very unlikely that a sample mean of less than 5.97 ounces, which means that the true mean must be recalculated.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal Probability Distribution

Problems of normal distributions can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

Mean of 6.05 ounces and a standard deviation of .18 ounces.

This means that [tex]\mu = 6.05, \sigma = 0.18[/tex]

Sample of 36:

This means that [tex]n = 36, s = \frac{0.18}{\sqrt{36}} = 0.03[/tex]

a. Find the probability that the mean weight of the sample is less than 5.97 ounces.

This is the p-value of z when X = 5.97. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{5.97 - 6.05}{0.03}[/tex]

[tex]Z = -2.67[/tex]

[tex]Z = -2.67[/tex] has a p-value of 0.0038.

0.0038 = 0.38% probability that the mean weight of the sample is less than 5.97 ounces.

b. Suppose your random sample of 36 cans of salmon produced a mean weight that is less than 5.97 ounces. Comment on the statement made by the manufacturer.

Given a mean of 6.05 ounces, it is very unlikely that a sample mean of less than 5.97 ounces, which means that the true mean must be recalculated.

What is the measure
Pls help i will give brainliest
Picture included

Answers

A straight line equals 180° so we are given that part of is 80° so 180-80=100°
100 is your answer
Hope this helps!

Divide p(x)=x^3-4x^2+x+6 by (x-3). Find the remainder and the quotient.

Answers

Answer:

Quotient is x² - x - 2

Remainder is 0

josue bought 7 pounds of pretzels at a local wholesaler for $16.80. his friend ricardo bought 5 pounds of pretzels at the supermarket for $12.75. Ricardo thinks he got the better deal because $12.75 is less than $16.80. Is Ricardo's reasoning correct? Explain why or why not.

Answers

Answer:

Ricardo's reasoning is not correct

Step-by-step explanation:

Find who got the better deal by dividing the price by the number of pounds of pretzels:

16.80/7 = $2.40 a pound

12.75/5 = $2.55 a pound

So, Josue got the better deal because he only spent $2.40 a pound on the pretzels, while Ricardo spent $2.55 a pound.

Ricardo did not get the better deal, because he spent more per pound on the pretzels.

Ricardo's reasoning is not correct.

Please help! Thank you.

Answers

Answer:

B  at -1 minus we go to - ∞

at -1 plus  we to + ∞

Step-by-step explanation:

         x^2 -x

g(x) = ---------

         x+1

Factor out x

         x(x-1)

g(x) = ---------

         x+1

As x is to the left of -1

   x is negative (x-1) is negative

        x+1  will be slightly negative

g(-1 minus) = -*-/ -  = -  and we know that the denominator is very close to zero  we are close to infinity  so we go to - ∞

As x is to the right of -1

   x is negative (x-1) is negative

        x+1  will be slightly positive

g(-1 plus) = -*-/ +  = +  and we know that the denominator is very close to zero  we are close to infinity  so we go to  ∞

Solve the equation. - 2(2x-4)= 4x​

Answers

Answer:

-2(2x-4) = -4x+8 or 2(2x-4) ≠ 4x ; -4x+8 ≠ 4x

Step-by-step explanation:

Did you accidentally write =4x after your expression? If so, then let me explain why my answer is correct. I used distributive property of multiplication, so I multiplied -2 with 2x to get -4x, and -2 multiplied with -4 to get 8. So my final answer was -4x+8. If you did not accidentally put -4x, then my answer would be, 2(2x-4) ≠ 4x or -4x+8 ≠ 4x. Hope this helped.

-4x+8=4x
Get the 4x to the other side becomes 8=4x+4x
8x=8, x=1

A line is perpendicular to the line y = 4x - 3 and has x-intercept (2,0). Which of the following is an equation of the line?

Answers

Answer:

y = -1/4x+1/2

Step-by-step explanation:

y = 4x - 3

This is in slope intercept form, y = mx+b where the slope is m

The slope is 4

Perpendicular lines have slopes that are negative reciprocals

-1/4 is the slope of the perpendicular line

y = -1/4x+b

Using the point (2,0)

0 = -1/4(2)+b

0 = -1/2+b

b = 1/2

y = -1/4x+1/2

Find the missing side round your answer to the nearest tenth

Answers

Answer:

x=13.2

Step-by-step explanation:

cos(43)=x/18

x=18×cos(43)

x=13.2

Answered by GAUTHMATH

Find the domain and range of the function, f(x)=sin|x|

Answers

Answer:

[tex]Domain = (-\infty,\infty)[/tex]

[tex]Range = (0,1)\\[/tex]

Step-by-step explanation:

Given

[tex]f(x) = \sin|x|[/tex]

Solving (a): The domain

There is no restriction on the given function because it is not a root function and doesn't have a x denominated fraction

Hence, the domain is:

[tex](-\infty,\infty)[/tex]

Solving (b): The range

The minimum of a sine function is 0

The maximum of a sine function is 1

So, the range is:

[tex](0,1)[/tex]

Other Questions
= (b) Use your calculator to determine the exact value of 35.23 x 3.02 Exactly Correct to 2 decimal place 1 or 2 topics or two lessons should be explained in an illustrated childrens book minimum of 10 pages must have 3 or more sentences Someone please help me with this algebra problem Integrate with respect to x 3(2-5x) Drag the tiles to the boxes to form correct pairs. Not all tiles will be used.Match the rectangles formed by the sets of points to their corresponding areas.A(-9, 8), B(-5,5), C(1, 13), D(-3, 16)50 square unitsE(30, 20), F(39, 29), G(49, 19), H(40, 10)300 square unitsI(-6, 2), J(2, 2), K(2, -8), L(-6, -8)100 square unitsM(5,5), N(11,5), O(11,-5), P(5,-5)80 square unitsQ(10, 0), R(15,5), S(25,-5), T(20,-10)U(0,5), V(15, 20), W(25, 10), X(10,-5) HELPPPPPPPP i accidentally pressed on c What is the appropriate measure of angle B? write a story that illustrate the saying that the excessive desire for money is the root of all evil FOR EASY BRAINLIEST ANSWER QUESTION BELOW!1. Solve each word problem .twice a number added three times the sum of the number and 2 is more than 17. Find the numbers that satisfy condition Could you show detailed steps in how to solve this problem please There are four different colored balls in a bag. There is equal probability of selecting the red, black, green, or blue ball.What is the expected value of getting a green ball out of 20 experiments with replacement? tr(n)*2 I NEE HELP ASAP You have to find the value of k When the insulation resistance between a motor winding and the motor frame is tested, the value obtained is 1.0 megohm (106 ). How much current passes through the insulation of the motor if the test voltage is 1000 V? How can one form of energy be transferred into another. 82 less than r is less than -164 The following revenue and expense account balances were taken from the ledger of Acorn Health Services Co. after the accounts had been adjusted on January 31, 20Y7, the end of the fiscal year: Depreciation Expense $10,000 Insurance Expense 9,000 Miscellaneous Expense 8,150 Rent Expense 60,000 Service Revenue 634,900 Supplies Expense 4,100 Utilities Expense 44,700 Wages Expense 548,200Requierd:Prepare an income statement. what the modern era quantiteve approach manegmet A construction company needs 2 weeks to construct a family room and3 days to add a porch. Find the ratio of the time it takes for constructing the porch to the time constructing the family room, with all units in days. What is the simplest form of this expression?