Answer:
The answer to your question is 1, or answer choice A.
Step-by-step explanation:
x+ 2 /7 = 3 /7 x+ 6 /7
x+ 2 /7 − 3 /7 x= 3 /7 x+ 6 /7 − 3 /7 x
4 /7 x+ 2 /7 = 6 /7
4 /7 x+ 2 /7 − 2 /7 = 6 /7 − 2 /7
4 /7 x= 4 /7
( 7 /4)*( 4 /7 x)=( 7 /4 )*( 4 /7 )
x=1
Jon and Kristen are both increasing the number of minutes they jog each day, as shown in the tables.
Jon
Day Minutes
0 15
1 17
2 19
3 21
Kristen
Day Minutes
0 22
1 23
2 24
3 25
Which system of linear equations could be used to determine which day they will jog for the same number of minutes, where d represents the day and m represents the number of minutes?
Answer:
A system of linear equations that could be used to determine which day they will jog the same number of minutes is presented as follows;
m = 2·d + 15
m = d + 22
Step-by-step explanation:
The table of values for the number of minutes Jon and Kristen jog each day is presented as follows;
Jon
[tex]\begin{array}{ccc}Day&&Minutes\\0&&15\\1&&17\\2&&19\\3&&21\end{array}[/tex]
Kristen
[tex]\begin{array}{ccc}Day&&Minutes\\0&&22\\1&&23\\2&&24\\3&&25\end{array}[/tex]
The slope of the data representing Jon's data, m = (21 - 15)/(3 - 0) = 2
Therefore, the equation representing Jon's data is given as follows;
m - 15 = 2·d
m = 2·d + 15
The slope of the data representing Kristen's data, m = (25 - 22)/(3 - 0) = 1
Therefore, the equation representing Kristen's data is given as follows;
m - 22 = d
∴ m = d + 22
The system of linear equations that could be used to determine which day they will jog the same number of minutes is therefore;
m = 2·d + 15
m = d + 22
The answer is in the picture below!
Which choice is equivalent to the expression below?
Answer:
C. [tex]4\sqrt{7} -4x\sqrt{7}[/tex] is correct
Steps:
[tex]4\sqrt{7} -3\sqrt{7}x-x\sqrt{7} \\\\4\sqrt{7} -3\sqrt{7} x-\sqrt{7} x\\\\4\sqrt{7} +(-3\sqrt{7} x-\sqrt{7} x)\\\\4\sqrt{7} -4\sqrt{7} x[/tex]
Answer:
C. 4√7 - 4x√7
Step-by-step explanation:
4√7 - 3x√7 - x√7
combine like terms
4√7 - 4x√7
3. Grace has twice as much money as tad
Together they have $36. How much Money
des Tad have?
Answer:
Tad has 12 dollars and Grace has 24
Step-by-step explanation:
Grace has twice as much, 24 is double 12. So Tad has 12 dollars.
An equilateral triangle has a perimeter of 15x3 + 33x5 feet. What is the length of each side?
x3 feet
5 + 11x2 feet
5x2 + 11 feet
5x3 + 11x5 feet
Answer:
the answer is 5×3+11×5 feet
Answer:
4th option
Step-by-step explanation:
An equilateral triangle has 3 congruent sides
Divide the perimeter by 3 for length of side
[tex]\frac{15x^3+33x^5}{3}[/tex]
= [tex]\frac{15x^3}{3}[/tex] + [tex]\frac{33x^5}{3}[/tex]
= 5x³ + 11[tex]x^{5}[/tex] ← length of 1 side
State the slope of the line shown below (help ASAP)
Is it a, b, c or d?
Answer:
D
Step-by-step explanation:
(the above graph depicts a horizontal line that intersects the y axis at -2)
(so, y = -2)
Answer:
0
Step-by-step explanation:
Horizontal line x axis is 0 while the vertical y axis is undefined.
C. Examine the hourglasses (A), (B), and (C) and
find the best answer.
6
(A)
(B)
.(C)
6
a) (B) shows the most time passed.
b) (A) shows the most time passed.
c) (C) shows the most time passed.
d) (A), (B), and (C) show the same time passed.
6
Answer:add a screenshot
Step-by-step explanation:
I can't see the our glasses
5sinA=4, find the value of tanA.
Answer: tan A=4/3
Step-by-step explanation:
Theo đề ta có: 5sinA=4 suy ra: sinA=4/5, mà ta đã biết là: sinA= cạnh đối/cạnh huyền, suy ra: cạnh đối của góc A =4, cạnh huyền =5
Áp dụng định lí py ta go ta đc:
5^2=4^2+x^2
=) x=3
Vậy cạnh kề của góc A=3
Mà tanA = cạnh đối/cạnh kề
Vậy giá trị của tanA=4/3
(bạn vẽ hình ra thì có thể nhìn rõ hơn đấy, cảm ơn bạn đã tham khảo câu trả lời của mik)
Find the length of the third side. If necessary, round to the nearest tenth. 5 10
Answer:
[tex]\boxed {\boxed {\sf 8.7}}[/tex]
Step-by-step explanation:
We are asked to find the length of the third side in a triangle, given the other 2 sides.
Since this is a right triangle (note the small square in the corner of the triangle representing a 90 degree /right angle), we can use the Pythagorean Theorem.
[tex]a^2 + b^2 =c^2[/tex]
In this theorem, a and b are the legs of the triangle and c is the hypotenuse.
We know that the unknown side (we can say it is a) and the side measuring 5 are the legs because they form the right angle. The side measuring 10 is the hypotenuse because it is opposite the right angle.
b= 5 c= 10Substitute the values into the formula.
[tex]a^2 + (5)^2 = (10)^2[/tex]
Solve the exponents.
(5)²= 5*5 = 25 (10)²= 10*10= 100[tex]a^2 + 25=100[/tex]
We are solving for a, so we must isolate the variable. 25 is being added to a. The inverse operation of addition is subtraction, so we subtract 25 from both sides.
[tex]a^2 +25-25=100-25[/tex]
[tex]a^2=100-25[/tex]
[tex]a^2 = 75[/tex]
a is being squared. The inverse of a square is the square root, so we take the square root of both sides.
[tex]\sqrt {a^2}= \sqrt{75}[/tex]
[tex]a= \sqrt{75}[/tex]
[tex]a= 8.660254038[/tex]
Round to the nearest tenth. The 6 in the hundredth place tells us to round the 6 up to a 7 in the tenth place.
[tex]a \approx 8.7[/tex]
The length of the third side is approximately 8.7
Using Pythagorean theorem
[tex]\boxed{\sf B^2=H^2-P^2}[/tex]
Putting values[tex]\\ \sf \longmapsto B^2=10^2-5^2[/tex]
[tex]\\ \sf \longmapsto B^2=100-25[/tex]
[tex]\\ \sf \longmapsto B^2=75[/tex]
[tex]\\ \sf \longmapsto B=\sqrt{75}[/tex]
[tex]\\ \sf \longmapsto B=\sqrt{25\times 3}[/tex]
[tex]\\ \sf \longmapsto B=5\sqrt{3}[/tex]
[tex]\\ \sf \longmapsto B=5\times 1.732[/tex]
[tex]\\ \sf \longmapsto B=8.66[/tex]
[tex]\\ \sf \longmapsto B\approx 8.7[/tex]
find the value of trigonometric ratio
Answer:
We know that Sin,
[tex]=\frac{perpendicular}{hypotenuse}[/tex]
[tex]SinA=\frac{BC}{AC}[/tex]
[tex]SinA=\frac{9}{41}[/tex]
OAmalOHopeO
Priya bought a football for £3.50.
She received £1.50 change.
How much money did she give the shop assistant?
£10.00
£4.00
£5.00
Which one £10.00, £4.00 or £5.00?
Answer:
$5.00
Step-by-step explanation:
$3.50+$1.50=$5.00
how do i solve this?
Answer:
f(3) = 2
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightAlgebra I
Functions
Function NotationStep-by-step explanation:
Step 1: Define
Identify
f(x) = 2x - 4
Step 2: Evaluate
Substitute in x [Function f(x)]: f(3) = 2(3) - 4Multiply: f(3) = 6 - 4Subtract: f(3) = 2What is an
equation of the line that passes through the points (-3,-1) and (-4,-4)
Answer:
y= 3x+8
Step-by-step explanation:
not a 100% sure...
sry if its wrong
(try using Math-way, its rly helpful)
Answer:
Step-by-step explanation:
y=mx+b
To find slope: -4+1/-4+3
Slope=3
y=3x+b
Plug in either points ,as an example, i'll plug in (-3,-1)
-1=3(-3)+b
-1=-9+b
8=b
Finished formula: y=3x+8
Jo bought a used car for $6000 and paid a 15% deposit. How much did he still have to pay?
Answer:
900 is the correct awnser
What’s this topic called
Answer: MATH
Step-by-step explanation:
Answer:
answer for the question is
x = 1
y = 4
subject is math btw if you are asking about that
Which equation can be used to find the unknown length, b, in this triangle?
Answer: Choice A
4^2 + b^2 = 5^2
This is due to the pythagorean theorem.
Will Mark Brainlest Help Please ,,,,
find the value of x and y
[tex]\\ \sf\longmapsto 2x+y=2[/tex]
[tex]\\ \sf\longmapsto 2x=2-y[/tex]
[tex]\\ \sf\longmapsto x=\dfrac{2-y}{2}\dots(1)[/tex]
And
[tex]\\ \sf\longmapsto x+1=y+2[/tex]
[tex]\\ \sf\longmapsto x=y+2-1[/tex]
[tex]\\ \sf\longmapsto x=y+1[/tex]
Put the value
[tex]\\ \sf\longmapsto \dfrac{2-y}{2}=y+1[/tex]
[tex]\\ \sf\longmapsto 2-y=2(y+1)[/tex]
[tex]\\ \sf\longmapsto 2-y=2y+2[/tex]
[tex]\\ \sf\longmapsto 2-2=2y+y[/tex]
[tex]\\ \sf\longmapsto 3y=0[/tex]
[tex]\\ \sf\longmapsto y=\dfrac{0}{3}[/tex]
[tex]\\ \sf\longmapsto y=\infty[/tex]
Put in eq(1)
[tex]\\ \sf\longmapsto x=\dfrac{2-y}{2}[/tex]
[tex]\\ \sf\longmapsto x=\dfrac{2-\infty}{2}[/tex]
[tex]\\ \sf\longmapsto x=\dfrac{2}{2}[/tex]
[tex]\\ \sf\longmapsto x=1[/tex]
Where is the blue dot on the number line? (please hurry!)
Answer:
The point is at -0.58
Step-by-step explanation:
If you count each line, they each represent 0.1, so -0.55, -0.56, -0.57 and -0.58 is the 4th line
Answer:
-0.58
Step-by-step explanation:
Each division is 1/100 or 0.01
-(0.55 + 0.01) = - 0.56
-(0.56 +0.01) = -0.57
-(0.57 + 0.01) = -0.58
Square inscribed in a circle with radius 16.
I’ll mark u as a brainliest!!
Answer:
if your trying to find the area of the square it's 1024 if your trying to find the circumference of the circle it's 32π ( also known as 32 x pi)
The slope of a line is -4 and Y negative intercept is -3 what is the equation of the line written in slope intercept form
Answer:
y = mx + c
m = -4
at y intercept x = 0
(x,y) =(0,-3)
-3 = -4(0) + c
c = -3
therefore the answer is y = -4x + c
The square of y varies directly as the cube of x.When x=4 y=2.Which equation can be used to find other combinations of x and y
Answer:
y² = (1/16)x³
Step-by-step explanation:
Given that :
y² varies directly as the cube of x
y² α x³
y² = kx³ - - - (1)
Where, k = constant of f proportionality
We can obtain the value of k ; when x= 4 and y = 2
2² = k4³
4 = 64k
k = 4/64
k = 1/16
Putting k = 1/16 in (1)
y² = (1/16)x³
This is the recursive formula for a geometric sequence:
f(1)=8,000
f(n)=1/2(n − 1), for n > 2
What is the fifth term in the sequence?
Answer:
Step-by-step explanation:
f(1) = 8000
f(2) = 1/2(n - 1)
f(2) = 1/2(2 - 1)
f(2) = 1/2 Note: this really does not make sense. I think what you mean is 1/2*f(n-1). If this is true, leave a note within the next hour.
Answer:
f(5) = 500
Step-by-step explanation:
Using the recursive rule and f(1) = 8000 , then
f(2) = [tex]\frac{1}{2}[/tex] f(1) = [tex]\frac{1}{2}[/tex] × 8000 = 4000
f(3) = [tex]\frac{1}{2}[/tex] f(2) = [tex]\frac{1}{2}[/tex] × 4000 = 2000
f(4) = [tex]\frac{1}{2}[/tex] f(3) = [tex]\frac{1}{2}[/tex] × 2000 = 1000
f(5) = [tex]\frac{1}{2}[/tex] f(4) = [tex]\frac{1}{2}[/tex] × 1000 = 500
PLEASE HELP MEEEEEEEEEEEEE!!!!
a(2x + 3) = 10x + 15
For what value of a does 2x + 3 = 10x + 15?
2x + 3 = 5( 2x + 3)
a=5
hlp pleassssssssssssssssssssss
Answer:
Volume of a cube is s×s×s
hence 7 cube=343
343 is the answer. Hope this helps you. Good luck^_^
Please solve the problem
Treat the matrices on the right side of each equation like you would a constant.
Let 2X + Y = A and 3X - 4Y = B.
Then you can eliminate Y by taking the sum
4A + B = 4 (2X + Y) + (3X - 4Y) = 11X
==> X = (4A + B)/11
Similarly, you can eliminate X by using
-3A + 2B = -3 (2X + Y) + 2 (3X - 4Y) = -11Y
==> Y = (3A - 2B)/11
It follows that
[tex]X=\dfrac4{11}\begin{bmatrix}12&-3\\10&22\end{bmatrix}+\dfrac1{11}\begin{bmatrix}7&-10\\-7&11\end{bmatrix} \\\\ X=\dfrac1{11}\left(4\begin{bmatrix}12&-3\\10&22\end{bmatrix}+\begin{bmatrix}7&-10\\-7&11\end{bmatrix}\right) \\\\ X=\dfrac1{11}\left(\begin{bmatrix}48&-12\\40&88\end{bmatrix}+\begin{bmatrix}7&-10\\-7&11\end{bmatrix}\right) \\\\ X=\dfrac1{11}\begin{bmatrix}55&-22\\33&99\end{bmatrix} \\\\ X=\begin{bmatrix}5&-2\\3&9\end{bmatrix}[/tex]
Similarly, you would find
[tex]Y=\begin{bmatrix}2&1\\4&4\end{bmatrix}[/tex]
You can solve the second system in the same fashion. You would end up with
[tex]P=\begin{bmatrix}2&-3\\0&1\end{bmatrix} \text{ and } Q=\begin{bmatrix}1&2\\3&-1\end{bmatrix}[/tex]
Step-by-step explanation:
hence it has been done . check the file .
hope this helped you
any problem then comment it .
What is the percent increase each year for the investment?
Answer:
11.5%.
Step-by-step explanation:
Looking at the base of the exponent, it can be seen that it is 1.115. 1.00 is equal to 100% of the investment value each year. There is an additional 0.115, which is equivalent to 11.5%, which represents the increase in the investment value each year.
Therefore, the percent increase each year for the investment is 11.5%.
1.
Graph the data in the table. Which kind of function best models the data? Write an equation to model the data.
A. exponential; y = –6 • 1.5x
B. quadratic; y = –x2
C. exponential; y = 6 • 2.5x
D. linear; y = –3x – 6
Answer:
D. linear; y = –3x – 6
B. quadratic; y = –x2
Step-by-step explanation:
Let
A (0,-2) B (1,-3) C (2,-4) D ( 3,-5) E (4,-6)
using a graph tool
see the attached figure N 1
case a) exponential
see the attached figure N 2
case b) quadratic
see the attached figure N 3
case c) linear
see the attached figure N 4
case d) linear
see the attached figure N 5
therefore
the answer is
the case c) linear
...............................................................................................................................................
Answer:
For the first part
What type of function best models the data in the graph?
✔ quadratic
y = 0.433x2 for the second part.
...............................................................................................................................................
Answer:
Option (2).
Step-by-step explanation:
From the figure attached,
Since there is a common difference in each successive term and previous term of y,
= -3
= -3
Therefore, this data represents a linear equation.
Now we choose two points from the table given.
Let the points are (0, -6) and (1, -9)
Slope of this line 'm' =
m = = -3
Y-intercept 'b' = -6
Equation of the line will be,
y = -3x - 6
Option (2) will be the answer.
John and Pablo caught fish that have the lengths, in centimeters, listed below. 45, 44, 47, 49, 45, 47, 42, 39, 45, 42, 44 Which box-and-whisker plot correctly represents the data?
The options for the box and whisker plots aren't given ; however using technology, a box and whisker plot could be generated from the data.
Answer:
Step-by-step explanation:
Given :
45, 44, 47, 49, 45, 47, 42, 39, 45, 42, 44
Using technology, the box and whisker plot generated for the data is attached below.
The 5 - number summary is also given below :
Minimum: 39
Median: 45
First quartile: 42
Third quartile: 47
Interquartile Range: 5
Maximum: 49
Outliers: none
Answer:
Step-by-step explanation:
The ratio of girls to boys in grade 6 was 3:2 at Lincoln middle school last year. There were 60 kids in grade 6. How many in grade 6 were girls
Answer:
40 girls 20 boys i think / guess
Step-by-step explanation:
Answer:
20/40
Step-by-step explanation:
i hope it help
[tex](a+b)^{2}[/tex]
Answer:
[tex] ({a + b})^{2} [/tex]
[tex](a + b)(a + b)[/tex]
[tex] {a}^{2} + 2ab + {b}^{2} [/tex]
hope this help you
The number of solutions of |x - 1| + |x - 3| = 2 is
Answer:
There are 3 intervals as following:
x ≤ 1
-(x - 1) - (x - 3) = 2-2x + 4 = 22x = 2x = 11 ≤ x ≤3
(x - 1) - (x - 3) = 22 = 2, any value of x in the same intervalx ≥ 3
(x - 1) + (x - 3) = 22x - 4 = 22x = 6x = 3Combining the all, we get:
1 ≤ x ≤3 or x = [1, 3]