Answer:
[tex]- \frac{\pi}{3}[/tex]
Step-by-step explanation:
Given
[tex]y = -3\cos(3x - \pi) + 5[/tex]
Required
The phase
We have:
[tex]y = -3\cos(3x - \pi) + 5[/tex]
Rewrite as:
[tex]y = -3\cos(3(x - \frac{\pi}{3})) + 5[/tex]
A cosine function is represented as:
[tex]y = A\cos(B(x + C)) + D[/tex]
Where:
[tex]C \to[/tex] Phase
By comparison:
[tex]C = - \frac{\pi}{3}[/tex]
Hence, the phase is: [tex]- \frac{\pi}{3}[/tex]
The diagram shows APQR. Which term describes point S?
Answer:
c) centroid
Step-by-step explanation:
(2i+1)/(1+i) is equal to
Answer:
Step-by-step explanation:
(1 + 2i) / (1 + i) Rationalize the denominator.
(1 + 2i)(1+i) / (1 + i)(1-i) Remove the brarckets
(1 + i + 2i - 2) / (1 - i + i - i^2) Combine
-1 + 3i / (2) i^2 = - 1 in the denominator
A physical trainer decides to collect data to see if people are actually weight changing weight during the shelter in place. He believes there will not be a meaningful change in weight due to the shelter in place order. He randomly chooses a sample of 30 of his clients. From each client, he records their weight before the shelter in place order, and again 10 days after the order. A summary of the data is below.
The trainer claims, "on average, there is no difference in my clients' weights before and after the shelter in place order." Select the pair of hypotheses that are appropriate for testing this claim.
H0: µd = 0
H1: µd < 0 (claim)
H0: µd = 0 (claim)
H1: µd ≠ 0
H0: µd ≠ 0 (claim)
H1: µd = 0
H0: µd = 0 (claim)
H1: µd > 0
H0: µd = 0
H1: µd > 0 (claim)
H0: µd = 0
H1: µd ≠ 0 (claim)
H0: µd = 0 (claim)
H1: µd < 0
H0: µd ≠ 0
H1: µd = 0 (claim)
b) Select the choice that best describes the nature and direction of a hypothesis test for this claim.
This is a right-tail t-test for µd.
This is a right-tail z-test for µd.
This is a two-tail t-test for µd.
This is a two-tail z-test for µd.
This is a left-tail t-test for µd.
This is a left-tail z-test for µd.
c) Find the standardized test statistic for this hypothesis test. Round your answer to 2 decimal places.
d) Find the P-value for this hypothesis test. Round your answer to 4 decimal places.
e) Using your previous calculations, select the correct decision for this hypothesis test.
Fail to reject the alternative hypothesis.
Reject the alternative hypothesis.
Fail to reject the claim.
Reject the claim.
Fail to reject the null hypothesis.
Reject the null hypothesis.
f) Consider the following statements related to the trainer's claim. Interpret your decision in the context of the problem (ignoring the claim) and interpret them in the context of the claim.
Answer:
H0: µd = 0 (claim)
H1: µd ≠ 0
This is a two-tail t-test for µd
Step-by-step explanation:
This is a paired (dependent) sample test, with its hypothesis is written as :
H0: µd = 0
H1: µd ≠ 0
From the equality sign used in the hypothesis declaration, a not equal to ≠ sign in the alternative hypothesis is used for a two tailed t test
The data isn't attached, however bce the test statistic cannot be obtained. However, the test statistic formular for a paired sample is given as :
T = dbar / (Sd/√n)
dbar = mean of the difference ; Sd = standard deviation of the difference.
what is the least common factor for 9 8 7
Answer:504
This is the answer
504
If y varies inversely with the square of x, and y = 26 when x = 4, find y when x = 2.
A. 13
B. 52
C. 208
D. 104
Answer:
D. 104
Step-by-step explanation:
[tex]y \: \alpha \: \frac{1}{ {x}^{2} } \\ \\ y = \frac{k}{ {x}^{2} } [/tex]
when y is 26, x is 4:
[tex]26 = \frac{k}{ {(4)}^{2} } \\ k = 416[/tex]
when x is 2:
[tex]y = \frac{416}{ {x}^{2} } \\ \\ y = \frac{416}{ {(2)}^{2} } \\ y = 104[/tex]
Answer:
D; 104
This is the correct answer
I need help with these questions
9514 1404 393
Answer:
17. 25 mile per gallon
18. Eduardo did should have divided by -4.
Step-by-step explanation:
17. The least mileage will be had when the most gas is used to go a given distance. For the given distance, the most gas that could have been used (without adding any) is 18 gallons. Then the least mileage is ...
(450 mi)/(18 gal) = 25 mi/gal
__
18. The appropriate method for solving this inequality is ...
-4x/(-4) < 120/(-4) . . . . divide both sides by -4 (and reverse the > symbol)
x < -30
The step Eduardo took of adding 4 will give ...
-4x +4 > 124 . . . . . puts him one step farther away from a solution
Eduardo chose an operation to perform that did not get him closer to a solution.
A truck can be rented from Company A for $120 a day plus $0.80 per mile. Company B charges $50 a day plus $0.90 per mile to rent the same truck. Find the number of miles in a day at which the rental costs for Company A and Company B are the same.
Answer:
700 miles driven in a day
Step-by-step explanation:
Create an equation to represent the situation, where x is the number of miles.
0.8x + 120 = 0.9x + 50
Solve for x:
120 = 0.1x + 50
70 = 0.1x
700 = x
So, the rental costs will be the same at 700 miles driven in a day.
5 2/10 x -10 1/3
WILL GIVE BRAINLIEST!!!
Answer:
[tex]106 \frac{3}{5}[/tex]
Explanation:
Convert any mixed numbers to fractions.
Reduce fractions where possible.
Then your initial equation becomes:
[tex]\frac{26}{5} \times \frac{-31}{3}[/tex]
Next, apply the fractions formula for multiplication. Formula below:
[tex]\dfrac{a}{b} \times \dfrac{c}{d} = \dfrac{a \times c}{b \times d}[/tex]
[tex]= \frac{26 \times -41}{5 \times 2}= \frac{-1066}{10}[/tex]
Simplifying -1066/10, (you can do this by using division) the answer is:
[tex]106 \frac{3}{5}[/tex]
Answer:
-3 1/3
Step-by-step explanation:
5 2/10 x -10 1/3
10/10 x -10/3
1 x-10/3
-10/3
-3 1/3
your question is unclear. I think I understand it correctly
Change the following to percentages:
a) 83 out of 100
b) 24 out of 50
c) 9 out of 25
d) 7 out of 20
e) 6 out of 10
f)72 out of 200
g)12 out of 40
h)36 out of 60
Answer:
a.83%
b. 48%
c.36%
d.35%
e.69%
f.36%
g.30%
h.69%
A card is drawn from a well shuffled deck of 52 cards what is the probability of drawing an ace or a six
Answer:
8/52
Step-by-step explanation:
The first thing to do is write it out;
How many aces are in a deck and how many sixes?
There are 4 of each so, 4+4 = 8 therefore our beginning ratio will be;
8/52 cards are going to be an ace or a six.
14. The data below show the average ages and number of volunteer hours for five randomly chosen persons. Given the equation of the regression line is y' = 9.309x - 167.012, predict the number of hours a person will volunteer if her age is 27.5 years. Age, x Volunteer Hours, y 24.9 66.5 25.6 70.0 26.1 74.8 27.3 89.6 27.0 82.6
The Predicted time a person will serve is "88.9855 months". A complete solution is provided below.
Given equation is,
→ [tex]\hat{y}=9.309x - 167.012[/tex]
Her age,
→ x = 27.5 years
By substituting the value of "x" in the given equation, we get the predicted time,
hence,
→ [tex]\hat{y}=9.309\times 27.5 - 167.012[/tex]
[tex]= 255.9975- 167.012[/tex]
[tex]=88.9855 \ months[/tex]
Thus the above is the right answer
Learn more:
https://brainly.com/question/1783478
An education researcher would like to test whether 2nd graders retain or lose knowledge during the summer when they are presumably not in school. She asks nine 2nd graders to take a comprehension exam at the end of the school year (May), and then asks those same students to come back after the summer (late August) to retake a different but equivalent exam, to see if their level of comprehension has changed. Using the data below, test this hypothesis using an (alpha level of 0.05.)
May August
95 100
72 80
78 95
50 65
89 85
92 98
75 70
90 96
65 87
Required:
What is the appropirate test?
Answer:
Kindly check explanation
Step-by-step explanation:
Given the data:
May August
95 100
72 80
78 95
50 65
89 85
92 98
75 70
90 96
65 87
The appropriate test is a paired t test :
d = difference between May and August
d = (-5, -8, -17, -15, 4, -6, 5, -6, -22)
The hypothesis :
H0 : μd = 0
H1 : μd ≠ 0
The test statistic :
T = dbar / (Sdbar/√n)
Where, dbar and Sdbar are the mean and standard deviation of 'd' respectively.
Using calculator :
dbar = - 7.777 ; Sdbar = 9.052
Test statistic = - 7.777 / (9.052 /√9)
Test statistic = - 2.577
The Pvalue, df = n - 1 = 9 - 1 = 8
Pvalue(-2.577, 8) = 0.0327
At α = 0.05
Pvalue < α ; WE reject the H0 ; and conclude that there has been a change in score
In ∆ ABC,AD is the altitude from A to BC .Angle B is 48°,angle C is 52° and BC is 12,8 cm. Determine the length of AD
9514 1404 393
Answer:
7,6 cm
Step-by-step explanation:
The law of sines can be used to find the length AB.
AB/sin(C) = BC/sin(A)
A = 180° -48° -52° = 80°
AB = BC·sin(C)/sin(A) = 12,8·sin(52°)/sin(80°)
The sine function can be used to find AD from AB.
AD/AB = sin(48°)
AD = AB·sin(48°) = 12,8·sin(48°)sin(52°)/sin(80°)
AD ≈ 7,61 cm
__
The dimension of interest is ha in the attachment, the height from vertex A.
Can someone please help me with this
9514 1404 393
Answer:
21. D
22. C
Step-by-step explanation:
21. The expansion of the given expression is ...
[tex]\displaystyle -\frac{1}{2}\left(-\frac{3}{2}x+6x+1\right)-3x=\frac{3}{4}x-3x-\frac{1}{2}-3x\\\\=\left(\frac{3}{4}-3-3\right)x-\frac{1}{2}=\boxed{-5\frac{1}{4}x-\frac{1}{2}}[/tex]
__
22. The least likely team to make the championship game is the one with the lowest probability.
3/8 < 1/2 < 2/3 < 4/5
The Bulldogs are least likely to play in the championship game.
¿How you solve?
A pool is 8 m long, 6 m wide and 1.5 m deep. It is painted at $6 per square meter.
a) How much will it cost to paint it?
b) How many litres of water will be needed to fill it?
9514 1404 393
Answer:
a) $540 cost to paint
b) 72000 liters to fill
Step-by-step explanation:
Relevant formulas are ...
P = 2(L +W) . . . . perimeter of a rectangle of length L and width W
A = LW . . . . . . area of a rectangle of length L and width W
V = LWH . . . volume of a cuboid of length L, width W, and height H
__
a) The total painted area is the area of the pool walls plus the area of the pool bottom. The wall area is the product of pool perimeter and wall height. The bottom area is the product of pool length and width.
A = PH + LW = 2(L +W)H +LW
A = 2(8 m +6 m)(1.5 m) + (8 m)(6 m) = 42 m² +48 m² = 90 m²
At $6 per square meter, the cost of painting the pool is ...
($6 /m²)(90 m²) = $540 . . . . cost to paint the pool
__
b) The volume in liters is best figured using the dimensions in decimeters.
V = (80 dm)(60 dm)(15 dm) = 72000 dm³ = 72000 L
72000 liters will be needed to fill the pool.
3/4 of the households in a rural area have pets. how many households have pets in this area if there are 1500 total households
Answer:
1,125 households would have pets in the area.
Step-by-step explanation:
We have 1,500 total households. We also know that 3/4 (or 0.75) of these households have pets. We would multiply 1,500 by 0.75 (which is equal to 3/4), resulting in 1,125. Therefore, 1,125 households would have pets in the area.
Answer:
1125 households
Step-by-step explanation:
3/4 of total households in area = # of households that have pets in the area
3/4 of 1500 = # of households that have pets in the area
3/4 · 1500 = # of households that have pets in the area
75/100 · 1500 = # of households that have pets in the area
0.75 · 1500 = 1125
1125 households
Need tha answer explained
Answer:
Bri what do you mean explanation your answer is correct
Please mark me brainliest thanks
Answer:
It is 77.2, so your anwer is correct.
Step-by-step explanation:
Finding decimal divided by decimal too hard? Don't worry, I've got your back! To do division, you can do it the hard way by just dividing it, but there's something more simple.
Move the dividend's decimal point to the right until it's not a decimal. Do the same with the divisor, but it depends on how many decimal places on the dividend was moved by. So in this case, you move it by 2 decimal places for BOTH! Then you just simply divide it. It gives you the same answer.
BTW if I didn't make my explanation clear, please comment.
Twice a certain number is subtracted from 9 times the number. The result is 21. Find the number.
Answer:
3
Step-by-step explanation:
Let x represent the number.
Create an equation to represent the situation, and solve for x:
9x - 2x = 21
7x = 21
x = 3
So, the number is 3.
Please I need the answer ASAP!!!!
Step-by-step explanation:
D
*not sure about this answer pls tell me i ak right or wrong
help with q25 please. Thanks.
First, I'll make f(x) = sin(px) + cos(px) because this expression shows up quite a lot, and such a substitution makes life a bit easier for us.
Let's apply the first derivative of this f(x) function.
[tex]f(x) = \sin(px)+\cos(px)\\\\f'(x) = \frac{d}{dx}[f(x)]\\\\f'(x) = \frac{d}{dx}[\sin(px)+\cos(px)]\\\\f'(x) = \frac{d}{dx}[\sin(px)]+\frac{d}{dx}[\cos(px)]\\\\f'(x) = p\cos(px)-p\sin(px)\\\\ f'(x) = p(\cos(px)-\sin(px))\\\\[/tex]
Now apply the derivative to that to get the second derivative
[tex]f''(x) = \frac{d}{dx}[f'(x)]\\\\f''(x) = \frac{d}{dx}[p(\cos(px)-\sin(px))]\\\\ f''(x) = p*\left(\frac{d}{dx}[\cos(px)]-\frac{d}{dx}[\sin(px)]\right)\\\\ f''(x) = p*\left(-p\sin(px)-p\cos(px)\right)\\\\ f''(x) = -p^2*\left(\sin(px)+\cos(px)\right)\\\\ f''(x) = -p^2*f(x)\\\\[/tex]
We can see that f '' (x) is just a scalar multiple of f(x). That multiple of course being -p^2.
Keep in mind that we haven't actually found dy/dx yet, or its second derivative counterpart either.
-----------------------------------
Let's compute dy/dx. We'll use f(x) as defined earlier.
[tex]y = \ln\left(\sin(px)+\cos(px)\right)\\\\y = \ln\left(f(x)\right)\\\\\frac{dy}{dx} = \frac{d}{dx}\left[y\right]\\\\\frac{dy}{dx} = \frac{d}{dx}\left[\ln\left(f(x)\right)\right]\\\\\frac{dy}{dx} = \frac{1}{f(x)}*\frac{d}{dx}\left[f(x)\right]\\\\\frac{dy}{dx} = \frac{f'(x)}{f(x)}\\\\[/tex]
Use the chain rule here.
There's no need to plug in the expressions f(x) or f ' (x) as you'll see in the last section below.
Now use the quotient rule to find the second derivative of y
[tex]\frac{d^2y}{dx^2} = \frac{d}{dx}\left[\frac{dy}{dx}\right]\\\\\frac{d^2y}{dx^2} = \frac{d}{dx}\left[\frac{f'(x)}{f(x)}\right]\\\\\frac{d^2y}{dx^2} = \frac{f''(x)*f(x)-f'(x)*f'(x)}{(f(x))^2}\\\\\frac{d^2y}{dx^2} = \frac{f''(x)*f(x)-(f'(x))^2}{(f(x))^2}\\\\[/tex]
If you need a refresher on the quotient rule, then
[tex]\frac{d}{dx}\left[\frac{P}{Q}\right] = \frac{P'*Q - P*Q'}{Q^2}\\\\[/tex]
where P and Q are functions of x.
-----------------------------------
This then means
[tex]\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + p^2\\\\\frac{f''(x)*f(x)-(f'(x))^2}{(f(x))^2} + \left(\frac{f'(x)}{f(x)}\right)^2 + p^2\\\\\frac{f''(x)*f(x)-(f'(x))^2}{(f(x))^2} +\frac{(f'(x))^2}{(f(x))^2} + p^2\\\\\frac{f''(x)*f(x)-(f'(x))^2+(f'(x))^2}{(f(x))^2} + p^2\\\\\frac{f''(x)*f(x)}{(f(x))^2} + p^2\\\\[/tex]
Note the cancellation of -(f ' (x))^2 with (f ' (x))^2
------------------------------------
Let's then replace f '' (x) with -p^2*f(x)
This allows us to form ( f(x) )^2 in the numerator to cancel out with the denominator.
[tex]\frac{f''(x)*f(x)}{(f(x))^2} + p^2\\\\\frac{-p^2*f(x)*f(x)}{(f(x))^2} + p^2\\\\\frac{-p^2*(f(x))^2}{(f(x))^2} + p^2\\\\-p^2 + p^2\\\\0\\\\[/tex]
So this concludes the proof that [tex]\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + p^2 = 0\\\\[/tex] when [tex]y = \ln\left(\sin(px)+\cos(px)\right)\\\\[/tex]
Side note: This is an example of showing that the given y function is a solution to the given second order linear differential equation.
what is 4 and 5???????
Answer:
586 cm^3 and 486 in^2
Step-by-step explanation:
4) The volume of the triangular prims is (1/2)*(a*c*h) = 0.5*(8*9*16)=586 cm^3
5) Wrapping paper needed is equal to the surface area of the cube, 6s^2=486 in^2
question is in picture
Answer: A
Step-by-step explanation:
(tangent is opposite over adjacent)
[tex]tan(40)=\frac{x}{3.8}\\x=3.8*tan(40)[/tex]
the cost of using 19 hcf of water is $36.48 and the cost of using 32 hcf is 56.63 what is the cost of using 28 hcf of water?
Answer:
$54.32
Step-by-step explanation:
19=$36.48/19 =1.94
1=$1.94 * 28= 54.32
28=54.32
Integrate[Exp[Power[sinx,2]]sin2x,x]
Answer:
e^{sin²x}+c
Step-by-step explanation:
[tex]\int e^{sin^2x} sin 2x dx=?[/tex]
is this statement?
if so
then
[tex]put~sin^2x=t\\differentiate\\2 sin ~x~cos~x~dx=dt\\sin~2x ~dx=dt\\\int e^t~dt=e^t+c\\=e^{sin^2x}+c[/tex]
what is the value of g
Answer:
the value of g is gram .
may this answer is helpful for you
Need the value of P please
Answer:
B. 35°
Step-by-step explanation:
First, find the two interior angles that are adjacent to angles 90° and 125° respectively.
Thus:
Interior angle 1: 180° - 90° = 90° (linear pair)
Interior angle 2: 180° - 125° = 55° (linear pair)
P + 90° + 55° = 180° (sum of interior angles in a triangle)
P + 145° = 180°
Subtract 145° from each side
P = 180° - 145°
P = 35°
Find an equation of the line through the given pair of points. (-7,-5) and (-1,-9) The equation of the line is (Simplify your answer. Type an equation using x and y as the variables. Use integers or fractions for any numbers in the equation.) please help
Answer:
The equation of the line is y = -2/3x - 29/3
Step-by-step explanation:
The slope of these points (-7,-5) and (-1,-9) is m = -2/3
Once you plug that into the y = mx + b equation, you can see that the y-intercept is -29/3.
Put all of that into the y = mx + b equation and you'll get --> y = -2/3x - 29/3
Suppose an average student can answer 6 homework questions in 30 minutes. If X follows an exponential distribution and measures the length of time between starting two homework questions. What is the value of μ?
Answer:
10
Step-by-step explanation:
Make a ratio like
6 : 30
2 : x
Then cross multiple
6x = 60
Make x subject formula
x = 10
I hope it helped
what is Newton's Law of Cooling?
Answer:
Newton's law of coming states that the rate at which an object cools is proportional to the differences in temperature between the object and the object's surroundings.
Answer:
It is the rate of heat loss of a body that is directly proportional to the difference in the temperatures between the body and its surroundings. Q= h* A* (T(object) -T(environment) )
add 10 and g, then subtract f from the result
Answer:
(10+g) -f
Step-by-step explanation:
Add 10 and g
10 +g
Subtract f from the result
(10+g) -f