Why is the reaction SO2 + H2O → H2SO2 not balanced?
There are more oxygen atoms in the reactants while there are less oxygen atoms in the product.
Both sides of the equation is supposed to be balanced for a balanced equation. If any one of them isn't balanced, the equation remains unbalanced.
The main reason why the reaction above can not be balanced is:
This chemical reaction SO2 + H2O -> H2SO2 is not correctly written.
It must be: SO2 + H2O -> H2SO3
hope this helps....
What would happen to the pressure of a closed sample of gas whose temperature increased while its volume decreased? Explain your reasoning in terms of the kinetic molecular theory of gases.
Answer:
As the temperature increases, the average kinetic energy increases as does the velocity of the gas particles hitting the walls of the container. The force exerted by the particles per unit of area on the container is the pressure, so as the temperature increases the pressure must also increase.
I hope this will help you if not soo sorry :)
PLZZZZZZZZ HELPPPPPP
Answer:
482
Explanation:
list some applications of chemistry in your dail life
Chemistry and chemical reactions are not just limited to the laboratories but also the world around you.
Chemistry in Food Production:
Plants produce food for themselves through photosynthesis; which is a complex chemical reaction in itself. The chemical reaction that takes place in photosynthesis is the most common and vital chemical reaction.
6 CO2 + 6 H2O + light → C 6H12O6 + 6 O2
Chemistry in Hygiene:
Right before you consume your food, you make it a point to wash your hands with soap. Isn’t it? The cleaning action of soap is based on its ability to act as an emulsifying agent. Soaps are fatty acids salts of sodium or potassium; produced by a chemical reaction called saponification. Soaps interact with the grease or oil molecule, which, in turn, results in a cleaner surface.
The Chemistry of an Onion:
Ever wondered why you shed tears while chopping an onion? This also happens because of the underlying chemistry concepts. As soon as you slice an onion, sulfenic acid is formed from amino acid sulfoxides. Sulfenic acid is responsible for the volatile gas, propanethiol S-oxide, that stimulates the production of tears in the eyes.
Chemistry in Baking:
Who does not like to eat fluffy freshly baked bread? Baking soda is an efficient leavening agent. The addition of baking soda to food items before cooking leads to the production of carbon dioxide (CO2); which causes the foods to rise. This whole process of rising of baked good is called chemical leavening.
Chemistry in Food Preservatives:
In case you ever read the ingredients on the bottle of ketchup, jams or pickles, you might be surprised to see a never-ending list of chemicals. What are they? These chemicals are called food preservatives; which delay the growth of microorganisms in foods. The chemical food preservatives not only prohibit the growth of bacteria, virus, fungi but also hinder the oxidation of fats, which is responsible for making the foods rancid. The most common chemical food preservatives are sodium benzoate, sorbic acid, potassium sorbate, calcium sorbate, sodium sorbate, propionic acid, and the salts of nitrous acid.
Chemistry in Digestion
The moment you put food in your mouth, a number of different chemical reactions start in your digestive tract. Saliva contains the enzyme amylase, which is responsible for breaking down carbohydrates, the stomach starts producing hydrochloric acid, the liver releases bile and the list of compounds released during digestion goes on. How do they work? All these enzymes undergo chemical reactions so that proper digestion, as well as assimilation of the food, occurs.
The Working of a Sunscreen
Before going out on a sunny day, you make it a point to wear sunscreen. Even the principle, behind the working of a sunscreen, has a chemistry background. The sunscreen uses a combination of organic and inorganic compounds to act as a filter for incoming ultraviolet rays. Sunblocks, on the other hand, scatter away UV light; so that it is unable to penetrate deep into the skin. Sunblocks contain complex chemical compounds like zinc oxide or titanium oxide, which prevent the UV rays to invade deeper into the skin.
Chemistry in Rust Formation
With time, your iron instruments start developing an orange-brown flaky coating called rust. The rusting of iron is a type of oxidation reaction. The atoms in the metal iron undergo oxidation and reduction; causing rusting. The formation of verdigris on copper and the tarnishing of silver are also the other everyday examples of chemical reactions. The chemical equation underlying rusting is:
Fe + O2 + H2O → Fe2O3. XH2O
Hope it helps.
Water (H2O) is a polar solvent, and carbon tetrachloride (CCl4) is a nonpolar solvent. In which solvent is each of the following substances, found or used in the body, more likely to be soluble?
a. NaNO3, ionic
b. I2, nonpolar
c. sucrose (table sugar), polar
d. gasoline, nonpolar
e. vegetable oil, nonpolar
f. benzene, nonpolar
g. LiCl, ionic
h. Na2SO4, ionic
Answer:
a. NaNO3, ionic - water
b. I2, nonpolar - CCl4
c. sucrose (table sugar), polar - water
d. gasoline, nonpolar - CCl4
e. vegetable oil, nonpolar - CCl4
f. benzene, nonpolar -CCl4
g. LiCl, ionic - water
h. Na2SO4, ionic - water
Explanation:
Water is a polar substance. This means that it has the ability to dissolve other polar substances. Furthermore, water, even being made by covalent bonds, manages to dissolve ionic substances, because it is a molecule with a partial positive charge on one side, due to hydrogen, and a partial negative charge on the other side, due to the two molecules of oxygen. In this case, any polar or ionic substance has the ability to be dissolved in water, while any non-polar substance needs a non-polar liquid to be able to be dissolved, such as CCI4.
Water supplies are treated with chlorine to kill pathogens. Chlorine reacts well with many other chemicals and bacterial cells because it is a strong oxidant. However, Legionella pneumophila can sometimes evade killing by residual chlorine. How does it do this
Answer:
By forming Biofilms
Explanation:
Legionella pneumophila forms biofilms by using the residual chlorine and hence act as killer of other microbial cells and intracellular pathogens. It also colonizes within multispecies microbial communities and kills them
Calculate the mass of CaCL2 formed when 5 moles of chlorine reacts with calcium metal....
Answer:
555 g of CaCl₂
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
Ca + Cl₂ —> CaCl₂
From the balanced equation above,
1 mole of Cl₂ reacted to produce 1 mole of CaCl₂.
Next, we shall determine the number of mole of CaCl₂ produced by the reaction of 5 moles of Cl₂. This can be obtained as follow:
From the balanced equation above,
1 mole of Cl₂ reacted to produce 1 mole CaCl₂.
Therefore, 5 moles of Cl₂ will also react to produce 5 moles of CaCl₂.
Thus, 5 moles of CaCl₂ were obtained from the reaction.
Finally, we shall determine the mass of 5 moles of CaCl₂. This can be obtained as follow:
Mole of CaCl₂ = 5 moles
Molar mass of CaCl₂ = 40 + (35.5×2)
= 40 + 71
= 111 g/mol
Mass of CaCl₂ =?
Mass = mole × molar mass
Mass of CaCl₂ = 5 × 111
Mass of CaCl₂ = 555 g
Therefore, 555 g of CaCl₂ were obtained from the reaction.
Which of the following aqueous solutions are good buffer systems?
a. 0.34 M calcium iodide + 0.22 M sodium iodide.
b. 0.27 M ammonia + 0.38 M ammonium nitrate.
c. 0.27 M nitric acid + 0.18 M sodium nitrate.
d. 0.18 M hydrofluoric acid + 0.14 M hydroiodic acid.
e. 0.14 M calcium hydroxide + 0.28 M calcium chloride.
Answer:
b. 0.27 M ammonia + 0.38 M ammonium nitrate.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to bear to mind the fact that buffest must be prepared by using either of the following pairs:
weak acid/conjugate base
weak base/conjugate acid
So that the pH might be set constant. In such a way, since a. shows two salts, c. a strong acid with a neutral base, d, shows two acids and e. a strong base with a neutral base, we infer the correct buffer is b. 0.27 M ammonia + 0.38 M ammonium nitrate because it has a weak base (ammonia) and its conjugate acid, ammonium.
Regards!
Which of the following is not generally a characteristic of metal?
Ductility
O
Malleability
High melting point
Low boiling point
Complete the following road map for converting volume of A to volume of B for a titration of aqueous solution A with aqueous solution B.
a. multiply by the molarity of B
b. multiply by the moles of B per moles of A
c. divide by the molarity of B
d. multiply by the molarity of A
e. divide by the molarity of A
f. multiply by the moles of A per moles of B
1. volume A (L)
2. moles A
3. moles B
4. volume B (L)
Answer:
Explanation:
The solution of known concentration is expressed as molarity. Molarity is the mole fraction of solute (i.e. the dissolved substance) per liter of the solution, Molarity is also commonly called molar concentration.
Mathematically;
[tex]\mathtt{Molarity = \dfrac{moles \ of \ solute}{ liters \ of \ solution}}[/tex]
To copy and complete the road map from the given question, we have the following array:
Volume A (L)
↓
d. multiplied by the molarity of A
↓
moles A
↓
b. multiplied by the moles of B / moles of A
↓
moles B
↓
c. divided by the molarity of B
↓
volume B (L)
For each molecule, specify the polarity of the bonds and the overall polarity of the molecule.
a. BeCl2
b. H2O
c. O3
Arrange the forms of electromagnetic radiation in order of decreasing energy (from highest energy to lowest energy). You are currently in a ranking module. Turn off browse mode or quick nav, Tab to move, Space or Enter to pick up, Tab to move items between bins, Arrow Keys to change the order of items, Space or Enter to drop.
highest energy lowest energy
radio waves
x rays
gamma rays
infrared
microwaves
ultraviolet
visible
Answer:
gamma rays > X-rays > ultraviolet radiation > visible light > infrared > radio waves.
Explanation:
Electromagnetic waves are those waves that require no material medium for propagation. They can travel through space and they all move at the speed of light.
Electromagnetic waves are composed of both electric and magnetic fields which are mutually at right angles to each other.
The order of decreasing energy of electromagnetic waves is;
gamma rays > X-rays > ultraviolet radiation > visible light > infrared > radio waves.
What is the pCu of the resulting solution if 20.00 mL of 0.08 M EDTA (H4Y) is added to 15.00 mL of 0.10 M CuSO4 and buffered at pH 10? The Kf’ for complex CuY2- is 2.21 x 1018
Answer:
The answer is "5.4".
Explanation:
[tex]BoH + HCL =BCL +H_2o \\\\At eq \\\\N_1V_1=N_2V_2 \\\\v_2=20 \ ml\\\\[BCL]=\frac{20 \times 0.08}{20+20}=0.04\\\\pH = \frac{1}{2} [pkw - pk_b - \log e]\\\\pk_b = 2 pH - Pkw + \Log C\\\\pK_b=5.4[/tex]
A molecular compound has the following empirical formula: CH2O. The molar mass of the empirical formula is g. Write your answer using 3 significant figures. If the molar mass of the molecular compound is 180.0 g/mol, write the molecular formula of the compound.
Answer:
Empirical formula has a molar mass of 30.01g/mol and molecular formula is C₆H₁₂O₆
Explanation:
Molar mass of a molecule is the sum of the molar mass of each atom. In CH2O we have:
1C = 1*12.01g/mol = 12.01g/mol
2H = 2*1g/mol = 2g/mol
1O = 1*16g/mol = 16g/mol
Empirical formula of CH2O is:
12.01g/mol + 2g/mol + 16g/mol = 30.01g/mol
As the molecular compound has a molar mass of 180.0g/mol the molecular formula is:
180.0g/mol / 30.01g/mol = 6 times the empirical formula. That is:
C₆H₁₂O₆
How many moles of water are produced if 3.30 moles of N20 is
produced? NH4NO3 --> N20 + 2 H2O (mole to mole conversion) 1 step
Answer:
The netto reaction equation is:
2 OH- + 2H+ = 2 H2O
So the answer is 2 moles.
Rita determined the experimental van 't Hoff factor, i, for KCl to be 1.9 which is less than the theoretical value of 2. Select the option that best explains the difference between the theoretical and experimental i.a) The difference is due to the ion-pairing effect which effectively reduces the number of solute particles present in the solution.b) The difference is due to the ion-pairing effect which effectively increases the number of solute particles present in the solution correct amount of KCl that will give better agreement between the experimental and theoretical results.c) Rita did not freeze the entire sample.
Answer:
The difference is due to the ion-pairing effect which effectively reduces the number of solute particles present in the solution.
Explanation:
Colligative properties are those properties that depend on the amount of solute present. Such properties include; boiling point elevation, freezing point depression etc.
Ion pairing causes the Van't Hoff factor to deviate from whole numbers. Ion pairing effect generally reduces the number of solute particles in solution thereby decreasing the experimental value of the Van't Hoff factor (i).
Hence, the reason why Rita determined the Van't Hoff factor as 1.9 and not the theoretical value of 2 is because of on-pairing effect which effectively reduces the number of solute particles present in the solution.
The difference between the theoretical and experimental is A. The difference is due to the ion-pairing effect which effectively reduces the number of solute particles present in the solution.
Colligative propertiesIt should be noted that colligative properties simply means the properties that depend on the amount of solute present.
The ion pairing causes the Van't Hoff factor to deviate from whole numbers. Therefore, they caused the difference between the theoretical and experimental values.
Learn more about ion on:
https://brainly.com/question/11638999
Kolbe's reaction with an example
Answer:
∵
Explanation:
How many aluminum atoms are in 2.88 g of aluminum?
Express your answer to three significant figures.
Answer:
Explanation:
1 Mole of Aluminum with mass 26.98g contains 6.02*10^23 atoms.
In 2.88g of Aluminum, there are 2.88/26.98*6.02*10^23 = 6.426*10^22 atoms.
Answer:
Explanation:
no of Al atoms = 2.88/26.98*6.02*10^23
= 6.426*10^22
= 6.43*10^22
Which event is an example of melting?
A. Wax drips down the side of a lit candle.
B. Perspiration dries on a person's skin.
C. Rain turns to ice pellets.
D. A mirror fogs up when someone takes a hot shower.
I’m just curious tbh
Answer:
A. Wax drips down the side of a lot candle.
Explanation:
The chemical change from solid to liquid. This is a combustion reaction, so carbon dioxide gas and water vapour is also produced but you can't see them
Answer:
A. Wax drips down the side of a lot candle.
Explanation:
All the properties listed below are characteristic of the transition elements except __. a) most are paramagnetic b) most are colored c) most have high electronegativities d) most have multiple oxidation states e) most form many different complexes
Answer:
c) most have high electronegativities
Explanation:
They tend to have high electric CONDUCTIVITY because of the free-flowing d-orbital electrons, but have low electron affinity, ionization energy, and electronegativities.
Using the following equation how many grams of water you would get from 886 g of glucose:
C6H12O6 + 6O2 → 6CO2 + 6H2O + energy
Answer:
531.6g
Explanation:
Total moles of glucose in this case is: 886/180= 4.922 (mole)
For every 1 mole glucose we get 6 mole water
-> Mole of water is: 4.922 * 6= 29.533 (mole)
weight of water is 18. Therefore, total weight of water that we will have from 886g of glucose are: 25.933*18= 531.6g
When separating benzoic acid, naphthalene, and 3-nitroaniline, identify the solution used for each described purpose.
a. Extract reconstituted 3-nitroaniline out of the aqueous layer ___________
b. Extract benzoic acid into the aqueous layer _____________
c. Extract aniline into the aqueous layer ___________
d. Reconstitute aniline from aqueous layer__________
Answer:
a. Extract reconstituted 3-nitroaniline out of the aqueous layer: Dichloromethane.
b. Extract benzoic acid into the aqueous layer: 5% NaOH.
c. Extract aniline into the aqueous layer: 5% HCl.
d. Reconstitute aniline from aqueous layer: 6M NaOH.
Explanation:
Each of the answers is explained as follows:
a. Extract reconstituted 3-nitroaniline out of the aqueous layer: Dichloromethane.
Dichloromethane is an organochloride chemical and CH2Cl2 is its formula. It is commonly employed as a solvent since it is a colorless, volatile liquid with a sweet, chloroform-like odor. It is polar and miscible with numerous organic solvents, despite not being miscible with water.
b. Extract benzoic acid into the aqueous layer: 5% NaOH.
According to the Mass by Volume percentage concept, 5% NaOH solution (W/V) indicates 5g of NaOH dissolved in 100ml of water.
c. Extract aniline into the aqueous layer: 5% HCl.
Hydrochloric acid (HCl) is a common acid found in the human body as well as in laboratories, and it is a key component of stomach acid.
As a result, 5% HCl solution is made by mixing 8.26 mL concentrated HCl with roughly 50 mL distilled water, stirring well, and then adding water up to 100 mL.
d. Reconstitute aniline from aqueous layer: 6M NaOH.
6M NaOH refer to 6 moles in 1L MW (NaOH). Therefore, 6 moles of NaOH are dissolved in 1 liter of H2O to make a 6M NaOH solution. Because NaOH has a molar mass of 39.9997 g/mol, we'll need 240 g NaOH (39.997 x 6) in 1L of H2O to make a 6M solution.
A solution has a [H3O+] of 1 × 10−5 M. What is the [OH−] of the solution?
A) 9 M
B) 14 M
C) 1 x 10^{-9}
D) 1 x 10^{-14}
En una práctica experimental, para la obtención de cloruro cobaltoso, se hacen reaccionar 120 g de sulfuro cobaltoso de 60% de pureza con 30 cm3 de ácido nítrico concentrado (densidad 1,142 g/cm3, 69,8% en peso de HNO3), en presencia de ácido clorhídrico concentrado (densidad 1,19 g/cm3, 37,33 % en peso de HCl). Calcular:
a) El volumen de ácido clorhídrico concentrado que se requiere para la reacción.
b) La cantidad máxima de cloruro de cobalto (II) que se puede preparar.
c) El número de moléculas de monóxido de nitrógeno que se deprenden.
d) El número de átomos de azufre que se forman.
e) El número de moles de agua que se obtiene.
CoS + HNO3 + HCl → CoCl2 + NO + S + H2O
Answer: D
Explanation:
Utilicé traductor de español para responder esta pregunta
12.0: A
Mention three body fluids that are alkaline in nature
What mass of octane (in g) is required to produce 8210 kJ of heat?
Answer:
184.8 g
Explanation:
Step 1: Write the balanced thermochemical equation
C₈H₁₈(l) + 25/2 O₂(g) ⇒ 8 CO₂(g) + 9 H₂O(g) ΔH°rxn = -5074.1 kJ
Step 2: Calculate the moles of octane required to produce 8210 kJ of heat
According to the thermochemical equation, 5074.1 kJ of heat are released per mole of octane consumed.
-8210 kJ × 1 mol C₈H₁₈/(-5074.1 kJ) = 1.618 mol
Step 3: Calculate the mass corresponding to 1.618 moles of octane
The molar mass of C₈H₁₈ is 114.23 g/mol.
1.618 mol × 114.23 g/mol = 184.8 g
1mol produces=5074.1KJ heat .
Moles produce 8210 KJ heat :-
8210/5074.1=1.62molMolar mass of Octane :-
8(12)+18=96+18=114g/molMass of Octane=
1.62(114)=184.7gA calorimeter measures the heat involved in reactions or other processes by measuring the temperature change of the materials ________ the process The calorimeter is_______ to prevent transfer of heat to outside the device A calorimeter measures the heat involved in reactions or other processes by measuring the temperature change 01 the process the materials _______. _______ produced by The calorimetelinvolved in surrounding to prevent transfer of heat to outside the device. A calorimeter measures the heat involved in reactions or other processes by measuring the temperature change of the materials _______ the process to prevent transfer of heat to outside the device. The calorimeter is _____ _______Insulated conductive left open V A calorimeter measures the heat involved in reactions or other processes by measuring the temperature change _______ the materials ______ SS moles mass heat The calorimeter is _______comprevent transfer of heat to outside the device of A calorimeter measures the heat involved in reactions or other processes by measuring the temperature chang- ______ the materials _______ the process mass gain enthalpy change temperature change The calorimeter is ________... to prevent transfer of heat to outside the device
Complete Question:
A calorimeter measures the heat involved in reactions or other processes by measuring the ______ of the materials _____ the process. The calorimeter is _______ to prevent transfer of heat to outside the device.
Answer:
Temperature; surrounding; insulated.
Explanation:
A calorimeter can be defined as a scientific instrument or device designed and developed for measuring the heat involved in reactions or other processes, especially by taking the measurement of the temperature of the materials surrounding the process.
Basically, a calorimeter is insulated using materials with very high level of resistivity so as to prevent heat transfer to the outside of the device (calorimeter). Some of the components that make up a simple calorimeter are thermometer, an interior styrofoam cup, an exterior styrofoam cup, cover, etc.
Additionally, a calorie refers to the amount of heat required to raise the temperature of a gram of water by one degree Celsius (°C).
Answer:
Temperature; surrounding; insulated.
Explanation:
A calorimeter measures the heat involved in reactions or other processes by measuring the Temperature of the materials surrounding the process. The calorimeter is insulated to prevent the transfer of heat outside the device.
heating, the particle _______________ increases as more __________ __________ is added
Answer: what are the choices?!.
Explanation:
5 compounds that has electrovalent and covalent bond
Answer:
electrovalent
NaCl
Lithium Carbonate
ammonium phosphate
aluminium floride
potassium hydride
covalent
methane
benzene
carbon iv oxide
hydro flouride
hydro chloride
A mixture of coarse sand and sugar is 45.0 percent sand by mass. 120.0 grams (g) of the mixture is placed in a fine-mesh cloth bag and dunked repeatedly in Lake Michigan. After drying, the mass of the contents of the bag equals: ________.
A. 66.0 g
B. 120.0 g
C. 65.0 g
D. 72.00 g
E. 54.0 g
Answer:
Option E
Explanation:
From the question we are told that:
Amount of sand in percentage [tex]s_p=45%[/tex]
Sample size[tex]n=120g[/tex]
Note:After being dumped in the river repeatedly the sugar melts away leaving behind the insoluble sand
Generally the equation for Amount of sand content is mathematically given by
[tex]X=n*s_p[/tex]
[tex]X=120*\frac{45}{100}[/tex]
[tex]X=54g[/tex]
Therefore
After drying, the mass of the contents of the bag equals
[tex]X=54g[/tex]
Option E