Answer:
59.3g
Explanation:
Mole = no. Molecules/6.02×10^23
Mole = (8.12×10^23)/(6.02×10^23)
Mole = 1.35mole
Molar mass of CO2 = 12+ 2(16)
Molar mass= 12 + 32= 44g/mol
Mole = mass/molar mass
Mass = Mole × molar mass
Mass = 1.35× 44
Mass= 59.35g
Question 3 0 / 1 point How many grams of carbon atoms are present in a sample of C3H8 if there are 4.10 moles of hydrogen atoms in the sample
Answer:
18.45 g of C
Explanation:
This is a problem of rules of three:
1 mol of C₃H₈ contains 3 moles of C and 8 moles of H
If 8 moles of H are contained in 1 mol of propane
4.10 moles of H are contained in (4.1 . 1) /8 = 0.5125 moles
Now, If 1 mol of propane contains 3 moles of C
0.5125 moles of propane may contain (0.5125 . 3) / 1 = 1.5375 moles of C
Let's convert the moles to mass:
1.5375 mol . 12 g /mol = 18.45 g
State three natural conditions under which plasmolysis could occur
Answer:
When the cell is placed in salt solutionWhen leave celss dryWhen cells are placed in sugar solutionExplanation:
Hope this helps
Why can light be treated like a particle?
Answer:
Light can be treated like particles because it is made of chunks like things called protons.
What is the solute and solvent in a solution of salt water
Answer:
The solute is salt and the solvent is water
Explain:
Because salt is a component the dissolves in the solvent
The shielding of electrons gives rise to an effective nuclear charge, Zeff, which explains why boron is larger than oxygen. Estimate the approximate Zeff felt by a valence electron of boron and oxygen, respectively.
a. +5 and +8.
b. +3 and +6.
c. +5 and +6.
d. +3 and +8.
e. +1 and +4.
Answer:
b. +3 and +6.
Explanation:
Zeff = Z - S
The Z denotes the no of protons i.e. atomic number
S denotes the non-valence electrons
For boron,
the electronic configuration is 1s₂ 2s₂ 2p₄
Now
Z = 5, S = 2
So,
Zeff = 5-2
= +3
For O, the electronic configuration is 1s₂ 2s₂ 2p₄
So,
Z = 8, S = 2
= 8-2
= +6
Hence, the second option is correct
What is the molar mass of 12?
Answer:
I assume your talking about carbon when you say 12 so it'd be 12 grams if you are
Explanation:
The molar mass of any substance in grams per mole is numerically equal to the mass of that substance expressed in atomic mass units.
Hope this helps you some
Can someone please help with these 2?
Equilibrium shifts to the right.
OPTION A
Please help! Thanks in advance!
Where is ur question ⁉️
2.31 grams of KNO3 are dissolved in 4.15 g of H2O. What is the concentration of the solution in units of gKNO3/100gH2O?
Answer: The concentration of the solution is 55.66g[tex]KNO_3[/tex]/100g[tex]H_2O[/tex]
Explanation:
A solution consists of solute and solvent. A solute is defined as the component present in a smaller proportion while the solvent is defined as the component that is present in a larger proportion.
We are given:
Mass of [tex]KNO_3[/tex] = 2.31 g
Mass of water = 4.15 g
To calculate the concentration in g[tex]KNO_3[/tex]/100 g [tex]H_2O[/tex], we apply unitary method:
In 4.15 g of water, the mass of [tex]KNO_3[/tex] present is 2.31 g
So, in 100 g of water, the mass of [tex]KNO_3[/tex] present will be [tex]\frac{2.31}{4.15}\times 100=55.66g[/tex]
Hence, the concentration of the solution is 55.66g[tex]KNO_3[/tex]/100g[tex]H_2O[/tex]
Look at pictures and help please
Answer: In order to increase the rate of reaction between hydrochloric acid and sugar increase the concentration of hydrochloric acid to 2 M because greater concentration results in more collision between the reactants.
Explanation:
More is the concentration of reactant molecules more will be the number of collisions between their molecules. As a result, more readily the products will be formed.
Hence, for the given reaction when concentration of HCl is increased then there will be increase in the number of collisions between reactants.
Thus, we can conclude that in order to increase the rate of reaction between hydrochloric acid and sugar increase the concentration of hydrochloric acid to 2 M because greater concentration results in more collision between the reactants.
how do sea breezes and land breezes affect local weather
At STP, which gaseous sample has the same number
of molecules as 5.0 liters of O2 (g)?
A) 6.0 L of F2 (g)
C) 3.0 L of H2 (g)
B) 4.5 L of O2 (g)
D) 5.0 L of Cl2 (g)
A sample of 10K gold contains the following: 10.0g gold, 4.0g silver, 5.0g copper, and 5.0g nickel. What is the percent gold in the sample?
Answer:
I don't no answer sorry
Explanation:
you follow me
In the picture this is my last question pls.
Answer:
Chromosomes and I think its too many
Explanation:
List the safety measures she should take to stay safe while she carries out her experiment
Answer:
Wearing gloves
Explanation:
it helps on not touching chemicals
the most correct definition of a chemical bond is the:
g 1.000 atm of oxygen gas, placed in a container having a pinhole opening in its side, leaks from the container 2.14 times faster than does 1.000 atm of an unknown gas placed in this same apparatus. Which of these species could be the unknown gas
The question is incomplete, the complete question is;
1.000 atm of Oxygen gas, placed in a container having apinhole opening in its side. leaks from the container 2.14 timesfaster thatn 1.000 atm of an unknown gas placed in this sameapparatus. Which of the following species could be theunknown gas?
A. CL2
B. SF6
C. Kr
D. UF6
E. Xe
Answer:
SF6
Explanation:
From Graham's law;
Let the rate of diffusion of oxygen be R1
Let the rate of diffusion of unknown base be R2
Let the molar mass of oxygen by M1
Let the molar mass of unknown gas be M2
Hence;
R1/R2 = √M2/M1
So;
2.14/1 = √M2/32
(2.14/1)^2 = M/32
M= (2.14/1)^2 × 32
M= 146.6
This is the molar mass of SF6 hence the answer above.
when the sum 4.9965 + 2.11 + 3.887 is calculated, to how many decimal places should the answer be reported?
Answer:
the correct answer is four decimal places
How many significant digits should be used to report the answer to each of the following calculations? (2.75518 + 9.01 + 3.3349) / (2.1)
Answer:
2
Explanation:
You write your answer with the same number of significant figures as the number with the smallest amount of figures, in this case, that number is 2.1 so your answer should be written with 2 significant figures.
The earth's crust is:
made of rock
the thinnest layer
broken into large pieces called plates
all of the above
Answer:
all of the above
Explanation:
have a nice day :-)
Can someone help me out with this please
Answer:
[tex]molar \: mass \: of \: copper(ii)nitrate = 64 + (14 + 48) \times 3 \\ = 250 \: g \\ 64 \: g \: of \: copper \: produces \: 250 \: g \: of \: copper \: nitrate \\ 10.36 \: g \: of \: copper \: will \: produce \: ( \frac{10.36 \times 250}{64} ) \: g \\ = 40.7 \: g[/tex]
The decomposition of hydrogen peroxide was studied, and the following data were obtained at a particular temperature.Time (s) [H2O2] (mol/L)0 1.00120 ± 1 0.91300 ± 1 0.78600 ± 1 0.591200 ± 1 0.371800 ± 1 0.222400 ± 1 0.133000 ± 1 0.0823600 ± 1 0.050 Assuming that the rate= -delta [H2O2]/delta t determine the rate law, integrated rate law, and the value of the rate constant. Calculate [H2O2] at 4000. s after the start of the reaction.
Answer:
Explanation:
From the graphical diagram attached below; we can see the relationship between the concentration of [tex]H_2O_2[/tex] which declines exponentially in relation to the time and it obeys the equation: [tex]\mathtt{y = 0.9951 e^{-8\times 10^{-4}x}}[/tex]
This relates to the 1st order reaction rate, whereby:
The integrated rate law[tex]\mathtt{ [A] = [A]_o e^{-kt}}[/tex]
here:
[A] = reactant concentration at time (t)
[A]_o = initial concentration for the reactant
k = rate constant
As such, the order of the reaction is the first order
Rate constant [tex]\mathtt{k = 8\times 10^{-4} {s^{-1}}}[/tex]
Rate law [tex]\mathtt{= k[H_2O_2]}[/tex]
The integrated rate law [tex]\mathtt{[H_2O_2] = [H_2O_2]_oe^{-(8*10^{-4})t}}[/tex]
From the given table:
the initial concentration of [tex]H_2O_2[/tex] = 1.00 M
∴
We can determine the concentration of the reactant at 4000s by using the formula:
[tex]\mathtt{[H_2O_2] = [H_2O_2]_oe^{-8*10^{-4}(t)}}[/tex]
[tex]\mathtt{[H_2O_2] = (1.00\ M)*e^{-8*10^{-4}(4000)\ s}}[/tex]
[tex]\mathtt{[H_2O_2] =0.0407 \ M}[/tex]
Finally, at 4000s: the average rate is:
[tex]\mathtt{= (8*10^{-4} \ s^{-1})(4000 \ s) }\\ \\ \mathtt{ = 3.256 \times 10^{-5} \ M/s}[/tex]
Can you look at the picture Look at the picture ASAP and help please?
Answer:
Volume of the reaction vessel is increased - shift to the left
The reaction is cooled down - shift to the right
H2 is added to the system - shift to the right
The pressure of the system is decreased - shift to the left
A catalyst is added to the system - no change
Water is removed from the system - shift to the right
Explanation:
When a constraint such as a change in temperature, pressure or volume is imposed on a reaction system in equilibrium, the equilibrium position will shift in such a way as to annul the constraint.
When the volume of a reaction system is increased, the equilibrium position shifts in the direction in which there is the highest total volume. This is the left hand side.
Since the reaction is exothermic (heat is given out) when the reaction is cooled down, the forward reaction is favoured.
Adding of reactants shifts the equilibrium position to the right hand side hence when H2 is added, the equilibrium position shifts to the right.
Decreasing the pressure shifts the equilibrium position to the direction of higher total volume hence the equilibrium shifts to the left when pressure is decreased.
A catalyst has no effect on the equilibrium position. It increases the rate of forward and reverse reaction to the same extent hence the equilibrium position is unaffected.
Removal of water from the system increases the rate of forward reaction since a product is being removed from the reaction system.
HELPPP PLEASEEEEE
Name the following alkane molecule:
Answer:
5–bromo–9–chlorodecane
Explanation:
To name the compound given above, the following must be obtained:
1. The longest continuous carbon chain. This gives the parent name of the compound.
2. The substituent group attached to the compound.
3. Position of the substituent group.
4. Combine the above to obtain the name.
Now, we shall determine the name of the compound as follow:
1. The longest continuous carbon chain is 10. Thus, the parent name of the compound is decane.
2. The substituent groups attached to the compound are:
I. Bromine (Br) => Bromo
II. Chlorine (Cl) => Chloro
3. The position of the substituent groups are:
I. Br => carbon 5
II. Cl => carbon 9
NOTE: numbering is done alphabetically.
4. Therefore, the name of the compound is:
5–bromo–9–chlorodecane
Answer:
A.
Explanation:
I chose this answer and it was correct ♀️
Según la cinética química para que una reacción ocurra, los átomos o moléculas deben
I. Chocar con la suficiente energía. II. Chocar con una concentración adecuada. III. Ser choques efectivos
A) Solo I.
B) Solo I y II.
C) Solo I y III.
D) Solo II y III.
E) I, II, III.
Answer:
solo I
Explanation:
Según esta teoría para que se produzca una reacción deben cumplirse tres condiciones: Las moléculas de los reactivos tienen que chocar entre sí. Estos choques deben de producirse con energía suficiente de forma que se puedan romper y formar enlaces químicos.
what is the molecular formula for this compound
Answer:
4
Explanation:
because it has 3 carbons and 6 hydrogen
hope this helps :)
Complete the following equations (note that the equations are not balanced). Use the act
necessary
03
Li > K> Ba > Sr> Ca > Na > Mg > Al > Mn > Zn > Cr> Fe > Cd >
Co > Ni > Sn > Pb > H > Sb> Bi > Cu > Ag > Pd > Hg > Pt > Au
K1+Pb(NO3)2 →?
O KNO3 + Pbl2
O KNO3 + Pbl
OKNI + PbO2
Answer:
Explanation:
a
Homologous chromosomes pair up during prophase I to form a ________________.
Fill it in PLSSSSSSSSSSSSS
i will give brainlist
A 1.375 g sample of mannitol, a sugar found in seaweed, is burned completely in oxygen to give 1.993 g of carbon dioxide and 0.9519 g of water. The empirical formula of mannitol is
Answer:
[tex]C_3H_7O_3[/tex]
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to infer that the empirical formula of mannitol contains carbon, hydrogen and oxygen, so that the first step is to calculate the moles of C and H contained in the CO2 and H2O, respectively, as the only sources of these two elements in the formula:
[tex]n_C=1.993gCO_2*\frac{1molCO_2}{44.01gCO_2}*\frac{1molC}{1molCO_2} =0.0453molC\\\\n_H=0.9519gH_2O*\frac{1molH_2O}{18.02gH_2O}*\frac{2molH}{1molH_2O} =0.106molH[/tex]
Next, we calculate the grams and moles of O by subtracting the mass of C and H from the mass of the sample:
[tex]m_O=1.375g-0.0453molC*\frac{12gC}{1molC}-0.106molH*\frac{1.01gH}{1molH}=0.724gO\\\\n_O=0.724gO*\frac{1molO}{16.0gO} =0.0453molO[/tex]
Finally, we divide the moles of C, H and O by 0.0453 as the fewest moles of both C and O to find the mole ratios in the formula:
[tex]C:\frac{0.0453mol}{0.0453mol} =1\\\\H:\frac{0.106mol}{0.0453mol} =2.34\\\\O:\frac{0.0453mol}{0.0453mol} =1[/tex]
To get:
[tex]CH_{2.34}O[/tex]
Which must be multiplied by 3 to get whole numbers for all the subscripts, and therefore obtain:
[tex]C_3H_7O_3[/tex]
Regards!
Note: Please show all work and calculation setups to get full credit. T. he following may be used on this assignment: specific heat of (water=4.184 J/g oC; ice=2.03 J/g oC; steam=1.99 184 J/g oC); heat of fusion of water=80. cal/g; heat of vaporization=540 cal/g; 1cal=4.184J.
Calculate the energy required (in J) to convert 25 g of ice at -15 oC to water at 75 oC.
Answer:
16974J of energy are required
Explanation:
The energy required is:
* The energy to heat solid water from -15°C to 0°C using:
q = m*S*ΔT
* The energy to convert the solid water to liquid water:
q = dH*m
* The energy required to increase the temperature of liquid water from 0°C to 75°C
q = m*S*ΔT
The first energy is:
q = m*S*ΔT
m = Mass water = 25g
S is specific heat of ice = 2.03J/g°C
ΔT is change in temperature = 0°C - (-15°C) = 15°C
q = 25g*2.03J/g°C*15°C
q = 761.3J
The second energy is:
q = dH*m
m = Mass water = 25g
dH is heat of fusion of water = 80cal/g
q = 80cal/g*25g
q = 2000cal * (4.184J/1cal) = 8368J
The third energy is:
q = m*S*ΔT
m = Mass water = 25g
S is specific heat of water= 4.184J/g°C
ΔT is change in temperature = 75°C-0°C = 75°C
q = 25g*4.184J/g°C*75°C
q = 7845J
The energy is: 7845J + 8368J + 761J =
16974J of energy are required