Answer:
Iron(III) Cyanide
Write a description of how you know a chemical reaction is occurring.
ANSWER FAST FIRST PERSON GETS BRAINLIEST
Answer:
See explanation
Explanation:
Chemical reactions are also referred to as chemical change. A chemical change often leads to the formation of new substances and is not easily reversible.
A chemical reaction may be accompanied by the emission of heat and light, formation of a precipitate, evolution of gas, or a color change.
These observable physical effects may tell us weather a chemical reaction has taken place or not so we have to observe the system closely for any of these effects stated above.
first answer will get brainliest
Answer:
Incorrect
Explanation:
Mole ratios are derived from the coefficients in front of the number, N2O does not have a 2 in front of it, the real mole ratio would be 4/1
Answer:
Correct
Explanation:
I had the same problem and I put correct, and it was correct.
Answer the given question: use Chapter 1 of notebook
How many formula units are there in 3.20x 102 moles of LICI? (2pts.)
Conversion factor: 1 mole LICI=
_formula of LICI
Students, draw anywhere on this slide!
Answer:
1.93 x 10²⁶ formula units
Explanation:
Given parameters:
Number of moles of LiCl = 3.2 x 10² moles = 320moles
Unknown:
Number of formula units in this compound = ?
Solution:
The mole is used a reference to determine the number of substances matters contain.
A mole contains the Avogadro's number of particles.
So;
1 mole of a substance contains 6.02 x 10²³ formula units;
320 moles of LiCl will contain 320 x 6.02 x 10²³ = 1.93 x 10²⁶ formula units
A sample of N2O4(g) is placed in an empty cylinder at a certain temperature. It is allowed to decompose and form NO2(g). At equilibrium, the flask has a total pressure of 1.000 atm. If the KP at this temperature is 0.85, calculate the partial pressure (in atm) of NO2(g) at equilibrium. g
Answer:
Part. press. NO₂ in equilibrium is 0.590 atm
Explanation:
First of all, we determine the equilibrium:
N₂O₄ (g) ⇄ 2NO₂ (g)
These is a system of two unknown values.
In the begining we have x pressure of N₂O₄ and no value for NO₂.
During the reaction, y pressure has been released from N₂O₄. As ratio is 1:2, 2y will be the value for the pressure of NO₂. So in the equilibrium we have:
N₂O₄ → x - y
NO₂ → 2y
Data from the excersise states that the total pressure is 1 atm so we know that the sum of partial pressures in a mixture, will be the total one. In the equilibrium, total pressure will be:
(x-y) + 2y = 1 atm
x + y = 1 atm
Let's make the expression for Kp
Kp = [Partial pressure NO₂]² / [ Partial pressure N₂O₄]
Kp = (2y)² / (x-y)
Kp = 4y² / (x-y)
We split the x value in the first equation:
x + y = 1 atm
x = 1 atm - y
x = 1 - y → we put this in the Kp expression
0.85 = 4y² / ( 1 - y - y)
0.85 = 4y² / 1 -2y
This is a quadractic equation
0.85 - 1.7y - 4y² = 0 where (a = -4, b = -1.7 c = 0.85)
(-b +- √(b² - 4ac)) / (2a)
(1.7 +-√((-1.7)² - 4 (-4) . 0.85) / 2 .(-4) → 0.295 = y
As [ Part. press. NO₂] in equilibrium is 2y → 0.295 . 2 = 0.590 atm
Based on the total pressure at equilibrium, the partial pressure NO₂ of at equilibrium is 0.590 atm.
What are the partial pressures of the gasses at equilibrium?From the equation of the reaction, the equilibrium is determined:
N₂O₄ (g) ⇄ 2NO₂ (g)At equilibrium, N₂O₄ and NO₂ exist in the ratio 1 : 2.
N₂O₄ at x pressure releases y pressure to form NO₂ .
Thus at equilibrium:
N₂O₄ → x - y
NO₂ → 2y
Ptotal = 1 atm
Thus:
(x-y) + 2y = 1 atm
x + y = 1 atm
Also, Kp = 0.85
From the equation of the reaction:
Kp = [Partial pressure NO₂]² / [ Partial pressure N₂O₄]
Kp = (2y)² / (x-y)
Kp = 4y² / (x-y)
Solving for x from the first equation:
x + y = 1 atm
x = 1 atm - y
Substitute x = 1 - y in the Kp expression
0.85 = 4y² / ( 1 - y - y)
0.85 = 4y² / 1 -2y
0.85 - 1.7y - 4y² = 0
Solving the quadractic equation:
where a = -4, b = -1.7 c = 0.85
y = (-b +- √(b² - 4ac)) / (2a)
y =(1.7 +-√((-1.7)² - 4 (-4) × 0.85) / 2 × (-4)
y = 0.295 or y = -0.720
We take positive value of y only.
Since partial pressure of NO₂ in equilibrium is 2y
Partial pressure of NO₂ = 0.295 × 2
Partial pressure of NO₂ = 0.590 atm
Therefore, the partial pressure of at equilibrium is 0.590 atm.
Learn more about about equilibrium partial pressure at: https://brainly.com/question/7183826
0
Which is not one of Earth's layers?
A А
crust
B)
inner core
mantle
D
ocean
The ocean is not a part of Earth's layers.
Answer:
Ocean
Explanation:
helppp nowww plsss rnnn!
An object has a mass of 72 kg. What is its weight?
Answer:Acceleration due to gravity on the moon is 1/6 times as that on the earth and we know that mass is property of the material it always remains same and weight is measure of gravitational force, hence
mass of object on moon is 60kg and weight =60g/6=10×10=100N
Explanation:
YOU MUST SHOW YOUR WORK FOR FULL CREDIT!
1. Jimmy picks up a 5kg box and places it on a shelf 1 meter from the ground. What is the
gravitational potential energy of the box?
Answer: 49 joules
Explanation: gravitational potential energy = mgh
m= mass kg, g= acceleration due to gravity 9.8 m/sec/sec, h= height m
=5*9.8.1 joules = 49 joules
Gravity pulls rain and snow down to Earth from the atmosphere through a paire
process called precipitation Water is pulled from elevated areas such as
mountains and hills into lakes, oceans, and water reserviors. What is this
describing?*
role of gravity in the water cycle
role of gravity in condensation
O
role of gravity in evaporation
role of gravity in precipitation
help now plsss I really need help !!!!
Answer:
4
Explanation:
the one you ARE ON
PLZ HELP ASAP WILL GIVE BRAINLISTS TO RIGHT ANSWER
How many molecules of carbon dioxide are in 12.2 L of the gas at STP?
A) 3.28 x 10^23 molecules
B) 5.01 X 10^23 molecules
C)2.24 x 10^23 molecules
D)8.12 x 10^22 molecules
Answer:
c
Explanation:
ok than not c than b maybe
A brown dye has a percent composition of 62.41% C, 5.24% H, and 32.36% N by mass with a molar mass of 346.40 g/mol. Determine the molecular formula of the dye
The molecular formula : C₁₈H₁₈N₈
Further explanationGiven
62.41% C, 5.24% H, and 32.36% N
Required
The molecular formula
Solution
mol ratio
C : 62.41/12.0096 = 5.1967
H : 5.24/1.00784 = 5.1992
N : 32.36/14.0067 = 2.310
Divide by 2.310(smallest)
C : 5.1967/2.31=2.25
H : 5.1992/2.31 = 2.25
N : 2.31/2.31 = 1
Multiplied by 4
C : H : N = 9 : 9 : 4
The empirical formula : C₉H₉N₄
(C₉H₉N₄)n=346.40 g/mol
(12.0096 x 9 + 1.00784 x 9 + 14.0067 x 4)n=346.4
(108.0864+9.07056+56.0268)n=346.4
(173.184)n=346.4
n=2
The molecular formula : C₁₈H₁₈N₈
A chemist prepares a solution of aluminum sulfate by weighing out of aluminum sulfate into a volumetric flask and filling the flask to the mark with water. Calculate the concentration in of the chemist's aluminum sulfate solution. Be sure your answer has the correct number of significant digits.
Answer:
25.8 g/dL
Explanation:
A chemist prepares a solution of aluminum sulfate by weighing out 116.0 g of aluminum sulfate into a 450. mL volumetric flask and filling the flask to the mark with water. Calculate the concentration in g/dL of the chemist's aluminum sulfate solution. Be sure your answer has the correct number of significant digits.
Step 1: Given data
Mass of aluminum sulfate (m): 116.0 gVolume of the solution (V): 450. mLStep 2: Convert "V" to dL
We will use the following conversion factors.
1 L = 1000 mL1 L = 10 dL450. mL × 1 L/1000 mL × 10 dL/1 L = 4.50 dL
Step 3: Calculate the concentration (C) of aluminum sulfate if g/dL
We will use the following expression.
C = m/V = 116.0 g/4.50 dL = 25.8 g/dL
A change of state is a(n)
process.
A. irreversible
B. reversible
Answer:
Changes of states are reversible, you can go from a solid to liquid and liquid to solid.Answer:
Reversible
Explanation:
Changes of state are physical changes in matter. Common changes of the state include melting, freezing, sublimation, deposition, condensation, and vaporization.
To determine the concentration of citric acid, you will need to titrate this solution with 0.100 M NaOH. You are given a 1.00 M NaOH stock solution and will need to make enough 0.100 M NaOH to perform 3 titrations. For each titration, you will use 20.0 mL of 0.100 M NaOH solution.
Calculate the total volume (in mL) of the diluted solution you will need to prepare for the 3 titrations.
Determine the minimum volume (in mL) of 1.00 M NaOH stock solution needed to prepare the 0.100 M NaOH solution.
Answer:
60.0mL of the diluted solution are needed
6.00mL of the 1.00M NaOH stock solution is the minimum volume needed to prepare the diluted solution.
Explanation:
As in each titration we need to use 20.0mL of the diluted 0.100M solution. As there are 3 titration, the volume must be:
3 * 20.0mL = 60.0mL of the diluted solution are needed
Now, to prepare a 0.100M NaOH solution from a 1.00M NaOH stock solution the dilution must be of:
1.00M / 0.100M = 10 times must be diluted the solution.
As we need at least 60.0mL, the minimum volume of the stock solution must be:
60.0mL / 10 times =
6.00mL of the 1.00M NaOH stock solution is the minimum volume needed to prepare the diluted solution.Which of the following choices is not evidence supporting the theory of plate tectonics?
Answer:
B
Explanation:
Classify each of the following compounds as a strong acid, weak acid, strong base, or weak base, and write the Ka expression for any weak acid or weak base:
1. [ Select ] ["strong base", "weak base", "strong acid", "weak acid"] LiOH
2. [ Select ] ["weak acid", "strong acid", "strong base", "weak base"] HF
3. [ Select ] ["strong acid", "weak acid", "strong base", "weak base"] HCl
4. [ Select ] ["weak base", "strong base", "weak acid", "strong acid"] NH3
Ka expression: [ Select ] ["[H+][F-] / [HF]", "[Li+][OH-]/ [LiOH]", "[H+][Cl-} / [HCl]", "[NH4+] / [NH3]", "[HF] / [H+][F-}", "[LiOH] / [Li+][OH-]", "[HCl] / [H+][Cl-}", "none"]
Calculate the concentration of OHLaTeX: -? in a solution that has a concentration of H+ = 7 x 10LaTeX: -?6 M at 25°C. Multiply the answer you get by 1010 and enter that into the field to 2 decimal places.
Answer:
See explanation below
Explanation:
There are several ways to know if an acid or base is strong. One method is calculating the pH. If the pH is really low, is a strong acid, and if it's really high is a strong base.
However we do not have a pH value here.
The other method is using bronsted - lowry theory. If an acid is strong, then his conjugate base is weak. Same thing with the bases.
Now, Looking at the 4 compounds, we can say that only two of them is weak and the other two are strong compounds. Let's see:
LiOH ---> Strong. If you try to dissociate :
LiOH ------> Li⁺ + OH⁻ The Li⁺ is a weak conjugate acid.
HF -----> Weak
HF --------> H⁺ + F⁻ The Fluorine is a relatively strong conjugate base.
HCl -----> Strong
This is actually one of the strongest acid.
NH₃ ------> Weak
Now writting the Ka and Kb expressions:
Ka = [H⁺] [F⁻] / [HF]
Kb = [NH₄⁺] [OH⁻] / [NH₃]
Finally, to calculate the [OH⁻] we need to use the following expression:
Kw = [H⁻] [OH⁻]
Solving for [OH⁻] we have:
[OH⁻] = Kw / [H⁺]
Remember that the value of Kw is 1x10⁻¹⁴. So replacing:
[OH⁻] = 1x10⁻¹⁴ / 7x10⁻⁶
[OH⁻] = 1.43x10⁻⁹ M
And now, multiplying by 10¹⁰ we have:
[OH⁻] = 1.429x10⁻⁹ * 1x10¹⁰
[OH⁻] = 14.29Hope this helps
Strong acids and bases are those which completely ionized in body fluid, and weak acids and bases are those who does not completely ionized in body fluid.
Ka expression is used to differentiate between strong and weak acids.
Which are strong acids and base and weak acids and bases?LiOH - strong baseHF - weak acidHCl - strong acidNH3 - weak baseWhat are the Ka expression of the following?Weak acid – HF[tex]\bold{\dfrac{[H+][F-]}{[HF]}}[/tex]
Weak base – NH3[tex]\bold{\dfrac{[NH_4^+] [OH^-]}{[NH_3]} }[/tex]
Calculate the concentration of OH?Given, [tex]\bold{ [H^+]=1\times10^-^6\; at \;25^oC}[/tex]
We know, [tex]\bold{ [H^+]\times[OH^-]=1\times10^-^6\; at \;25^oC}[/tex]
[tex]\bold{[OH^-]=\dfrac{1\times10^-^1^4}{6.2\times10^-^6} = 1.43\times10^-^9}[/tex]
Now, multiplying the value by [tex]10^1^0[/tex]
[tex]\bold{( 1.429\times10^-^9) \times 1\times10^1^0= 14.29}[/tex]
Thus, the value is 14.29.
Learn more about acid and base, here:
https://brainly.com/question/10468518
what state of matter travels in straight lines
Answer:
light
Explanation:
light is plasma, which is a state of matter
What volume (in L) of water vapor will be
produced from the reaction of 24.65 L of oxygen?
2C2H6(9) + 702(9) — 4CO2(g) + 6H20(9)
Enter
Answer:
21.13 L
Explanation:
Step 1: Write the balanced equation
2 C₂H₆(g) + 7 O₂(g) ⇒ 4 CO₂(g) + 6 H₂O(g)
Step 2: Determine the appropriate volume ratio
Since all the gases are in the same container at the same temperature and pressure, the volume ratio is equal to the molar ratio, because the volume depends on the number of moles. The volume ratio of O₂(g) to H₂O(g) is 7:6.
Step 3: Determine the volume of H₂O produced from 24.65 L of O₂
24.65 L O₂ × 6 L H₂O/7 L O₂ = 21.13 L H₂O
When measuring the volume of a liquid, how would sample size (e.g., using a 10 mL graduated cylinder vs. a 100 mL graduated cylinder to measure out 70 mL of a liquid) affect the absolute error and percentage error in the measured values of mass and volume and therefore the density
Answer:
Explanation:
From the given information:
The accuracy depends on the internal diameter of the cylinder. The cylinder with the least internal diameter is obviously more precise.
Let's assume 1% is the error of measurement.
Then, to measure 70 mL from 10 mL cylinder
The error = [tex]10 \times \dfrac{1}{100} \times 7[/tex]
= 0.7 mL
However; for a 100 mL cylinder, the error = 1 mL
Now,
The total volume for 10 mL = (70 + 0.7) = 70.7 mL
The total volume for 100 mL = (70 + 1 ) = 71 mL
Suppose the density (d) is same for both
Then;
the mass of 10 mL = ( d × 70.7) g
the mass pf 100 mL = (d × 71) g
Thus, the mass of 100 mL is greater than that of 10 mL.
us
If the mole fraction of NaCl in an
aqueous solution is 0.0927, what is
the weight/weight % (percent by
mass) of NaCl.
Molar Mass
Naci: 58.44 g/mol
H2O: 18.016 g/mol
Answer:
24.9%
Explanation:
According to this question, mole fraction of NaCl in an aqueous solution is 0.0927. This means that the mole percent of NaCl in the solution is:
0.0927 × 100 = 9.27%
Let's assume that the solution contains water (solvent) + NaCl (solute), hence, the mole fraction of water will be;
100% - 9.27% = 90.73%
THEREFORE, it can be said that, NaCl contains 0.0927moles while H2O contains 9.073moles
N.B: mole = mass/molar mass
Given the Molar Mass
NaCl: 58.44 g/mol
H2O: 18.016 g/mol
For NaCl;
0.0927 = mass/58.44
mass = 0.0927 × 58.44
5.42g
For H2O;
9.073 = mass/18.016
mass = 9.073 × 18.016
= 16.35g
Total mass of solution = 16.35g + 5.42g = 21.77g
Mass percent of NaCl = mass of NaCl/total mass × 100
% mass of NaCl = 5.42g/21.77g × 100
= 0.249 × 100
= 24.9%
Answer:
24.9
Explanation:
Name the intermolecular force that corresponds to: an attraction between a partially positive region in one molecule and a partially negative region in another molecule. an attraction between two temporarily polarized molecules. an attraction between a negatively charged particle and a partially positive region in a molecule. an attraction between a partially positive hydrogen atom in a molecule and a partially negative and highly electronegative atom on another molecule.
Answer:
an attraction between a partially positive region in one molecule and a partially negative region in another molecule....dipole-dipole interaction
an attraction between two temporarily polarized molecules...dispersion forces
an attraction between a negatively charged particle and a partially positive region in a molecule....ion dipole interaction
an attraction between a partially positive hydrogen atom in a molecule and a partially negative and highly electronegative atom on another molecule....Hydrogen bonding
Explanation:
Some molecules have permanent dipole. As a result of this, the positive part of one molecule may attract the negative part of the other molecule leading to dipole-dipole interaction.
Dispersion forces occur in all molecules and is as a result of temporary polarization of a molecule due to instantaneous dipole–induced dipole attractions.
If a charged particle is attracted by a dipole in a molecule, we call it ion-dipole interaction.
When hydrogen is bonded to a highly electronegative element, the positive end of the dipole is on hydrogen while the negative end of the dipole is on the electronegative element. Molecular associations often result from this permanent dipole and is called hydrogen bonding, e.g, HF.
______ is required for making a scientific inquiry
Vinegar is insoluble in vegatable oil. Does this mean that vinegar is a totally insoluble substance?
Answer:
No
Explanation:
This does not mean that vinegar is insoluble totally. In fact, vinegar is soluble in water because water is a polar solvent.
For a substance to be soluble in another, it must obey the rule of solubility.
The rule states that "like dissolves like"
It implies that polar solvent will only dissolve polar solute.
Also, non-polar solvent will only dissolve non-polar solute.
Vegetable oil is a non-polar solventIt cannot dissolve a polar solute such as vinegarTherefore, the answer is no, vinegar will dissolve in water.
which type of bond involves 2 different metals?
A. ionic
B. Covalent
C.Metallic
D. Bonding would not occur
Answer:
iconic bond is the answer
I hope it helps you ✌
How was Bohr's atomic model different from those of previous scientists?
Answer:
Bohr placed the electrons in distinct energy levels. Rutherford described the atom as consisting of a tiny positive mass surrounded by a cloud of negative electrons. Bohr thought that electrons orbited the nucleus in quantized orbits. Also, rutherfords was just a hypothesis while Bhor took the time to make his an experiment
How do the valence electrons of an element determine how they will combine with other elements to produce a compound? Please help this is urgent :)
Answer:
See explanation
Explanation:
The valence electrons are electrons found on the valence (outermost) shell of an atom.
When an atoms form compounds, there is an exchange of valence electrons between the atoms of one element and the atoms of another element.
Let us consider a typical example, sodium has one valence electron and chlorine has seven valence electrons. This means that chlorine needs one electron to complete its octet while sodium needs to release one electron in order to attain the octet structure.
So, sodium gives out its one electron and becomes a stable sodium ion and chlorine accepts that electron and becomes a stable chloride ion. This is how the compound sodium chloride is formed.
A 1.0 mol sample of he(g) at 25 is mixed with a 1.0 mol sample of Xe(g) at 50 C. What would be the changes in average kineeteic energy and the average speed of the Xe atoms that will occur as the mixture approaches thermal equilibrium?
Answer:
Explanation:
The average kinetic energy for an ideal gas is directly proportional to the temperature. The average kinetic energy of the gas is a measure of the temperature of the gas molecule
Also, the average speed is usually proportional to the square root of temperature.
Similarly, there is a noticeable increase in K.E and speed in regard to temperature but sometimes it is not usually proportional.
However, provided that there is more temperature in Xe as compared to He, then after the mixture of both takes place at equilibrium; the temperature tends to fluctuate between (25 - 50)°C
Thus, since there is a decrease in temperature in Xe, both the average kinetic energy as well as the speed too will also decrease.
Calculate the percent composition (percent by mass of each element) of NH4Cl.
Round to the nearest ONES place ((example: 12.34% = 12%))
Answer:
[tex]\%N=26.2\%\\\\\%H=7.5\%\\\\\%Cl=66.3\%[/tex]
Explanation:
Hello!
In this case, since the calculation of the percent composition of an element in a chemical compound is computing considering its atomic mass, subscript in the formula and molecular mass of the compound it is; for nitrogen, hydrogen and chlorine we have that ammonium chloride has a molar mass of 53.49 g/mol so the percent compositions are:
[tex]\%N=\frac{14.01*1}{53.49}*100\% =26.2\%\\\\\%H=\frac{1.01*4}{53.49}*100\% =7.5\%\\\\\%Cl=\frac{35.45*1}{53.49}*100\% =66.3\%[/tex]
Best regards!
How many grams of sodium chloride should you theoretically produce if you start with 5.00 grams of calcium chloride and excess sodium carbonate? (answer in numbers only - no units or words)
Answer:
5.27 g of NaCl
Explanation:
The balanced equation for the reaction is given below:
Na₂CO₃ + CaCl₂ —> 2NaCl + CaCO₃
Next, we shall determine the mass of CaCl₂ that reacted and the mass of NaCl produced from the balanced equation. This can be obtained as follow:
Molar mass of CaCl₂ = 40 + (35.5×2)
= 40 + 71
= 111 g/mol
Mass of CaCl₂ from the balanced equation = 1 × 111 = 111 g
Molar mass of NaCl = 23 + 35.5
= 58.5 g/mol
Mass of NaCl from the balanced equation = 2 × 58.5 = 117 g
Summary:
From the balanced equation above,
111 g of CaCl₂ reacted to produce 117 g of NaCl.
Finally, we shall determine the theoretical yield of NaCl. This can be obtained as follow:
From the balanced equation above,
111 g of CaCl₂ reacted to produce 117 g of NaCl.
Therefore, 5 g of CaCl₂ will react to produce = (5 × 117)/111 = 5.27 g of NaCl.
Thus, the theoretical yield of NaCl is 5.27 g.