What is the area of this figure

Help please

What Is The Area Of This Figure Help Please

Answers

Answer 1

Step-by-step explanation:

A you see here, we have 3 different shapes. a Triangle, a big and small rectangle. Lets start with the triangle.

between the 8 in's, theres a gap. 5+4=9,

9+8+8=25. we have the length of the triangle.

9*25 divided by 2= 112.5. thats are area of the triangle.

for the bigger rectangle, 20*9=180, the area of the rectangle, and the smaller rectangle at the bottom is 16.

Now we add:

112.5+180+16=308.5  

hope this helps!


Related Questions

Pls help it’s due in the morning ;(

Answers

9:-

(3,3)(-4,1)

[tex]\\ \sf\longmapsto m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\\ \sf\longmapsto m=\dfrac{1-3}{-4-3}[/tex]

[tex]\\ \sf\longmapsto m=\dfrac{-2}{-7}[/tex]

[tex]\\ \sf\longmapsto m=\dfrac{2}{7}[/tex]

10:-

Points are (-7,6),(11,-4)

[tex]\boxed{\sf slope(m)=\dfrac{y_2-y_1}{x_2-x_1}}[/tex]

[tex]\\ \sf\longmapsto m=\dfrac{-4-6}{11+7}[/tex]

[tex]\\ \sf\longmapsto m=\dfrac{-10}{18}[/tex]

[tex]\\ \sf\longmapsto m=-\dfrac{5}{9}[/tex]

Answer:

Step-by-step explanation:

Slope = [tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]

9) Mark any two point on the line

(x₁ , y₁) = (3 , 3)   ;   (x₂, y₂) = (-4 ,1)

[tex]Slope =\frac{1-3}{-4-3}\\\\=\frac{-2}{-7}\\\\=\frac{2}{7}[/tex]

10) (x₁ , y₁) = ( -7 , 6)   ;   (x₂, y₂) = (11 ,-4)

[tex]Slope =\frac{-4-6}{11-[-7]}\\\\ =\frac{-4-6}{11+7}\\\\=\frac{-10}{18}\\\\=\frac{-5}{9}[/tex]

help pleasseeeeeeeee

Answers

Answer:

-1

Step-by-step explanation:

I know that i^4 = 1

i^10 = i^4 * i^4 * i^2

     = 1 * 1 * i^2

We know that i^2 = -1

    =1 *1 *-1

    = -1

result of 5 and 75 with dividid by 3

Answers

Answer:

your answer is 30

Step-by-step explanation:

I hope this help

Translate this phrase into an algebraic expression.
the sum of 4 and twice a number is 12

Answers

Answer:

4+2x = 12

Step-by-step explanation:

sum means add an is means equal

4+2x = 12

Answer:4 + 2x = 12

Step-by-step explanation:

the sum of 4 and twice a number is 12:

Have a great day! I hope this helps!! :)

Where did term “infinity” come from

Answers

the English mathematician John Wallis in 1655 invented the word infinity Infinity is from the Latin, infinitas. In general, the word signifies the state from an entity's not ending/limit.

How do we derive the sum rule in differentiation? (ie. (u+v)' = u' + v')

Answers

It follows from the definition of the derivative and basic properties of arithmetic. Let f(x) and g(x) be functions. Their derivatives, if the following limits exist, are

[tex]\displaystyle f'(x) = \lim_{h\to0}\frac{f(x+h)-f(x)}h\text{ and }g'(x)\lim_{h\to0}\frac{g(x+h)-g(x)}h[/tex]

The derivative of f(x) + g(x) is then

[tex]\displaystyle \big(f(x)+g(x)\big)' = \lim_{h\to0}\big(f(x)+g(x)\big) \\\\ \big(f(x)+g(x)\big)' = \lim_{h\to0}\frac{\big(f(x+h)+g(x+h)\big)-\big(f(x)+g(x)\big)}h \\\\ \big(f(x)+g(x)\big)' = \lim_{h\to0}\frac{\big(f(x+h)-f(x)\big)+\big(g(x+h)-g(x)\big)}h \\\\ \big(f(x)+g(x)\big)' = \lim_{h\to0}\frac{f(x+h)-f(x)}h+\lim_{h\to0}\frac{g(x+h)-g(x)}h \\\\ \big(f(x)+g(x)\big)' = f'(x) + g'(x)[/tex]

Factorize this and solve no p, q, s, t, w​

Answers

explanation:

all the questions are solved

in question no. s and t u need to divide the number in two different parts to slove

for no. w we can get two type of solution.

p and q u need to give the power of whole .

Write the equation of the sinusoidal function shown?

A) y = cos x + 2

B) y = cos(3x) + 2

C) y = sin x + 2

D) y = sin(3x) + 2

Answers

Answer:

günah(3x) + 2

Step-by-step explanation:

Gösterilen sinüzoidal fonksiyonun denklemini yazınız? A) y = cos x + 2 B) y = cos(3x) + 2 C) y = günah x + 2 D) y =

Answer:

y = sin(3x) + 2

what does this equal 2^3 + 6^5=

Answers

[tex]\\ \sf\longmapsto 2^3+6^5[/tex]

[tex]\\ \sf\longmapsto 2^3+(2\times 3)^5[/tex]

[tex]\\ \sf\longmapsto 8+2^5\times 3^5[/tex]

[tex]\\ \sf\longmapsto 8+32\times 243[/tex]

[tex]\\ \sf\longmapsto 40+7776[/tex]

[tex]\\ \sf\longmapsto 7784[/tex]

Answer:

2*2*2= 8

6*6*6*6*6= 7,776

7,776+8=

7,784

Classify the triangle as acute, right, or obtuse and as equilateral, isosceles, or scalene.​

Answers

9514 1404 393

Answer:

  (d)  Right, scalene

Step-by-step explanation:

The little square in the upper left corner tells you that is a right angle. Any triangle with a right angle is a right triangle. This one is scalene, because the sides are all different lengths.

__

Additional comment

An obtuse triangle cannot be equilateral, and vice versa.

An equilateral triangle has all sides the same length, and all angles the same measure: 60°. It is an acute triangle.

s the function represented by the table non-linear?

x
y
6
4
7
2
8
0
9
–2

Answers

All personnel decisions require the approval of the union, _______ the company slow to respond to market changes.

Select one:
A. making
B. will make
C. makes
D. made

100 POINTS AND BRAINLIEST FOR THIS WHOLE SEGMENT

a) Find zw, Write your answer in both polar form with ∈ [0, 2pi] and in complex form.

b) Find z^10. Write your answer in both polar form with ∈ [0, 2pi] and in complex form.

c) Find z/w. Write your answer in both polar form with ∈ [0, 2pi] and in complex form.

d) Find the three cube roots of z in complex form. Give answers correct to 4 decimal

places.

Answers

Answer:

See Below (Boxed Solutions).

Step-by-step explanation:

We are given the two complex numbers:

[tex]\displaystyle z = \sqrt{3} - i\text{ and } w = 6\left(\cos \frac{5\pi}{12} + i\sin \frac{5\pi}{12}\right)[/tex]

First, convert z to polar form. Recall that polar form of a complex number is:

[tex]z=r\left(\cos \theta + i\sin\theta\right)[/tex]

We will first find its modulus r, which is given by:

[tex]\displaystyle r = |z| = \sqrt{a^2+b^2}[/tex]

In this case, a = √3 and b = -1. Thus, the modulus is:

[tex]r = \sqrt{(\sqrt{3})^2 + (-1)^2} = 2[/tex]

Next, find the argument θ in [0, 2π). Recall that:

[tex]\displaystyle \tan \theta = \frac{b}{a}[/tex]

Therefore:

[tex]\displaystyle \theta = \arctan\frac{(-1)}{\sqrt{3}}[/tex]

Evaluate:

[tex]\displaystyle \theta = -\frac{\pi}{6}[/tex]

Since z must be in QIV, using reference angles, the argument will be:

[tex]\displaystyle \theta = \frac{11\pi}{6}[/tex]

Therefore, z in polar form is:

[tex]\displaystyle z=2\left(\cos \frac{11\pi}{6} + i \sin \frac{11\pi}{6}\right)[/tex]

Part A)

Recall that when multiplying two complex numbers z and w:

[tex]zw=r_1\cdot r_2 \left(\cos (\theta _1 + \theta _2) + i\sin(\theta_1 + \theta_2)\right)[/tex]

Therefore:

[tex]\displaystyle zw = (2)(6)\left(\cos\left(\frac{11\pi}{6} + \frac{5\pi}{12}\right) + i\sin\left(\frac{11\pi}{6} + \frac{5\pi}{12}\right)\right)[/tex]

Simplify. Hence, our polar form is:

[tex]\displaystyle\boxed{zw = 12\left(\cos\frac{9\pi}{4} + i\sin \frac{9\pi}{4}\right)}[/tex]

To find the complex form, evaluate:

[tex]\displaystyle zw = 12\cos \frac{9\pi}{4} + i\left(12\sin \frac{9\pi}{4}\right) =\boxed{ 6\sqrt{2} + 6i\sqrt{2}}[/tex]

Part B)

Recall that when raising a complex number to an exponent n:

[tex]\displaystyle z^n = r^n\left(\cos (n\cdot \theta) + i\sin (n\cdot \theta)\right)[/tex]

Therefore:

[tex]\displaystyle z^{10} = r^{10} \left(\cos (10\theta) + i\sin (10\theta)\right)[/tex]

Substitute:

[tex]\displaystyle z^{10} = (2)^{10} \left(\cos \left(10\left(\frac{11\pi}{6}\right)\right) + i\sin \left(10\left(\frac{11\pi}{6}\right)\right)\right)[/tex]

Simplify:

[tex]\displaystyle z^{10} = 1024\left(\cos\frac{55\pi}{3}+i\sin \frac{55\pi}{3}\right)[/tex]

Simplify using coterminal angles. Thus, the polar form is:

[tex]\displaystyle \boxed{z^{10} = 1024\left(\cos \frac{\pi}{3} + i\sin \frac{\pi}{3}\right)}[/tex]

And the complex form is:

[tex]\displaystyle z^{10} = 1024\cos \frac{\pi}{3} + i\left(1024\sin \frac{\pi}{3}\right) = \boxed{512+512i\sqrt{3}}[/tex]

Part C)

Recall that:

[tex]\displaystyle \frac{z}{w} = \frac{r_1}{r_2} \left(\cos (\theta_1-\theta_2)+i\sin(\theta_1-\theta_2)\right)[/tex]

Therefore:

[tex]\displaystyle \frac{z}{w} = \frac{(2)}{(6)}\left(\cos \left(\frac{11\pi}{6} - \frac{5\pi}{12}\right) + i \sin \left(\frac{11\pi}{6} - \frac{5\pi}{12}\right)\right)[/tex]

Simplify. Hence, our polar form is:

[tex]\displaystyle\boxed{ \frac{z}{w} = \frac{1}{3} \left(\cos \frac{17\pi}{12} + i \sin \frac{17\pi}{12}\right)}[/tex]

And the complex form is:

[tex]\displaystyle \begin{aligned} \frac{z}{w} &= \frac{1}{3} \cos\frac{5\pi}{12} + i \left(\frac{1}{3} \sin \frac{5\pi}{12}\right)\right)\\ \\ &=\frac{1}{3}\left(\frac{\sqrt{2}-\sqrt{6}}{4}\right) + i\left(\frac{1}{3}\left(- \frac{\sqrt{6} + \sqrt{2}}{4}\right)\right) \\ \\ &= \boxed{\frac{\sqrt{2} - \sqrt{6}}{12} -\frac{\sqrt{6}+\sqrt{2}}{12}i}\end{aligned}[/tex]

Part D)

Let a be a cube root of z. Then by definition:

[tex]\displaystyle a^3 = z = 2\left(\cos \frac{11\pi}{6} + i\sin \frac{11\pi}{6}\right)[/tex]

From the property in Part B, we know that:

[tex]\displaystyle a^3 = r^3\left(\cos (3\theta) + i\sin(3\theta)\right)[/tex]

Therefore:

[tex]\displaystyle r^3\left(\cos (3\theta) + i\sin (3\theta)\right) = 2\left(\cos \frac{11\pi}{6} + i\sin \frac{11\pi}{6}\right)[/tex]

If two complex numbers are equal, their modulus and arguments must be equivalent. Thus:

[tex]\displaystyle r^3 = 2\text{ and } 3\theta = \frac{11\pi}{6}[/tex]

The first equation can be easily solved:

[tex]r=\sqrt[3]{2}[/tex]

For the second equation, 3θ must equal 11π/6 and any other rotation. In other words:

[tex]\displaystyle 3\theta = \frac{11\pi}{6} + 2\pi n\text{ where } n\in \mathbb{Z}[/tex]

Solve for the argument:

[tex]\displaystyle \theta = \frac{11\pi}{18} + \frac{2n\pi}{3} \text{ where } n \in \mathbb{Z}[/tex]

There are three distinct solutions within [0, 2π):

[tex]\displaystyle \theta = \frac{11\pi}{18} , \frac{23\pi}{18}\text{ and } \frac{35\pi}{18}[/tex]

Hence, the three roots are:

[tex]\displaystyle a_1 = \sqrt[3]{2} \left(\cos\frac{11\pi}{18}+ \sin \frac{11\pi}{18}\right) \\ \\ \\ a_2 = \sqrt[3]{2} \left(\cos \frac{23\pi}{18} + i\sin\frac{23\pi}{18}\right) \\ \\ \\ a_3 = \sqrt[3]{2} \left(\cos \frac{35\pi}{18} + i\sin \frac{35\pi}{18}\right)[/tex]

Or, approximately:

[tex]\displaystyle\boxed{ a _ 1\approx -0.4309 + 1.1839i,} \\ \\ \boxed{a_2 \approx -0.8099-0.9652i,} \\ \\ \boxed{a_3\approx 1.2408-0.2188i}[/tex]

Please help me solve this problem guys

Answers

Answer:

17%

Step-by-step explanation:

Again, as the amount of years increase, the population of bees gets multiplied by 0.83. We can rewrite this to 83%, and then again rewrite this to 100%-17%. We can see now that the population of bees decreases by 17% each year.

The ratio of Mitchell's age to Connor's age is 8:5. In thirty years, the ratio of their ages will be 6:5. How much older is Mitchell than Connor now?

Answers

Answer:

9 years older

Step-by-step explanation:

The ratio of their ages is 8 : 5 = 8x : 5x ( x is a multiplier )

In 30 years their ages will be 8x + 30 and 5x + 30 and the ratio 6 : 5 , so

[tex]\frac{8x+30}{5x+30}[/tex] = [tex]\frac{6}{5}[/tex] ( cross- multiply )

5(8x + 30) = 6(5x + 30) ← distribute parenthesis on both sides

40x + 150 = 30x + 180 ( subtract 30x from both sides )

10x + 150 = 180 ( subtract 150 from both sides )

10x = 30 ( divide both sides by 10 )

x = 3

Then

Michell is 8x = 8 × 3 = 24 years old

Connor is 5x = 5 × 3 = 15 years old

Mitchell is 24 - 15 = 9 years older than Connor

help help help help

Answers

Answer:

abc is a triangle so ,

a is ( 9,6 )

b is ( 9,3 )

and c is ( 3,3 )

PLEASE HELP I WILL GIVE BRAINLIEST

Answers

Step-by-step explanation:

A natural number is a positive whole number.

A whole number is a positive number with no fractions or decimals.

A interger is a whole number negative or positive.

A rational number is a number that terminates or continue with repeating digits.

A irrational number is a number that doesn't terminate or continue with repeating digits.

1. Rational Number

2. Natural,Whole,Interger,Rational

3. Whole,Rational,Interger

4. Rational

5.Irrational

6.Rational

7.Natural,Whole,Interger,Rational

8.Interger,Rational

9.Irrational

Find the value of the sum 219+226+233+⋯+2018.

Assume that the terms of the sum form an arithmetic series.

Give the exact value as your answer, do not round.

Answers

Answer:

228573

Step-by-step explanation:

a = 219 (first term)

an = 2018 (last term)

Sn->Sum of n terms

Sn=n/2(a + an)         [Where n is no. of terms] -> eq 1

To find number of terms,

an = a + (n-1)d     [d->Common Difference] -> eq 2

d= 226-219 = 7

=> d=7

Substituting in eq 2,

2018 = 219 + (n-1)(7)

1799 = (n-1)(7)

1799 = 7n-7

1799 = 7(n-1)

1799/7 = n-1

257 = n-1

n=258

Substituting values in eq 1,

Sn = 258/2(219+2018)

    = 129(2237)

    = 228573

On a map, 1 in represents 420 miles. How much does 3/4 in represent?

Answers

Answer:

315

Step-by-step explanation:

420 x 3/4 = 315

Answer:

315 miles

Step-by-step explanation:

We can write a ratio to solve

1 inch          3/4 inches

------------   = ---------------

420 miles     x miles

Using cross products

1 * x = 420 * 3/4

x=315

Determine three consecutive odd integers whose sum is 2097.

Answers

Answer:

first odd integer=x

second odd integer=x+2

third odd integer=x+4

x+x+2+x+4=2097

x+x+x+2+4=2097

3x+6=2097

3x=2097-6

3x=2091

3x/3=2091/3

x=697

therefore, x=697

x+2=697+2=699

x+4=697+4=701

Write and solve a word problem that can be modeled by addition of two negative integers.

Answers

Answer:

Step-by-step explanation:

Question:

Max needs to purchase a car and  withdraws $100 from his bank. In a few days he withdraws another $50 to make same repairs. In total what is the change in his bank balance from theese two costs?

Solution:

(-100) + (-50) =

-150

Answered by G a u t h m a t h

help me pls??????? :)

Answers

Answer:4 in each bad 2 left over

Step-by-step explanation:

Answer:

4 in each bag and 2 left over

Step-by-step explanation:

divide 14 by 3

3 goes into 14, 4 times

14 - 12 = 2

4 in each bag and then 2 left over

Please help I’ll mark as brainlist

Answers

Answer:

Ekta and Preyal

Step-by-step explanation:

Answer: Ekta and Preyal

Originally the cubes have a perimeter of 15, both Ekta and Preyal have a perimeter of 17 which is exactly a 2 unit increase

convert 10.09% to a decimal

Answers

Answer:

0.1009

Step-by-step explanation:

To convert percentage into decimal, you need to divide the percentage by 100

10.09/100

= 0.1009

To convert 10.09% to a decimal, we need to decide it by 100 like so:

10.09 ÷ 100 = 0.1009

Therefore, the answer is 0.1009

Determine the sum of the first 33 terms of the following series:

−52+(−46)+(−40)+...

Answers

Answer:

1320

Step-by-step explanation:

Use the formula for sum of series, s(a) = n/2(2a + (n-1)d)

The terms increase by 6, so d is 6

a is the first term, -56

n is the terms you want to find, 33

Plug in the numbers, 33/2 (2(-56)+(32)6)

Simplify into 33(80)/2 and you get 1320

PLSSS HELPPPP AYUDA PLSSS URGENT AS WELL PLSS PSL PSL evaluate this expression “(-7x^3 + 9x^2 - 3) x (-2x^2 - 5x + 6)???

Answers

Answer: 14x^5 + 17x^4 - 87x^3 + 60x^2 + 15x - 18

Step-by-step explanation: You would need to simplify the expression by using distributive property.

plzzzz heeeeeeellllllllppppppppp again...

Answers

ANS=40

hope this help you

bye have a great day :)

180-55=25
the interior angle of triangle is 180
so 180-115-25= 40
the answer is 40
give me brainliest if you can thank u!:)

−30=5(x+1)

what is x?

Answers

[tex]\\ \rm\Rrightarrow -30=5(x+1)[/tex]

[tex]\\ \rm\Rrightarrow -30=5x+5[/tex]

[tex]\\ \rm\Rrightarrow 5x=-30-5[/tex]

[tex]\\ \rm\Rrightarrow 5x=-35[/tex]

[tex]\\ \rm\Rrightarrow x=\dfrac{-35}{-5}[/tex]

[tex]\\ \rm\Rrightarrow x=7[/tex]

Answer:

x = -7

Step-by-step explanation:

-30 = 5 (x -1 )

5 ( x + 1 ) =-30

5 (x + 1 ) = - 30

     5            5

x + 1 = -6

x + 1 -1 = -6 -1

x = - 7

solue for &
X(3 + X) = 3x + x²

Answers

3x+x^2=3x+x^2

3x-3x=x^2-x^2

which means x=0


Rationalise the denominator

Answers

Answer:

sqrt(3) /3

Step-by-step explanation:

1 / sqrt(3)

Multiply the top and bottom by sqrt(3)

1/ sqrt(3) * sqrt(3)/ sqrt(3)

sqrt(3) /  sqrt(3)*sqrt(3)

sqrt(3) /3

Answer:

[tex] = { \sf{ \frac{1}{ \sqrt{3} } }} \\ \\ { \sf{ = \frac{1}{ \sqrt{3} } . \frac{ \sqrt{3} }{ \sqrt{3} } }} \\ \\ = { \sf{ \frac{ \sqrt{3} }{ {( \sqrt{3}) }^{2} } = \frac{ \sqrt{3} }{3} }} [/tex]

Select the correct answer from each drop-down menu.
A company makes cylindrical vases. The capacity, in cubic centimeters, of a cylindrical vase the company produces is given by the
function C() = 6.2873 + 28.26x2, where x is the radius, in centimeters. The area of the circular base of a vase, in square
centimeters, is given by the function A () = 3.14.2
To find the height of the vase, divide
represents the height of the vase.
the expressions modeling functions C(x) and A(z). The expression

Answers

Answer:

divide, 2x+9

Step-by-step explanation:

got it right

Other Questions
Ways that fans can use their social media effectively to support their idols. Short essay. Calculate the product below and give your answer in scientific notation.(3.3 x 10-4) (8.0 x 109) = ?Show Calculator What is the V7 chord for the scale shown? A7 D7 E7 G7 PLEASE HELPPPPPPP #1 How did completion of the transcontinental Railroad affect companies that made products? Maria is 30 years old and has a nest egg of $25,000 that she worked hard to savethrough her twenties. She would like to invest the money in order to have a downpayment for a home by the time she is 35.How would you recommend Maria invest her money? a.If the economy currently has a frictional unemployment rate of 2 percent, structural unemployment of 2 percent, seasonal unemployment of 0.5 percent, and cyclical unemployment of 2 percent, what is the natural rate of unemployment Find the missing segment in the image below What was the subject of Withencroft's sketch? how does the u.s. constitution impact society today Part 1: Write mathematical equations of sinusoids.1. The following sinusoid is plotted below. Complete the following steps to model the curve using the cosine function.a) What is the phase shift, c, of this curve? (2 points)b) What is the vertical shift, d, of this curve? (2 points)c) What is the amplitude, a, of this curve? (2 points)d) What is the period and the frequency factor, b, of this curve? (2 pointse) Write an equation using the cosine function that models this data set. (5 points)2. The following points are a minimum and a maximum of a sinusoid. Complete the following steps to model the curve using the sine function.(4.5, 2), (1.5, 22)Jeenu here nok nok koi h What year did toba erupt Dilate the figure by the scale factor. Then enterthe new coordinates.A(1,3)B(4,2)K=3A'([?],[ ]B'([ ],[])c'[[)C(1,-3) The population, P(t), in millions, of a country, in year t, is given by the formula P(t) = 24 + 0.4t. What are the values of the population for t = 10, 20,and 30? Which of the following is the equation of a line that passes through the point(1.4) and is parallel to the x-axis?A.x=1 B.y=4 C.x=4 D.y=1 A series of pulses, each of amplitude 0.1 m, is sent down a string that is attached to a post at one end. The pulses are reflected at the post and travel back along the string without loss of amplitude. What is the net displacement at a point on the string where two pulses are crossing calculate the resistance if V = 220V and I = 3.6amp Car B is traveling a distance dd ahead of car A. Both cars are traveling at 60 ft/s when the driver of B suddenly applies the brakes, causing his car to decelerate at ft/s^2. It takes the driver of car A 0.75 s to react (this is the normal reaction time for drivers). When he applies his brakes, he decelerates at 18 ft/s^2.Required:Determine the minimum distance d between the cars so as to avoid a collision. Identify the transformations of the graph of f(x) = x3 that produce the graph of the given functiong(x). Then graph g(x) on the same coordinate plane as the graph of f(x) by applying thetransformations to the reference points (-1,-1),(0,0), and (1,1). Which does body mass index (BMI) measure?