Answer:
I Hope this is clear
Explanation:
Polarization, property of certain electromagnetic radiations in which the direction and magnitude of the vibrating electric field are related in a specified way. polarizing filter.
Answer:
Polarization is a property applying to transverse waves that specifies the geometrical orientation of the oscillations. In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave.
Explanation:
Polarization (also polarisation) is a property applying to transverse waves that specifies the geometrical orientation of the oscillations. In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. A simple example of a polarized transverse wave is vibrations traveling along a taut string (see image); for example, in a musical instrument like a guitar string. Depending on how the string is plucked, the vibrations can be in a vertical direction, horizontal direction, or at any angle perpendicular to the string. In contrast, in longitudinal waves, such as sound waves in a liquid or gas, the displacement of the particles in the oscillation is always in the direction of propagation, so these waves do not exhibit polarization. Transverse waves that exhibit polarization include electromagnetic waves such as light and radio waves, gravitational waves,[6] and transverse sound waves (shear waves) in solids.
An electromagnetic wave such as light consists of a coupled oscillating electric field and magnetic field which are always perpendicular to each other; by convention, the "polarization" of electromagnetic waves refers to the direction of the electric field. In linear polarization, the fields oscillate in a single direction. In circular or elliptical polarization, the fields rotate at a constant rate in a plane as the wave travels. The rotation can have two possible directions; if the fields rotate in a right hand sense with respect to the direction of wave travel, it is called right circular polarization, while if the fields rotate in a left hand sense, it is called left circular polarization.
Light or other electromagnetic radiation from many sources, such as the sun, flames, and incandescent lamps, consists of short wave trains with an equal mixture of polarizations; this is called unpolarized light. Polarized light can be produced by passing unpolarized light through a polarizer, which allows waves of only one polarization to pass through. The most common optical materials do not affect the polarization of light, however, some materials—those that exhibit birefringence, dichroism, or optical activity—affect light differently depending on its polarization. Some of these are used to make polarizing filters. Light is also partially polarized when it reflects from a surface.
According to quantum mechanics, electromagnetic waves can also be viewed as streams of particles called photons. When viewed in this way, the polarization of an electromagnetic wave is determined by a quantum mechanical property of photons called their spin. A photon has one of two possible spins: it can either spin in a right hand sense or a left hand sense about its direction of travel. Circularly polarized electromagnetic waves are composed of photons with only one type of spin, either right- or left-hand. Linearly polarized waves consist of photons that are in a superposition of right and left circularly polarized states, with equal amplitude and phases synchronized to give oscillation in a plane.
Polarization is an important parameter in areas of science dealing with transverse waves, such as optics, seismology, radio, and microwaves. Especially impacted are technologies such as lasers, wireless and optical fiber telecommunications, and radar.
Suppose that you add 29.2 g of an unknown molecular compound to 0.250 kg of benzene, which has a K f of 5.12 oC/m. With the added solute, you find that there is a freezing point depression of 2.78 oC compared to pure benzene. What is the molar mass (in g/mol) of the unknown compound
Answer:
Suppose that you add 29.2 g of an unknown molecular compound to 0.250 kg of benzene, which has a K f of 5.12 oC/m. With the added solute, you find that there is a freezing point depression of 2.78 oC compared to pure benzene. What is the molar mass (in g/mol) of the unknown compound
Explanation:
The mass of nonvolatile solute added is ---- 29.2g
The mass of solvent benzene is ---- 0.250kg = 250g
The Kf value of benzene is ---- 5.12^oC/m.
Depression in the freezing point of the solution is --- 2.78^oC.
What is the molar mass of the unknown solute?
[tex]The depression in freezing point = Kf * molality of the solution\\molality of the solution = \frac{mass of solute}{molar mass of solute}*\frac{1}{mass of solvent in kg}[/tex]
Substitute the given values in this formula to get the molar mass of unknown solvent:
[tex]molality=\frac{29.2g}{M} * \frac{1}{0.250kg} \\depression in freezing point:\\2.78^oC=5.12^oC/m * \frac{29.2g}{M} * \frac{1}{0.250kg} \\\\=>M=5.12^oC/m * \frac{29.2g}{2.78^oC} * \frac{1}{0.250g} \\\\\\=>M=215.1g/mol[/tex]
Hence, the molar mass of unknown solute is --- 215g/mol.
An unknown element, X, has an atomic mass of 107.868 amu. The X-109 isotope (108.905 amu) is 48.16%. What is the amu of the other isotope (report final answer to the correct number of significant figures)
Answer:
106.905 amu is the mass of the other isotope
Explanation:
The atomic mass of an element is the sum of the masses of the isotopes multiplied by its abundance. The atomic mass of an element X with 2 isotopes is:
X = X-109*i + X-107*i
Where X is the atomic mass = 107.868 amu
X-109 = 108.905amu, i = 48.16% = 0.4816
X-107 = ?, i = 1-0.4816 = 0.5184
Replacing:
107.868amu = 108.905amu*0.4816 + X-107*0.5184
55.4194 = X-107*0.5184
106.905 = X-107
106.905 amu is the mass of the other isotopeWhich statement best describes the intermolecular forces between H2
molecules and NH3 molecules in the liquid phase?
A. Dipole-dipole forces are the strongest force between H2
molecules, and Van der Waals forces are the strongest force
between NH3 molecules.
B. Van der Waals forces are the strongest force between H2
molecules, and hydrogen bonding is the strongest force between
the NH3 molecules.
C. Hydrogen bonding is the strongest force between H, molecules
and between NH3 molecules.
D. Van der Waals forces are the strongest force between H2
molecules and between NH3 molecules.
Answer:
D. Van der Waals forces are the strongest force between H2
molecules and between NH3 molecules.
Explanation:
Van der Waal’s forces are the forces which arises due to disturbance in the electron density of the molecule.
These are usually found in non polar molecules. Hence N2 is said to exhibit this force.
Out of these Van der Waals is the weakest force.
The energy released by a nuclear fusion reaction is produced when
A.
energy is converted to mass
B.
mass is converted to energy
C.
heat is converted to temperature
D.
temperature is converted to heat
The nuclear fusion results in the liberation of large amount of energy by the conversion of mass to energy. Thus, option B is correct.
The nuclear fusion has been a type of nuclear reaction in which the reaction of the two nuclei results in the nuclei with mass smaller than the reactants. In nuclear reactions, there has been the liberation of large amount of energy.
The energy released in the nuclear fusion has been formed by the conversion of the mass. Since, the formed product has nuclei with the mass smaller than the reactants, the remaining mass of the reactants has been converted to the energy.
Thus, in nuclear fusion, the energy released has been produced from the conversion of mass to energy. Thus, option B is correct.
For more information about the nuclear fusion, refer to the link:
https://brainly.com/question/16021285
On another planet, the isotopes of titanium have the given natural abundances.
Isotope Abundance Mass (u)
46Ti 77.100% 45.95263
48Ti 17.100% 47.94795
50Ti 5.800% 49.94479
What is the average atomic mass of titanium on that planet?
Answer:
46.525 u
Explanation:
From the question given above, the following data were obtained:
Isotope A (⁴⁶Ti)
Abundance (A%) = 77.100%
Mass of A = 45.95263 u
Isotope B (⁴⁸Ti):
Abundance (B%) = 17.100%
Mass of B = 47.94795 u
Isotope C (⁵⁰Ti):
Abundance (C%) = 5.800%
Mass of C = 49.94479 u
Average atomic mass =?
The average atomic mass of titanium can be obtained as follow:
Average = [(Mass of A × A%)/100] + [(Mass of B × B%)/100] + [(Mass of C × C%)/100]
= [(45.95263 × 77.1)/100] + [(47.94795 × 17.1)/100] + [(49.94479 × 5.8)/100]
= 35.429 + 8.199 + 2.897
= 46.525 u
Therefore, the average atomic mass of titanium is 46.525 u
You have selected your two primers and added all of the PCR components to a test tube. Use the answer choices [A-C] to explain what will happen as the polymerase chain reaction proceeds. Answers may be used more than once or not at all.
Hi. You did not provide any response options. However, a PCR reaction proceeds as follows.
After the primers are added to the test tube containing the PCR components. This tube is placed in a device called a thermocycler. At that moment, the stage called denaturation will begin, where the thermocycler increases the temperature to the point of breaking the hydrogen bonds that hold the two strands of DNA together. The thermal cycler increases the temperature up to 96°C.
After that, the second step of the reaction begins. At that moment, the thermal cycler lowers the temperature to 55º - 65ºC, which is the ideal temperature for the primers to be able to attach themselves to the DNA strands, preparing them for the presence of the polymerase.
After that, the thermocycler raises the temperature to 72ºC, which is the ideal temperature for the DNA polymerase to work. At this stage, the DNA polymerase will use the DNA strand and the primer to build a new DNA strand, which will be annealed to the DNA strand used as a template.
These three steps will be repeated about 35 times, generating many copies of DNA.
How does the law of conservation of mass relate to the number of atoms of each element that are present before a reaction vs. the number of atoms of each element that are present after a chemical reaction?
Your Turn!
How many electrons are required to complete
the octet around nitrogen, when it forms N2
?
A. 2
B. 3
C. 1
D. 4
E. 6
Answer:
because.......
...........
.........
THE DIAMETER OF A TAMBOURINE IS 10 INCHES.FIND THE AREA OF ITS SURFACE.USE π=3.14.
1.What is ask in the problem?
2.What are the given facts?
3.What operation to be used?
4.What is the number sentence
5.What is the answer?
Answer:
22/7 × [tex]10^{2}[/tex]
Explanation:
The area of a circle can be found out using π[tex]r^{2}[/tex]. Since r is the radius so if they multiply, they will give you an area of a square then multiply by 22/7 since it is a circle.
The surface area of the Tambourine at the given diameter of 10 inches is determined as 78.54 square inches.
Area of the TambourineA Tambourine has circular shape, and the area of the Tambourine can be determined by applying formula for area of a circle as shown below;
A = πr²
where;
r is the radius of the circleRadius of the Tambouriner = ¹/₂D
r = ¹/₂ x 10 in
r = 5 in
A = π(5)²
A = 25π in²
A = 78.54 in²
Thus, the surface area of the Tambourine at the given diameter of 10 inches is determined as 78.54 square inches.
Learn more about surface area here: https://brainly.com/question/76387
Which of the following has the highest pH?
A. 0.01 M HCI
B. 0.1 M HCI
C. 1 M HCI
D. 0.001 M HCI
Answer:
D
Explanation:
pH=-log(x)
x=0.001M,pH=3
x=0.01M,pH=2
x=0.1M,pH=1
x=1M,pH=0
Highest pH is for option D
Answer:
D.
Explanation:
The highest pH is D because
0.01 M HCL => 2
0.1 M HCL => 1
1 M HCL => 0
0.001 M HCL => 3
so the answer is D.
An atom has the electron configuration of 1s22s22p5 how many electrons are in that atom
Answer:
There are [tex]9[/tex] electrons in this atom.
Explanation:
Electron configuration of this atom: [tex]1s^2\, 2s^2\, 2p^5[/tex].
The electron orbitals of an atom are denoted as [tex]1s[/tex], [tex]2s[/tex], [tex]2p[/tex], [tex]3s[/tex], [tex]3p[/tex], etc. At any given time, an electron in this atom is located in exactly one orbital.
The electron configuration of an atom gives the number of electrons in each orbitals of this atom.
For example, in this atom, the superscript "[tex]2[/tex]" on the right of "[tex]1s[/tex]" means that there are two electrons in the [tex]1s\![/tex] orbital of this atom. Hence, [tex]1s^2\, 2s^2\, 2p^5[/tex] would translate to:
The [tex]1s[/tex] orbital of this atom contains [tex]2[/tex] electrons.The [tex]2s[/tex] orbital of this atom contains [tex]2[/tex] electrons.The [tex]2p[/tex] orbitals of this atom contain [tex]5[/tex] electrons.Hence, there would be [tex]2 + 2 + 5 = 9[/tex] electrons in total in this atom.
Calcula la concentración de H+ de una sustancia que tiene pH 8.8
Answer:
[tex]pH = - log[H {}^{ + } ] \\ 8.8 = - log[H {}^{ + } ] \\ \: [H {}^{ + } ] = {10}^{ - 8.8} \\ [H {}^{ + } ] = 1.585 \times {10}^{ - 9} \: mol {dm}^{ - 3} [/tex]
3. Which of the following can be physically separated?
Answer:
mixture
Explanation:
an example of one is a salad you can separate the ingredients
What other reactions is taking place?
Discuss the any two applications of Beer’s law with suitable justification.
Answer: It's used in chemistry to measure the concentration of chemical solutions.
Explanation:
Beer's Law is used in chemistry to measure the concentration of chemical solutions, to analyze oxidation, and to measure polymer degradation.
The law also describes the attenuation of radiation through the Earth's atmosphere
9.0+ 2.000 (35.35) =
Answer:
79.7
Explanation:
Answer:79.7
Explanation:just got it right on the quiz!
For a gas of N identical molecules of molecular volume Vm in total volume V at temperature T, the number of ways of locating the N molecules in the volume is
Answer:
[tex]\left(\frac{V_m}{V}\right)^N[/tex]
Explanation:
Given :
Number of identical volumes = N
The molecular volume = [tex]V_m[/tex]
The total volume = V
Temperature = T
Therefore, the number of the ways for locating one molecule within the volume V is : [tex]\frac{V_m}{V}[/tex]
There are N molecules.
So, the total umber of ways of locating N molecules is [tex]\left(\frac{V_m}{V}\right)^N[/tex]
This week's imide synthesis involves two reactions. In the first reaction (24A), a(n) ________ bond is formed between the two reactants. Hint: What type of functional group is formed
Answer:
C - N Bond formation.
Explanation:
Imide synthesis is a chemical reaction in organic chemistry which consists of two acyl groups which bond to nitrogen atom. The compound structure is related to acid anhydrides. Imides are monoacyl which are used as valuable intermediates in organic synthesis.
A buffer solution contains 0.475 M nitrous acid and 0.302 M sodium nitrite . If 0.0224 moles of potassium hydroxide are added to 150 mL of this buffer, what is the pH of the resulting solution
Answer: The pH of the resulting solution will be 3.001
Explanation:
Molarity is calculated by using the equation:
[tex]\text{Molarity}=\frac{\text{Moles}}{\text{Volume}}[/tex] ......(1)
We are given:
Moles of NaOH = 0.0224 moles
Molarity of nitrous acid = 0.475 M
Molarity of sodium nitrite = 0.302 M
Volume of solution = 150 mL = 0.150 L (Conversion factor: 1 L = 1000 mL)
Putting values in equation 1, we get:
[tex]\text{Moles of nitrous acid}=(0.475mol/L\times 0.150L)=0.07125mol[/tex]
[tex]\text{Moles of sodium nitrite}=(0.302mol/L\times 0.150L)=0.0453mol[/tex]
The chemical equation for the reaction of nitrous acid and NaOH follows:
[tex]HNO_2+NaOH\rightleftharpoons NaNO_2+H_2O[/tex]
I: 0.07125 0.0224 0.0453
C: -0.0224 -0.0224 +0.0224
E: 0.04885 - 0.0677
The power of the acid dissociation constant is the negative logarithm of the acid dissociation constant. The equation used is:
[tex]pK_a=-\log K_a[/tex] ......(2)
We know:
[tex]K_a[/tex] for nitrous acid = [tex]7.2\times 10^{-4}[/tex]
Using equation 2:
[tex]pK_a=-\log (7.2\times 10^{-4})=3.143[/tex]
To calculate the pH of the acidic buffer, the equation for Henderson-Hasselbalch is used:
[tex]pH=pK_a+ \log \frac{\text{[conjugate base]}}{\text{[acid]}}[/tex] .......(3)
Given values:
[tex][NaNO_2]=\frac{0.0677}{0.150}[/tex]
[tex][HNO_2]=\frac{0.04885}{0.150}[/tex]
[tex]pK_a=3.143[/tex]
Putting values in equation 3. we get:
[tex]pH=3.143-\log \frac{(0.0677/0.150)}{(0.04885/0.150)}\\\\pH=3.143-0.142\\\\pH=3.001[/tex]
Hence, the pH of the resulting solution will be 3.001
Please Help !! This is an Earth science lab question.
Explain why erosion occurs on the outside of a meander and deposition on the inside of a meander.
Answer:
The sideways movement occurs because the maximum velocity of the stream shifts toward the outside of the bend, causing erosion of the outer bank. At the same time the reduced current at the inside of the meander results in the deposition of coarse sediment, especially sand
When an atom becomes charged what is transferred?
Answer:it becomes positively charged
Explanation:Some atoms can attract additional electrons so they become negatively charged.
What is the pH of an acetic acid solution where the concentration of acetic acid is 2 mM and the concentration of sodium acetate is 20 mM. The pKa of acetic acid is 4.76.
Answer:
pH = 5.76
Explanation:
We can solve this problem by using Henderson-Hasselbach's equation:
pH = pKa + log[tex]\frac{[SodiumAcetate]}{[AceticAcid]}[/tex]
We are already know all the required information, thus we input the data given by the problem:
pH = 4.76 + log(20/2)
And finally calculate the pH:
pH = 5.76
The pH of that acetic acid solution is 5.76.
What is always true of a salt
(a) shows both acidic and basic properties
(b) creates a neutral pH in solution
(c) is an ionic compound formed from an acid-base reaction
(d) can react with acid but not with a base
write the formula two atom of iron and three atoms of oxygen
Answer:
Fe2O3 is the formula this is your correct answer
Write the molecular formula for the compound that exhibits a molecular ion at M+ = 112.0499. Assume that C, H, N, and O might be present, and use the exact masses below: Exact mass of carbon = 12.000 Exact mass of hydrogen = 1.0078 Exact mass of nitrogen = 14.003 Exact mass of oxygen = 15.995 (The order of atoms should be carbon, then hydrogen, then the others in alphabetical order. If there is more than one answer, just give one. ) Molecular formula:
Answer:
C₅H₈N₂O
Explanation:
The molecular formula denotes the various forms of atoms contained in a molecule at a particular fixed proportion.
The molecular ion M⁺ = 112.0499
and the exact mass values are given as follows:
C = 12.000
H = 1.0078
N = 14.003
O = 15.995
By assumption:
C = 12.000 × 5 = 60.0000
H = 1.0078 × 8 = 1.0078
N = 14.003 × 2 = 28.0060
O = 15.995 × 1 = 15.9950
= 112.0634
This is approximtely equal to 112.0499.
As such the Molecular formula for the compound = C₅H₈N₂O
FULL FORM OF NASA??
lol
Answer:
NASA stands for National Aeronautics and Space Administration
Answer:
National Aeronautics and Space Administration
hope this will help you more
Calculate the amount of energy produced by the conversion of 50.0 kg of mass into energy. Use 3.00 x 108 m/s for the speed of light. Round to 3 significant digits.
Which setup will solve this problem?
Answer:
tanong mo sa teacher mo ok
Answer:
E = (50.0 kg)(3.00 x 108 m/s)2
Explanation:
sino may kuyang palaging nambibira
C8H18+O2=CO2+H2O. Balance this equation and identify the number H2O molecules formed when 6 molecules of C8H18 react with 75 molecules of oxygen
Answer: 54 molecules of water will be formed in the reaction.
Explanation:
A balanced chemical equation is one where all the individual atoms are equal on both sides of the reaction. It follows the law of conservation of mass.
For the given unbalanced chemical equation, the balanced equation follows:
[tex]2C_8H_{18}+25O_2\rightarrow 16CO_2+18H_2O[/tex]
We are given:
Molecules of [tex]C_8H_{18}[/tex] = 6
Molecules of [tex]O_2[/tex] = 75
By the stoichiometry of the reaction:
If 2 molecules of [tex]C_8H_{18}[/tex] produces 18 molecules of water
So, 6 molecules of [tex]C_8H_{18}[/tex] will produce = [tex]\frac{18}{2}\times 6=54[/tex] molecules of water
Hence, 54 molecules of water will be formed in the reaction.
50.00 mL of unknown calcium hydroxide solution is titrated with 0.250 M standard nitric acid solution. If 43.43 mL of the standard acid solution is required to reach a phenolphthalein endpoint, what is the molarity of the unknown calcium hydroxide solution
Answer: Molarity of the unknown calcium hydroxide solution is 0.217 M.
Explanation:
Given: [tex]V_{1}[/tex] = 50.00 mL, [tex]M_{1}[/tex] = ?
[tex]V_{2}[/tex] = 43.43 mL, [tex]M_{2}[/tex] = 0.250 M
Formula used is as follows.
[tex]M_{1}V_{1} = M_{2}V_{2}[/tex]
Substitute the values into above formula as follows.
[tex]M_{1}V_{1} = M_{2}V_{2}\\M_{1} \times 50.00 mL = 0.250 M \times 43.43 mL\\M_{1} = \frac{0.250 M \times 43.43 mL}{50.00 mL}\\= 0.217 M[/tex]
Thus, we can conclude that molarity of the unknown calcium hydroxide solution is 0.217 M.