What is a categorical variable

Answers

Answer 1

It's a variable that deals with various labels, rather than the usual type of numeric variable you may be used to.

One example of a categorical variable is color. You could have red, green, blue, yellow, and orange as the five choices for your categorical variable. Each color is a label or category.

This is an example of a qualitative variable. We don't have any numeric data attached to color. They're simply names or labels. In contrast, a quantitative variable is something like a person's height since a number is attached here (more specifically its a continuous quantitative variable).


Related Questions

Suppose we want to choose 6 colors, without replacement, from 14 distinct colors. (a) How many ways can this be done, if the order of the choices matters? (b) How many ways can this be done, if the order of the choices does not matter?

Answers

Answer:

(a) 2,162,160

(b) 3,003

Step-by-step explanation:

(a) order matters

You can choose from 14 for the first pick. Then you have 13 left for the second pick. Then you have 12 left for the third pick. Keep going until you have 9 left for the 6th pick. The number when order matters is:

total = 14 * 13 * 12 * 11 * 10 * 9 = 2,162,160

(b) Order does not matter

Start with the same number as above for picking 6 out of 14. Since order does not matter, we divide by the number of ways you can arrange 6 items.

Since there are 6! ways of arranging 6 items,

total = 2,162,160/6! = 3,003

The number of ways when the order matters are 121080960.

The number of ways when order does not matters are 3003.

Given,

Choose 6 colors, without replacement, from 14 distinct colors.

We have to find:

- How many ways can this be done, if the order of the choices matters.

- How many ways can this be done if the order of the choices does not matter.

What are permutation and combination?

We use permutation when the order of the arrangements matters.

It is given by:

[tex]^ nP_r[/tex] = n! / r!

We use combination when order does not matter.

It is given by:

[tex]^nC_{r}[/tex] = n! / r! (n-r)!

Find the number of ways when order matters.

We have,

n = 14 and r = 6

[tex]^{14}P_{6}[/tex]

= 14! / 6!

= (14 x 13 x 12 x 11 x 10 x 9 x 8 x 7 x 6!) / 6!

= 4 x 13 x 12 x 11 x 10 x 9 x 8 x 7

= 121080960

Find the number of ways when order does not matter.

We have,

n = 14 and r = 6

[tex]^{14}C_{6}[/tex]

= 14! / 6! 8!

= 14 x 13 x 12 x 11 x 10 x 9 / 6 x 5 x 4 x 3 x 2

= 7 x 13 x 11  x 3  

= 3003

Thus,

The number of ways when the order matters are 121080960.

The number of ways when order does not matters are 3003.

Learn more about combination here:

https://brainly.com/question/28134115

#SPJ2

A baking scale measures mass to the tenth of a gram, up to 650 grams. A cup of flour is placed on the scale and results in a measure of 121.8 grams. Which of the following statements is not true?
a.The exact mass of the cup of flour must be between 121.7 and 121.9 grams.
b.The cup of flour has a mass of exactly 121.8 grams.
c.Given the limitations of the scale, the measurement has an appropriate level of accuracy.
d.To the nearest gram, the cup of flour has a mass of 122 grams.

Answers

Answer

Is it C I may have done my math wrong lol

Step-by-step explanation:

Jury Duty Three people are randomly selected from voter registration and driving records to report for jury duty. The gender of each person is noted by the county clerk.
a. Define the experiment.
b. List the simple events in S.
c. If each person is just as likely to be a man as a woman, what probability do you assign to each simple event?
d. What is the probability that only one of the three is a man?
e. What is the probability that all three are women?

Answers

Answer:

(a) The experiment defined here is a random variable that includes the selecting of 3 people from the set of voter registration and driving records.

(b) The simple events in sample space, S = (M, M, M), (M, F, M), (M, M, F), (F, M, M), (F, M, F), (F, F, M), (M, F, F), and (F, F, F).

(c) If each person is just as likely to be a man as a woman, then the probability for each of the simple event can be assigned as [tex]0.5 \times 0.5 \times 0.5 = 0.125[/tex].

(d) The probability that only one of the three is a man is 0.375.

(e) The probability that all three are women is 0.125.

Step-by-step explanation:

We are given that three people are randomly selected from voter registration and driving records to report for jury duty. The gender of each person is noted by the county clerk.

(a) The experiment defined here is a random variable that includes the selecting of 3 people from the set of voter registration and driving records.

(b) As we know that the gender of each person is noted by the county clerk, which means one is male and another female.

So, the simple events in sample space, S = (M, M, M), (M, F, M), (M, M, F), (F, M, M), (F, M, F), (F, F, M), (M, F, F), and (F, F, F).

Here, M is denoted for male and F for female.

(c) If each person is just as likely to be a man as a woman, then the probability for each of the simple event can be assigned as [tex]0.5 \times 0.5 \times 0.5 = 0.125[/tex].

Because there is 50-50 chance of selecting males or females.

(d) The probability that only one of the three is a man is given by;

The total cases in the sample space = 8

Number of cases of only one man out of three = 3

So, the required probability =  [tex]\frac{3}{8}[/tex] = 0.375.

(e) The probability that all three are women is given by;

The total cases in the sample space = 8

Number of cases of all three are women = 1

So, the required probability =  [tex]\frac{1}{8}[/tex] = 0.125.

How many variable terms are in the expression 3x3y + 5x2 − 4y + z + 9?

Answers

Answer:

4

Step-by-step explanation:

"4" is the number of variable terms that are in the expression 3x3y + 5x2 _ 4y + z + 9. The four variable terms in the expression are "xy", "x^2", "y" and "z". I hope that this is the answer that you were looking for and the answer has actually come to your desired help. If you need any clarification, you can always ask.

A girl has 98 beads, and all but 14 were lost. how many beads did she loose?

Answers

Answer:

84 beads

Step-by-step explanation:

She had 98 beads and lost all but fourteen. So it would be 98 - 14 which would get you 84 beads that the girl has lost

A random sample of 12 second-year university students enrolled in a business statistics course was drawn. At the course's completion, each student was asked how many hours he or she spent doing homework in statistics. The data are listed below. 20, 29, 28, 22, 26, 22, 22, 18, 23, 21, 20, 27 It is known that the population standard deviation is 7. The instructor has recommended that students devote 2 hours per week for the duration of the 12-week semester, for a total of 24 hours. Test to determine whether there is evidence at the 0.07 significance level that the average student spent less than the recommended amount of time. Fill in the requested information below.A. The value of the standardized test statistic:Note: For the next part, your answer should use interval notation. An answer of the form (−[infinity],a) is expressed (-infty, a), an answer of the form (b,[infinity]) is expressed (b, infty), and an answer of the form (−[infinity],a)∪(b,[infinity]) is expressed (-infty, a)U(b, infty). B. The rejection region for the standardized test statistic:C. The p-value isD. Your decision for the hypothesis test: A. Reject H0. B. Do Not Reject H1. C. Do Not Reject H0. D. Reject H1.

Answers

Answer:

Reject H.

Step-by-step explanation:

In this case, we need to test whether the average student spent less than the recommended amount of time doing homework in statistics.

The provided data is:

S = {20, 29, 28, 22, 26, 22, 22, 18, 23, 21, 20, 27}

Compute the sample mean:

[tex]\bar x=\frac{1}{n}\sum X=\frac{1}{12}\cdot [20+29+...+27]=23.167[/tex]

The population standard deviation is σ = 7.

The hypothesis for the test is:

H₀: The average student does not spent less than the recommended amount of time doing homework, i.e. μ ≥ 24.

Hₐ: The average student spent less than the recommended amount of time doing homework, i.e. μ < 24.

(A)

Compute the standardized test statistic value as follows:

[tex]z=\frac{\bar x-\mu}{\sigma/\sqrt{n}}[/tex]

  [tex]=\frac{23.167-24}{7/\sqrt{12}}\\\\=-0.412[/tex]

Thus, the standardized test statistic value is -0.412.

(B)

The significance level of the test is:

α = 0.07

The critical value of z is:

z₀.₀₇ = -1.476

The rejection region is:

(-∞, -0.1476)

(C)

Compute the p-value as follows:

[tex]p-value=P(Z<-0.412)=0.34[/tex]

*Use a z-table.

Thus, the p-value is 0.34.

(D)

Since, p-value = 0.34 > α = 0.07, the null hypothesis was failed to be rejected at 7% level of significance.

Thus, the correct option is (A).

True or false? induction is a kind of thinking you use to form general ideas and rules based on mathematical formuals​

Answers

Answer:

Hey there!

True. You use individuals rules, pieces of evidence, and experimentally found ideas that can be combined to form a general mathematical statement.

Let me know if this helps :)

Give examples of two variables that have a perfect positive linear correlation and two variables that have a perfect negative linear correlation.

Answers

Answer:

answer below

Step-by-step explanation:

1. price per gallon of gasoline and total cost of gasoline

2. distance from a door and height of a wheelchair ramp

perfect positive linear relationship:

this is a relation that exists between two variables. The pearson correlation is used to check this relationship and if the relationship is 1.0 then it is established that a positive linear relationship exists

negative linear relationship

this is a relationship between variables where the pearson correlation is less than 0. if the value is -1.0 then a negative linear relatioship exists.

price per gallon of gasoline and total cost of gasoline move in the same direction so it is positive.

distance from a door and height of a wheelchair ramp are negative because they do not move in the same direction.

Suppose 55 percent of the customers at Pizza Palooza order a square pizza, 72 percent order a soft drink, and 48 percent order both a square pizza and a soft drink. Is ordering a soft drink independent of ordering a square pizza?

Answers

Answer: No, the orders are not independent.

Step-by-step explanation:

If event 1 has some possible outcomes, suppose that we choose a given outcome 1 with a probability P1, and event 2, also with different possible outcomes, we can select an outcome 2, that has a probability P2, and the two events are independent (meaning that the outcome in event 1 does not affect the outcome in event 2, and vice versa)

Then the probability of outcome 1 and outcome 2 happening at the same time is equal to the product of their individual probabilities.

P = P1*P2.

In this case, event 1 is the selection of the pizza, and outcome 1 is the selection of the square pizza, with a probability of 55%.

Event 2 is the selection of the drink, outcome 2 is the order of a soft drink, with a probability of 72%.

If those two events were independent, then the probability that a customer orders a square pizza and a soft drink would be:

P = 0.55*0.72 = 0.396 (or 39.6%)

But we know that the actual probability is 48%.

So this is larger, which means that the outcomes are not independent.

A study of the effect of television commercials on 12-year-old children measured their attention span, in seconds.
Clothes Food Toys
27 44 61
22 49 64
46 37 57
35 56 48
28 47 63
31 42 53
17 34 48
31 43 58
20 57 47
47 51
44 51
54
1. Find the values of mean and standard deviation.
2. Is there a difference in mean attention span of the children for various commercials?
3. Are there significance differences between pair of means?

Answers

Answer: Find answers in the attachment files

Step-by-step explanation:

The lines below are parallel. If the slope of the green line is -4, what is the slope of the red line?

Answers

Answer:

-4

Step-by-step explanation:

Hey there!

Well the slopes of 2 parallel lines have the same slope,

meaning if the green line has a slope of -4 then the slope of the red line has a slope of -4.

Hope this helps :)

−(−49) = −49 true or false?

Answers

False.

Whenever you see a negative sign next to another negative sign, you will always get a positive. So -(-49) is equal to +49
With that information we can determine that it is not equal to negative 49.

A machine that produces ball bearings has initially been set so that the true average diameter of the bearings it produces is 0.500 in. A bearing is acceptable if its diameter is within 0.004 in. of this target value. Suppose, however, that the setting has changed during the course of production, so that the bearings have normally distributed diameters with a mean 0.499 in. and standard deviation 0.002 in. What percentage of bearings will now not be acceptable

Answers

Answer:

the percentage of  bearings   that will  not be acceptable = 7.3%

Step-by-step explanation:

Given that:

Mean = 0.499

standard deviation = 0.002

if the true average diameter of the bearings it produces is 0.500 in and bearing is acceptable if its diameter is within 0.004 in.

Then the ball bearing acceptable range = (0.500 - 0.004, 0.500 + 0.004 )

= ( 0.496 , 0.504)

If x represents the diameter of the bearing , then the probability for the  z value for the random variable x with a mean and standard deviation can be computed as follows:

[tex]P(0.496\leq X \leq 0.504) = (\dfrac{0.496 - \mu}{\sigma} \leq \dfrac{X -\mu}{\sigma} \leq \dfrac{0.504 - \mu}{\sigma})[/tex]

[tex]P(0.496\leq X \leq 0.504) = (\dfrac{0.496 - 0.499}{0.002} \leq \dfrac{X -0.499}{0.002} \leq \dfrac{0.504 - 0.499}{0.002})[/tex]

[tex]P(0.496\leq X \leq 0.504) = (\dfrac{-0.003}{0.002} \leq Z \leq \dfrac{0.005}{0.002})[/tex]

[tex]P(0.496\leq X \leq 0.504) = (-1.5 \leq Z \leq 2.5)[/tex]

[tex]P(0.496\leq X \leq 0.504) = P (-1.5 \leq Z \leq 2.5)[/tex]

[tex]P(0.496\leq X \leq 0.504) = P(Z \leq 2.5) - P(Z \leq -1.5)[/tex]

From the standard normal tables

[tex]P(0.496\leq X \leq 0.504) = 0.9938-0.0668[/tex]

[tex]P(0.496\leq X \leq 0.504) = 0.927[/tex]

By applying the concept of probability of a  complement , the percentage of bearings will now not be acceptable

P(not be acceptable)  = 1 - P(acceptable)

P(not be acceptable)  = 1 - 0.927

P(not be acceptable)  = 0.073

Thus, the percentage of  bearings   that will  not be acceptable = 7.3%

what is (2y + 5)(y - 3) in simplified form using the distributive property​

Answers

Answer:

[tex]\boxed{2y^{2} - y - 15}[/tex]

Step-by-step explanation:

Use the FOIL technique in order to distribute the terms properly. FOIL stands for First Terms, Outside Terms, Inside Terms, and Last Terms. In order to properly distribute, multiply the common terms based on the steps in the FOIL technique. So, in this case:

The first terms are 2y and y. The outside terms are 2y and -3. The inside terms are 5 and y.The last terms are 5 and -3.

Therefore, multiply the terms:

2y and y to get 2y²2y and -3 to get -6y5 and y to get 5y5 and -3 to get -15

Then, add or subtract based on the signs:

2y² - 6y + 5y - 15

Then, add like terms to finish simplifying the expression. This leaves you with 2y² - y - 15.

Answer:

2y2 – y – 15

Step-by-step explanation:

(2y + 5)(y – 3)

= 2y(y – 3) + 5(y – 3)

= 2y2 – 6y + 5y – 15

= 2y2 – y –15

A recipe calls for 2 tablespoons of sugar for every 7 tablespoons of flour. If you plan on tripling the recipe what is the ratio of
sugar to flour?
-0)
A)
2 to 7
B)
2 to 21
5 to 10
DY
5 to 7

Answers

Answer:

It is still 2 to 7

Step-by-step explanation:

It is still 2 to 7 because if you triple the recipe, it will become 6 to 21 which still simplifies to 2 to 7.

PLEASE HELP ME ASAP On a test, the average score of 25 boys and 15 girls is 68 points. The average test score of the boys is 62 points. What is the average score of the girls? SHOW YOUR WORK

Answers

Answer:

74

Step-by-step explanation:

The average score of boys and girls is 68 and boys is 62

Think of it as an equation (62 + x)/2 = 68, where x is the average score of girls

First multiply each side by 2 making the equation 62 + x = 136

Now subtract each side by 62, which will make the average score for girls 74

(x = 74)

Factor the expression.
p^2 - 10pq + 16q^2​

Answers

[tex]p^2 - 10pq + 16q^2=\\p^2-2pq-8pq+16q^2=\\p(p-2q)-8q(p-2q)=\\(p-8q)(p-2q)[/tex]

simplify use the multiplication rule

Answers

Answer:

3

Step-by-step explanation:

[tex] \sqrt[4] {27} \cdot \sqrt[4] {3} = [/tex]

[tex] = \sqrt[4] {27 \cdot 3} [/tex]

[tex] = \sqrt[4] {3^3 \cdot 3^1} [/tex]

[tex] = \sqrt[4] {3^4} [/tex]

[tex] = 3 [/tex]

Which point slope form equations could be produced with the points (3,2) and (4,6)

Answers

Step-by-step explanation:

Equation of a line is y = mx + c

where

m is the slope

c is the y intercept

To find the equation of a line given two points first find the slope of the line and use the formula

y - y1 = m( x - x1) to find the Equation of the line using any of the points given

Slope of the line using points

(3,2) and (4,6) is

[tex]m = \frac{6 - 2}{4 - 3} = \frac{4}{1} = 4[/tex]

So the equation of the line using point

( 3 , 2 ) and slope 4 is

y - 2 = 4( x - 3)

Hope this helps you

Philomena put some money in a 1-year CD that compounds interest monthly, and she made $14.06 in interest the first month. If the interest rate of the CD stays the same, how much will she make in interest the second month?

Answers

Answer:

Philomena would make more than $14.06 interest in the second month

Step-by-step explanation:

We are not told how much Philomena put initially, but what we are told is that she has more now as she has been making interests.

This means that if the percent interest remains the same, the amount will definitely have to be more.

For example, let's say we had $10 and we had 10% interest that means we now add $1 to make $11. Since we now have $11, 10 percent of that is $1.1. so now we have $11 + $1.1 = $12.1 which is more than $11.

Thus,Philomena would make more than $14.06 interest in the second month.

Answer:

More than 14.06

Step-by-step explanation:

apesex

evaluate -99 + 3^2•5

Answers

Answer:

= - 54

Step-by-step explanation:

- 99 + 3^2•5

- 99 + 9 × 5

- 99 + 45

= - 54

During the school year, there were 315 total points scored between basketball, soccer, baseball, and football. The baseball team scored 55 points. The soccer team scored twice as much as the baseball team. The football team scored 0.5 more than 1.5 times as much as the baseball team. How many points did the basketball team score?

Answers

Answer:

67.5p.

Step-by-step explanation:

315p in total.

- Baseball has 55p.

- Soccer teams points = 55x2 = 110p.

-  Football team points = 110 x 0.5 = 55 x 1.5 = 82.5p.

So then you just do 315p - 82.5p - 55p - 110p = 67.5p

17. In figure, BAC -859, CA = CB and BD - CD. Find the measure of ZX, Zy and Zz. Give
reasons to support your answer.
A
85°
ب
B
H
V​

Answers

Answer:

x = 10°, y = 10° and z = 160°

Step-by-step explanation:

Given : m∠BAC = 85°

            CA ≅ CB and BD ≅ CD

In the given ΔABC,

Since, CA ≅ CB

Angles opposite to these equal sides will be equal in measure.

m∠BAC ≅ m∠ABC ≅ 85°

Since, sum of interior angles of a triangle = 180°

m∠BAC + m∠ABC + m∠BCA = 180°

85° + 85° + m∠BCA = 180°

m∠BCA = 180° - 170°

m∠BCA = 10°

x = 10°

In ΔBDC,

Since, BD ≅ DC [Given]

Opposite angles to these equal sides will be equal in measure.

Therefore, x° = z° = 10°

Since, x° + y° + z° = 180°

10° + y° + 10° = 180°

y = 180 - 20°

y = 160°

Finding the perimeter or area of a rectangle given one of th
The length of a rectangle six times its width.
If the area of the rectangle is 150 cm”, find its perimeter.

Answers

Answer:

The answer is 70cm

Step-by-step explanation:

Perimeter of a rectangle = 2l + 2w

Area of a rectangle = l × w

where

l is the length

w is the width

From the question

The length of a rectangle six times its width which is written as

l = 6w

Area = 150cm²

Substitute these values into the formula for finding the area

That's

150 = 6w²

Divide both sides by 6

w² = 25

Find the square root of both sides

width = 5cm

Substitute this value into l = 6w

That's

l = 6(5)

length = 30cm

So the perimeter of the rectangle is

2(30) + 2(5)

= 60 + 10

= 70cm

Hope this helps you

Verify the identity. cot x / 1 + csc x = csc x - 1 / cot x

Answers

Step-by-step explanation:

cot x / (1 + csc x)

Multiply by conjugate:

cot x / (1 + csc x) × (1 − csc x) / (1 − csc x)

Distribute the denominator:

cot x (1 − csc x) / (1 − csc²x)

Use Pythagorean identity:

cot x (1 − csc x) / (-cot²x)

Divide:

(csc x − 1) / cot x

Solve for x -3x-3=-3(x+1)

Answers

Step-by-step explanation:

[tex] - 3x - 3 = - 3(x + 1) \\ - 3x - 3 = - 3x - 3 \\ - 3x + 3x = - 3 + 3 \\ 0 = 0[/tex]

Step 1: Use 3 to open the bracket

Step 2 : Collect like terms and simplify

Answer = 0

We have to accept or reject a large shipment of items. For quality control purposes, we collect a sample of 200 items and find 24 defective items. Construct a 95% percent confidence interval for the proportion of defective items in the whole shipment.

Answers

Answer:

A 95% confidence for the population proportion of defective items in the whole shipment is [0.075, 0.165] .

Step-by-step explanation:

We are given that for quality control purposes, we collect a sample of 200 items and find 24 defective items.

Firstly, the pivotal quantity for finding the confidence interval for the population proportion is given by;

                             P.Q.  =  [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex]  ~  N(0,1)

where, [tex]\hat p[/tex] = sample proportion of defective items = [tex]\frac{24}{200}[/tex] = 0.12

            n = sample of items = 200

            p = population proportion  of defective items

Here for constructing a 95% confidence interval we have used a One-sample z-test statistics for proportions.

So, 95% confidence interval for the population proportion, p is ;

P(-1.96 < N(0,1) < 1.96) = 0.95  {As the critical value of z at 2.5% level

                                                      of significance are -1.96 & 1.96}  

P(-1.96 < [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < 1.96) = 0.95

P( [tex]-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < [tex]{\hat p-p}[/tex] < [tex]1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.95

P( [tex]\hat p-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < p < [tex]\hat p+1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.95

95% confidence interval for p = [ [tex]\hat p-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] , [tex]\hat p+1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ]

  = [ [tex]0.12-1.96 \times {\sqrt{\frac{0.12(1-0.12)}{200} } }[/tex] , [tex]0.12+1.96 \times {\sqrt{\frac{0.12(1-0.12)}{200} } }[/tex] ]

 = [0.075, 0.165]

Therefore, a 95% confidence for the population proportion of defective items in the whole shipment is [0.075, 0.165] .

The paper usage at a small copy center is normally distributed with a mean of 5 boxes of paper per week, and a standard deviation of 0.5 boxes. It takes 2 weeks for an order of paper to be filled by its supplier. What is the safety stock to maintain a 99% service level?

Answers

Answer:

1.649 approximately 2

Step-by-step explanation:

S.d = standard deviation = 0.5

Time taken = lead time = 2 weeks

Mean = demand for week = 5 boxes

We are required to find the safety stock to maintain at 99% service level.

At 99% level, the Z value is equal to 2.326.

Therefore,

Safety stock = z × s.d × √Lt

= 2.326 × 0.5 x √2

= 1.649

Which is approximately 2.

Find the Taylor series for f(x) centered at the given value of a. [Assume that f has a power series expansion. Do not show that Rn(x) → 0.] f(x) = 4 cos(x), a = 7π

Answers

Answer:

The Taylor series of f(x) around the point a, can be written as:

[tex]f(x) = f(a) + \frac{df}{dx}(a)*(x -a) + (1/2!)\frac{d^2f}{dx^2}(a)*(x - a)^2 + .....[/tex]

Here we have:

f(x) = 4*cos(x)

a = 7*pi

then, let's calculate each part:

f(a) = 4*cos(7*pi) = -4

df/dx = -4*sin(x)

(df/dx)(a) = -4*sin(7*pi) = 0

(d^2f)/(dx^2) = -4*cos(x)

(d^2f)/(dx^2)(a) = -4*cos(7*pi) = 4

Here we already can see two things:

the odd derivatives will have a sin(x) function that is zero when evaluated in x = 7*pi, and we also can see that the sign will alternate between consecutive terms.

so we only will work with the even powers of the series:

f(x) = -4 + (1/2!)*4*(x - 7*pi)^2 - (1/4!)*4*(x - 7*pi)^4 + ....

So we can write it as:

f(x) = ∑fₙ

Such that the n-th term can written as:

[tex]fn = (-1)^{2n + 1}*4*(x - 7*pi)^{2n}[/tex]

In this exercise we must calculate the Taylor series for the given function in this way;

[tex]f_n= (-1)^{2n+1}(4)(x-7\pi)^{2n}[/tex]

The Taylor series of f(x) around the point a, can be written as:

[tex]f(x) = f(a) + f'(a)(x-a)+\frac{1}{2!} f''(a)(x-a)^2+....[/tex]

Here we have:

[tex]f(x) = 4cos(x)\\a = 7\pi[/tex]

Then, let's calculate each part:

[tex]f(a) = 4cos(7\pi) = -4\\df/dx = -4sin(x)\\(df/dx)(a) = -4sin(7\pi) = 0\\(d^2f)/(dx^2) = -4cos(x)\\(d^2f)/(dx^2)(a) = -4cos(7\pi) = 4[/tex]

Here we already can see two things:

1) The odd derivatives will have a sin(x) function that is zero when evaluated in [tex]x=7\pi[/tex].

2) We also can see that the sign will alternate between consecutive terms.

So we only will work with the even powers of the series:

[tex]f(x) = -4 + (1/2!)*4*(x - 7\pi)^2 - (1/4!)*4*(x - 7\pi)^4 + ....[/tex]

So we can write it as:

[tex]f(x)=\sum f_n[/tex]

Such that the n-th term can written as:

[tex]f_n= (-1)^{2n+1}(4)(x-7\pi)^{2n}[/tex]

See more abour Taylor series at: brainly.com/question/6953942

A data set lists earthquake depths. The summary statistics are
nequals=400400​,
x overbarxequals=6.866.86
​km,
sequals=4.374.37
km. Use a
0.010.01
significance level to test the claim of a seismologist that these earthquakes are from a population with a mean equal to
6.006.00.
Assume that a simple random sample has been selected. Identify the null and alternative​ hypotheses, test​ statistic, P-value, and state the final conclusion that addresses the original claim.
What are the null and alternative​ hypotheses?


A.
Upper H 0H0​:
muμequals=5.005.00
km
Upper H 1H1​:
muμnot equals≠5.005.00
km

B.
Upper H 0H0​:
muμnot equals≠5.005.00
km
Upper H 1H1​:
muμequals=5.005.00
km

C.
Upper H 0H0​:
muμequals=5.005.00
km
Upper H 1H1​:
muμgreater than>5.005.00
km

D.
Upper H 0H0​:
muμequals=5.005.00
km
Upper H 1H1​:
muμless than<5.005.00
km
Determine the test statistic.


​(Round to two decimal places as​ needed.)
Determine the​ P-value.


​(Round to three decimal places as​ needed.)
State the final conclusion that addresses the original claim.

Fail to reject

Upper H 0H0.
There is


evidence to conclude that the original claim that the mean of the population of earthquake depths is
5.005.00
km

Answers

Answer:

Step-by-step explanation:

The summary of the given statistics data include:

sample size n = 400

sample mean [tex]\overline x[/tex] = 6.86

standard deviation = 4.37

Level of significance ∝ = 0.01

Population Mean [tex]\mu[/tex] = 6.00

Assume that a simple random sample has been selected. Identify the null and alternative​ hypotheses, test​ statistic, P-value, and state the final conclusion that addresses the original claim.

To start with the hypothesis;

The null and the alternative hypothesis can be computed as :

[tex]H_o: \mu = 6.00 \\ \\ H_1 : \mu \neq 6.00[/tex]

The test statistics for this two tailed test can be computed as:

[tex]z= \dfrac{\overline x - \mu}{\dfrac{\sigma}{\sqrt {n}}}[/tex]

[tex]z= \dfrac{6.86 - 6.00}{\dfrac{4.37}{\sqrt {400}}}[/tex]

[tex]z= \dfrac{0.86}{\dfrac{4.37}{20}}[/tex]

z = 3.936

degree of freedom = n - 1

degree of freedom = 400 - 1

degree of freedom = 399

At the level of significance ∝ = 0.01

P -value = 2 × (z < 3.936)  since it is a two tailed test

P -value = 2 × ( 1  - P(z ≤ 3.936)

P -value = 2 × ( 1  -0.9999)

P -value = 2 × ( 0.0001)

P -value =  0.0002

Since the P-value is less than level of significance , we reject [tex]H_o[/tex] at level of significance 0.01

Conclusion: There is sufficient evidence to conclude that the original claim that the mean of the population of earthquake depths is  5.00 km.

Other Questions
a grandfather purchased a brand new car in 1958 for $2500.the car depreciated $325 a year. what would the car be worth 4 years after it was bought? Unless otherwise posted, the speed limit for cars in a residential area isA: 25 milesperhourB: 30 miles per hour.C: 35 miles per hour. Chemical A, 12.062 g of chemical B, and 7.506 g of chemical C to make 5 doses of medicine. a. About how much medicine did he make in grams? Estimate the amount of each chemical by rounding to the nearest tenth of a gram before finding the sum. Show all your thinking. What did the term Grantism refer to?XO A. A commitment to civil rights and equality during ReconstructionB. A system of military strategies developed by GrantC. Political corruption during Grant's term as presidentO D. The economic changes that occurred after the Civil War Solve. 1/2(-4 2n) = -17 Please explain it to me if you can I dont really understand how to do these types of problems so it would be much appreciated! Chelsi has talked to her artist friends about how much money they earn each year from working in the arts. She gathers these values from seven people: [$1,500; $6,700; $2,200; $8,100; $50,500; $12,000; $2,200].What is the median of this data set? The function g(x) = x2 is transformed to obtain function h:h(x) = g(x) 5.Which statement describes how the graph of his different from the graph of g?A.The graph of h is the graph of g horizontally shifted right 5 units.B.The graph of h is the graph of g vertically shifted up 5 units.C.The graph of h is the graph of g vertically shifted down 5 units.OD.The graph of h is the graph of ghorizontally shifted left 5 units. The biome pictured has the second lowest annual average temperature of the terrestrial biomes and a mean annual precipitation range of 2075 cm. It is the largest terrestrial biome and is only found in the Northern hemisphere, where its largest areas are found in Canada and Russia. What biome is this? In concert with quality management programs, _______ controls help monitor the quality of goods or services at each step in the production process to alert managers to problems. feedforward concurrent feedback bureaucratic clan A process of making decisions by constructing simplified models that extract the essential features from problems without capturing all their complexity is known as The diameter of a large lawn ornament in the shape of a sphere is 16 inches. What is the approximate volume of the ornament? Use 3.14 for Pi. Round to the nearest tenth of a cubic inch. Recall the formula V = four-thirds pi r cubed. Last winter, I had / was having a nasty accident while I skied / was skiing. I was with my friend Joe, It was a beautiful morning. The sun shone / was shining and lots of people skied / were skiing. Suddenly, Joe lost / was losing control as he was going round a corner and crashed / was crashing into me. I fell / was falling and broke my leg. An air ambulance arrived / was arriving and took / was taking me to hospital. I was in hospital for two weeks! Two instruments produce a beat frequency of 5 Hz. If one has a frequency of 264 Hz, what could be the frequency of the other instrument A company is making a new label for one of their containers. The container is a cylinder that is 9 inches tall and 5 inches in diameter. What is the area of the label that needs to be printed to go around the new container? Use = 3.14. How is the relationship between Jewish Orthodox and mainstream American culture? Directions: Simplify each expression by combining likeTerms (pls help if u can ) Sammy the Sailor swears entirely too much. The following probability distribution shows the number of times Sammy swears per day and the corresponding probabilities:# of swear words: 2 5 9 14 20Probability: 0.01 0.09 0.30 0.40 0.20In an effort to reduce his amount of swearing, Sammy places $1.00 in a jar every time he swears. Further, if at the end of the day he swears more than 10 times, he places an extra $2.00 in the jar per swear word over 10. If Sammy swears less than 5 times, he takes out $0.50 for each of his swear words.A B C D E F G1 # of swear word Probability2 Cost per swear word $1.00 2 0.013 Extra cost per swear word over 10 $2.00 5 0.094 Refund per swear word less than 5 $0.50 9 0.35 14 0.46 20 0.2789 # Regular Extra cost Refund Total swear swear if over 10 if under moneywords word swear 5 swear in the jar cost words words for theday 10 Based off the partial simulation spreadsheet above, answer the following questions: A) What formula should go into cell C10 to calculate the Regular Swear word cost? B3*B4 SUMPRODUCT(B2:B4, B10) B4*B10 SUM(B2:B4) B2*B10 B3*B2 B3*B10 B) What formula should go into cell D10 to calculate the Extra Swear word cost? =IF(B10>10,(B10-10)*B3,0) =IF(B10>10,(10-B10)*B3,0) =(B10-10)*B3 =IF(B10>10,0,(B10-10)*B3) SUMPRODUCT(B10,B3) B10*B3 C) What formula should go into cell E10 to calculate the Refund amount? B10*B4 =IF(B10>5,(B10-5)*B4,0) =IF(B10 Determine the present value P that must be invested to have the future value A at simple interest rate r after time t.A = $8000.00, r = 10.5%, t = 9 months$(Round up to the nearest cent as needed.) As part of her annual review of her company's budgets versus actuals, Mary Gerard isolates unfavorable variances with the hope of getting a better understanding of what caused them and how to avoid them next year. The variable overhead efficiency variance was the most unfavorable over the previous year, which Gerard will specifically be able to trace to: You have two capacitors and want to connect them across a voltage source (battery) to store the maximum amount of energy. Should they be connected in series or in parallel?