The functions of the lower respiratory system are (1) to move oxygen to the cells in the body, (2) to move oxygen from the air into the blood, (3) to remove carbon dioxide from the body, (4) to trap foreign particles from the air and expel them from the body. Thus, options A, B, C, and D are correct.
The lower respiratory system is responsible for many crucial body functions. The respiratory system performs an essential role in the human body. It facilitates the process of respiration, which is critical for maintaining the body's homeostasis.
It performs the following functions:
Gas Exchange: It helps in the movement of oxygen from the air into the body's bloodstream and removes carbon dioxide from the bloodstream and excretes it out of the body.
Ventilation: It enables air to enter the lungs and provides oxygen to the body's cells.
Phonation: It facilitates sound produced when air passes through the larynx.
Olfaction: It helps to detect odors via the nasal cavity.
Defense: It protects against foreign objects or harmful substances through mechanisms like mucus and coughing.
To know more about respiratory system, refer here:
https://brainly.com/question/22182638#
SPJ11#
Relate these terms: agarose, digest, DNA, DNA fingerprint/profile, restriction enzymes, PCR and gel electrophoresis
The given terms are related as: DNA fingerprint/profile makes use of gel electrophoresis which is performed used agarose gel, to differentiate the samples. The DNA samples present in very less quantity can be amplified using PCR where the sample is digested using restriction enzymes.
DNA fingerprinting is the molecular technique which can help in analyzing the identity of an individual by making use of their DNA, which has unique nucleotides. The technique is highly useful in forensics and also in identifying relationships.
PCR stands for Polymerase Chain Reaction. The technique makes use of a thermocycler which amplifies the sample genetic material into millions of copies.
To know more about PCR, here
brainly.com/question/29870980
#SPJ4
what stage does chromosomes align in center of cell
Chromosomes align in the center of a cell during metaphase, which is the second stage of the cell cycle.
During this stage, the spindle apparatus forms, which is composed of microtubules that attach to each chromosome. The microtubules will then pull the chromosomes to the centre of the cell, aligning them in a process known as the Metaphase Plate. This ensures that each daughter cell will have the same number of chromosomes as the parent cell. The alignment of chromosomes in the center of the cell during metaphase is essential for accurate segregation during the later stages of cell division.
In preparation for metaphase, the chromatids (the two identical halves of a chromosome) that were previously duplicated in the preceding stage, prophase, condense into a tightly-packed structure. Microtubules attach to each chromatid and the spindle apparatus begins to form. Once the spindle apparatus is formed, the chromosomes are pulled to the centre of the cell, resulting in the Metaphase Plate.
The alignment of chromosomes in the centre of the cell during metaphase is essential for the accurate segregation of chromosomes during the following stage, anaphase. During anaphase, the centromeres (the point where two chromatids of a chromosome are joined) of each chromosome separate and the two daughter chromosomes are pulled in opposite directions. This ensures that each daughter cell receives the same genetic information from the parent cell.
In summary, during metaphase, the chromosomes align in the centre of the cell as a result of the spindle apparatus. This alignment is necessary to ensure that each daughter cell receives the same genetic information from the parent cell during the subsequent stages of cell division.
For more such questions on Cell Cycle
https://brainly.com/question/11480045
#SPJ11
You are interested in studying the roles of second messenger systems in sensory transduction. Which pair of receptors might you select for your experiments? Chemoreceptors and photoreceptors Electroreceptors and thermoreceptors Mechanoreceptors and thermoreceptors Chemoreceptors and mechanoreceptors Photoreceptors and mechanoreceptors
If you are interested in studying the roles of second messenger systems in sensory transduction, the pair of receptors you might select for your experiments are chemoreceptors and mechanoreceptors.
Chemoreceptors are involved in detecting chemical stimuli such as taste and smell, while mechanoreceptors are involved in detecting mechanical stimuli such as touch, pressure, and vibration. Both of these types of receptors are known to use second messenger systems to transduce signals, making them suitable for studying the roles of these systems in sensory transduction. The other receptor pairs listed may be involved in different types of sensory transduction and may not be as relevant for your specific research question.
Learn more about chemoreceptors here: brainly.com/question/29737864
#SPJ4
Which of the following are advantages of having children in one's twenties?The parents have more physical energy.The mother is likely to have fewer health problems.The parents are less likely to build up expectations for their children.
Advantages of having children in one's twenties are as follows: The parents have more physical energy. The mother is likely to have fewer health problems. The parents are less likely to build up expectations for their children.
Being pregnant and giving birth is a tiring and physically demanding job. In addition, taking care of a child, especially a young one, can be equally exhausting. It is said that having children in your twenties will provide you with more physical energy. When a mother gives birth at an early age, her body is much more capable of bouncing back than it would be at a later age. The mother is also likely to have fewer health problems than an older mother, making the child's early years much easier.
There is also an advantage for parents in that they are less likely to build up expectations for their children. The younger parents don't have to worry about things like paying for their children's education, so they can simply focus on the enjoyment of raising their child.
TO know more about Health please visit :
https://brainly.com/question/18837994
#SPJ11
who discovered the basic principles of inheritance using traits of pea plants?
Look at the following sketch: What is illustrated in this sketch? Describe the term given in your answer in Question ?1
The enzyme amylase accelerates the reaction of changing a. polysaccharides into monosaccharides.b. disaccharides into monosaccharides. c. starch into disaccharides. d. disaccharides into glucose.
The enzyme amylase accelerates the reaction of changing starch into disaccharides. Therefore, the correct option is option C.
An enzyme is a kind of protein that speeds up chemical reactions by decreasing the amount of energy required for them to occur. A biochemical catalyst is an enzyme.
Every enzyme is highly specialized in terms of what reaction it catalyzes (accelerates) and which molecule it interacts with (called its substrate).
It is one of the most abundant and essential digestive enzymes found in the human body. Amylase breaks down complex carbohydrates into simple sugars, such as glucose, maltose, and fructose, that the body can absorb and use for energy.
After that, amylase is produced in the pancreas and secreted into the small intestine, where it breaks down any remaining starch or glycogen in the digestive system. Therefore the correct option is option C.
For such more question on disaccharides:
https://brainly.com/question/731310
#SPJ11
How do scientists use comparative embryology for evidence of evolution? (Use the photo provided to explain. SPAM ANSWERS = INSTANT REPORT.)
which lipoprotein delivers its lipids to all cells in the body?
The lipoprotein responsible for delivering lipids to all cells in the body is known as low-density lipoprotein (LDL).
LDL is formed in the liver from chylomicron remnants and is composed of a core of neutral lipids and surface coat of phospholipids and proteins. LDL particles are then released into the bloodstream and are able to bind to LDL receptors on the surface of cells throughout the body, allowing for the delivery of lipids. LDL particles can deliver cholesterol and other lipids, such as fatty acids and triglycerides, to cells throughout the body, which is important for maintaining metabolic homeostasis. Ultimately, LDL particles are necessary for efficient lipid delivery to all cells in the body.
To learn more about Lipoprotein :
https://brainly.com/question/16170788
#SPJ11
Which event is required for cell cycle arrest following DNA damage involving double-strand breaks ?
A Dephosphorylation of p53. < Nope
B Transcription of a CKI. <<<<<< I THINK THIS IS RIGHT
C Destruction of cyclins by ubiquitination. < Definitely nope
D Inhibition of ATM/ATR kinases. <-NOT RIGHT
E Binding of MDM2 to p53. < NOPE
"How DNA damage can inhibit progression of cell cycle at G1/S checkpoint, via synthesis of cyclin-dependent kinase inhibitors CKI's"
The event required for cell cycle arrest following DNA damage involving double-strand breaks is the Transcription of a CKI. Therefore the correct option is B.
A checkpoint in the G1-S phase of the cell cycle is triggered by DNA damage, which delays progression through the cell cycle by inhibiting cyclin-dependent kinases (CDKs).
The damage triggers a complex series of signals that activate the checkpoint and lead to the transcription of cyclin-dependent kinase inhibitors (CKIs).
As a result, CDK-cyclin complexes are inhibited, preventing the cell from progressing to the S phase, allowing time for the damage to be repaired, and ensuring genomic stability in cells. Therefore the correct option is B.
For such more question on DNA:
https://brainly.com/question/16099437
#SPJ11
microscopy someone would like to look at living algee and water what kind of equipment should you use
Microscopy is the study of small organisms with the aid of a microscope. Observing living algae and water under a microscope requires special equipment. The appropriate equipment to use when observing living algae and water under a microscope is known as a wet mount.
What is a wet mount? A wet mount is a technique used in microscopy to observe living organisms in their natural habitat. A drop of liquid containing the organism is placed on a microscope slide and covered with a cover slip. A wet mount is suitable for observing living organisms since it does not kill or distort their natural shape.
The following are the materials needed to create a wet mount for microscopy: Microscope slide, Coverslip, Dropper tube, or pipette. The microscope can be used to observe living algae and water by creating a wet mount slide. The wet mount slide has an advantage over other microscopy techniques in that it is simple and easy to use.
A wet mount slide is also less prone to error since it does not involve complicated or delicate procedures.
To know more about Microscopy, refer here:
https://brainly.com/question/1596699#
#SPJ11
describe the differences between the arteriole and venules. focus on tissue types. on the image, point out the differences.
Arterioles and venules are two types of blood vessels.
Arterioles are small blood vessels that carry oxygen-rich blood away from the heart to various organs and tissues, while venules are small blood vessels that transport deoxygenated blood back to the heart from different organs and tissues. Arterioles have thicker smooth muscle layers than venules, and they are made up of a layer of endothelial cells, a basement membrane, and some connective tissue.
The muscle layers in the arteriole are composed of smooth muscle cells, which help control blood flow by contracting and relaxing. In the walls of the venules, smooth muscle cells are rare. Instead, they contain collagen fibers and elastic fibers, which aid in the vessel's flexibility. Their walls are thinner, and they have a larger diameter compared to arterioles. Arterioles contain endothelial cells, basement membranes, smooth muscle cells, and some connective tissues, while venules contain endothelial cells, collagen, and elastic fibers.
Learn more about arteriole and venules at brainly.com/question/12533346
#SPJ11
Land plants are descended from:
Please choose the correct answer from the following choices, and then select the submit answer button.
brown algae.
green algae.
mosses.
cyanobacteria.
Answer:
the answer is
Explanation:
I believe green algae
A part of a chromosome of a fungus was sequenced, it contained 28% thymine(T). What percent would by adenine (A)
Adenine always couples with thymine, and nucleotides always pairs with guanine, according to Chargaff's rule. Hence, the ratio of A to T must be about equal.
If Dna is found 28% herringbone, and which amount of guanine is there?Adenine binds to Thymine, followed by Cytosine binds to Guanine, so first, remember your strands. As a result, 28% Adenine must also be 28% Thymine. 28+28 = 56%, thus subtracting it from 100 yields the remaining proportion, or 44%, which must be divided between cytosine and guanine, each of which accounts for 22%.
If Cells contain 20% adenine groups, what percent if purines is present?Thymine is 20percentage points as well since adenine is 20%. Together, they account for 40%. The remaining 60% , 100 be divided evenly between the two amino acids, making each one 30%. While uracil does not exist in DNA, it shares thymine's proportion.
To know more about nucleotides visit:
https://brainly.com/question/30299889
#SPJ1
Which factors contribute MOST to intraspecific competition?
predation and parasitism
mutualistic relationships
a species' rate of reproduction and the carrying capacity of the environment
a species' fundamental niche and abiotic surroundings
population size
A species' rate of reproduction and the carrying capacity of the environment, these factors contribute to intraspecific competition.
Intraspecific competition is when it occurs between members of the same species.
example of male kangaroo fighting for the mates.
The importance of intraspecific competition is basic factor in natural selection and also for the survival of the fittest and this leads to the more fit individual survives and is able to reproduce.
It also leads to the evolution of better adaptations within a species.
But this also leads to competition for limited resources which can leads to a reduction in fitness for both individuals, but the more fit individual survives and is able to reproduce is the sole purpose of intraspecific competition.
To know more about intraspecific competition,
https://brainly.com/question/17003911
#SPJ4
Transgenic animals are currently produced for many different reasons. Choose an example of a transgenic animal that currently does not exist.1.chickens that have been modified to be able to lay eggs in very hot temperatures2.pigs that carry a roundworm gene to produce omega-3 fatty acids3.dairy cows that carry an Angus cattle gene so that they do not grow horns4.Atlantic salmon that have been modified to grow twice as fast as normal
An example of a transgenic animal that currently does not exist would be Atlantic salmon that have been modified to grow twice as fast as normal. the option 4. is correct .
Transgenic animals are those animals that have been genetically modified by the insertion of one or more genes from another organism into their DNA. With the assistance of genetic engineering methods, the genes of an organism can be changed to produce animals that have new, advantageous characteristics.
The Atlantic salmon that have been modified to grow twice as fast as normal is an example of a transgenic animal that does exist. Some of the other transgenic animals that exist or have been developed are:
1. Enviropig: Transgenic pigs with a bacterial gene inserted that enables them to better digest phosphorus, reducing the amount of phosphorus-contaminated waste they produce.
2. Glo Fish: Transgenic zebrafish with a fluorescent gene inserted that makes them glow in the dark.
3. Anti-cancer mice: Transgenic mice with a gene that suppresses the growth of cancer cells, which can be used to study cancer treatment alternative.
4. Spider-goat: Transgenic goats with a spider gene inserted that allows them to produce spider silk in their milk. The chickens that have been modified to lay eggs in very hot temperatures, pigs that carry a roundworm gene to produce omega-3 fatty acids, and dairy cows that carry an Angus cattle gene.
So that they do not grow horns are examples of transgenic animals that currently do not exist. Therefore, option 4. is correct .
To know more about Transgenic animals please visit :
https://brainly.com/question/3361200
#SPJ11
In a bacterial transcription unit, the role of the ?? is to form a recognition and binding site for RNA polymerase
In a bacterial transcription unit, the role of the promoters is to form a recognition and binding site for RNA polymerase.
In the bacterial transcription unit, promoters serve as an RNA polymerase binding and recognition site. Promoters are particular DNA components that are present before the transcription start site. The RNA polymerase subunit binds to promoters to deliver a catalytically effective RNA polymerase core.
Using a DNA template, RNA molecules are produced by RNA polymerase, a multi-unit enzyme. Prior to translation, which is the process of decoding RNA into proteins, the transcription of genetic information into RNA is the initial phase of gene expression.
To know more about promoters, refer:
https://brainly.com/question/13063358
#SPJ4
What is the covalent bond between the carboxyl group on one amino acid and the amino group on the next, formed by a dehydration reaction?
The covalent bond between the carboxyl group of one amino acid and the amino group of the next is called a peptide bond.
This bond is formed through a dehydration reaction, in which a molecule of water is removed, allowing the carboxyl group (-COOH) of one amino acid to join with the amino group (-NH2) of the next, forming a bond (-CO-NH-) between the two amino acids.
This process repeats, forming a long chain of amino acids known as a polypeptide. Peptide bonds are very strong and contribute to the stability and shape of proteins, which are made up of one or more polypeptide chains. The sequence of amino acids in a polypeptide chain determines the specific properties and functions of the protein.
To learn more about amino acid refer to
brainly.com/question/30779255
#SPJ4
which of these is the most recent adaptation of plants for life on land?
A water-repellent cuticle, stomata that control water evaporation, specialised cells that give stiff support against gravity, and specialised structures that capture sunlight are just a few examples of how plants evolve.
In order for terrestrial plants to grow, seeds are essential. Sexual organs, a multicellular embryo shielded by parental tissue, a vascular transport system, and rhizoids, roots, and root hairs necessary for soaking up nutrients and water are all present. Haploid and diploid generations alternate. The construction and upkeep of developmental programmes required for plants to adapt to life on land rely on the regulation of gene expression for the evolution of morphological variation. The genetic and molecular mechanisms behind morphological variation and plant adaptation to land are still poorly understood, despite advances in these fields.
Learn more about sunlight here:
https://brainly.com/question/1603783
#SPJ1
The cells of the immune systema) move from one part of the body to another via the body's circulatory systemsb) descend from tissue cells & therefore stay in the tissues where they developed
The cells of the immune system a) move from one part of the body to another via the body's circulatory systems
Cells are the basic functional and structural units of living organisms. Cells are specialized to carry out unique functions. The human immune system is the body's primary line of defense against illness-causing pathogens. The immune system comprises various specialized cells and organs that work together to recognize and eliminate pathogens. B lymphocytes, T lymphocytes, natural killer cells, and macrophages are among the specialized cells involved in the human immune response.
The immune system's specialized cells are made in the bone marrow and thymus gland. These cells move from one body part to another through the body's circulatory system, which includes the bloodstream and lymphatic system. The bloodstream carries oxygen and nutrients to the body's tissues and organs, while the lymphatic system helps to remove toxins and waste products from the body's tissues. The immune system's specialized cells use these systems to move from one part of the body to another, enabling them to identify and respond to invading pathogens.
Learn more about cell at:
https://brainly.com/question/14957605
#SPJ11
Which of the following pain sensation(s) is(are) associated with neuropathic pain? (Select all that apply.)
a. Infection
b. Inflammation
c. Obstruction
d. Postamputation
Neuropathic pain sensations are associated with Postamputation, Infection, and inflammation.
Neuropathic pain is the term for pain that is caused by harm to the nervous system, which is responsible for transmitting messages from the brain to the rest of the body. It's unlike nociceptive pain, which is caused by injury to tissues like muscles, joints, and bones. Infection, inflammation, obstruction, and postamputation are all pain sensations that can be associated with neuropathic pain.
In contrast, nociceptive pain is generally caused by tissue damage. Obstruction typically occurs when a nerve is compressed or damaged, leading to a sensation of burning or stabbing pain. Postamputation pain can occur when a nerve is cut during a surgical procedure, leading to an intense and uncomfortable sensation.
To know more about postamputation please visit :
https://brainly.com/question/9119644
#SPJ11
you are a summer student working in a blood laboratory. Blood samples from three patients have arrived and you are to analyse them. The names on the labels are smudged and you are unable to determine which test tube belongs to which patient. on the hospital database, you learn that patient A is a healthy 40-year-old man; patient B is an 18-year-old girl who has a history of chronic lung infections; patient C has a history of anemia. Using the following table, match the tubes to the right patients.
Answer: Well you will obviously be able to tell which one is an old man. For the person with anemia they will look tired and pale. For the 18 year old girl, she will probably look pretty normal since she only has a HISTORY of chronic lung infections. By the way you didn't show a picture of the table so I don't know if this really helped.
Explanation:
Please just tell me if this didn't help and I will try to improve the answer.
when red flowered snapdragons are crossed with white flowered snapdragons, all the f1 plants will ave pink flowers. if mendel had used snapgragons instead of pea plants he would have had difficulty in formulating his principle of
When red flowered snapdragons are crossed with white flowered snapdragons, all the F1 plants will have pink flowers. If Mendel had used snapdragons instead of pea plants, he would have had difficulty in formulating his principle of incomplete dominance.
Incomplete dominance is a type of inheritance where one allele for a specific trait is not entirely dominant over the other allele. Incomplete dominance is described as a type of gene interaction where both the dominant and recessive alleles are expressed as a blended phenotype in the F1 generation.
Incomplete dominance was first described by Carl Correns, Erich von Tschermak, and Hugo de Vries. They studied snapdragon flowers, which produced a pink color when the dominant red allele was crossed with the recessive white allele. Because Mendel's pea plants only exhibited complete dominance, he would have had difficulty formulating his principle of incomplete dominance if he had used snapdragons instead of pea plants to study genetic inheritance.
Learn more about allele at:
https://brainly.com/question/23516288
#SPJ11
le.
(b)
(i)
The diagram shows the gill filaments of a bony fish. The flow of water across the gill plates
is shown.
capillaries
(ii)
gill filament
Š
gill plate
water current
Draw an arrow on a capillary to show the direction of blood flow in the gill plate. [1]
Use the letter H, to indicate on the diagram, an area where there is the highest
concentration of oxygen in the blood of the gill plate.
Use the letter L to indicate where there is the lowest concentration of oxygen in the
water passing over the gill plate.
[2]
(iii) Name this type of flow and explain how it improves the efficiency of oxygen uptake.
[2]
Answer:
(b)
(i)
Here is the labeled diagram of the gill filaments of a bony fish, with the requested arrow and labels:
markdown
Copy code
capillaries
↓
(ii) Š
↑ gill plate
│ water current
│
H L
(ii)
The letter H indicates an area where there is the highest concentration of oxygen in the blood of the gill plate, which is at the end of the capillary bed closest to the water flow. The letter L indicates where there is the lowest concentration of oxygen in the water passing over the gill plate, which is at the end of the gill filament farthest from the water flow.
(iii)
This type of flow is called countercurrent flow. It improves the efficiency of oxygen uptake because it maintains a concentration gradient between the water and the blood across the entire length of the gill filament. As the water flows over the gill filaments, oxygen diffuses from the water into the blood of the capillaries. Because the concentration of oxygen is always higher in the water than in the blood, oxygen continues to diffuse across the entire length of the filament. This ensures that the blood leaving the gill filament at the end closest to the heart has the highest possible concentration of oxygen. If concurrent flow were used, where water and blood flow in the same direction, the concentration gradient between the water and blood would be reduced along the length of the gill filament, resulting in less efficient oxygen uptake.
(please mark my answer as brainliest if it was helpful)
When a neuron is at rest, the K+ ________
gradient favors K+ diffusion out of the cell while the ________ gradient favors K+ diffusion into the cell .
A. concentration; electrical
B. concentration; concentration
C. electrical; electrical
D. electrical; concentration
Answer:
A. concentration; electrical
why does the corpse flower need to attract insects to reproduce?
The corpse flower, also known as Titan arum, needs to attract insects to reproduce. This is because the flower has a unique way of pollination that involves attracting carrion beetles and flies. These insects are attracted to the pungent odor produced by the flower, which resembles rotting flesh.
The corpse flower is a fascinating plant that blooms once every few years and is native to Sumatra, Indonesia. The plant is known for its large inflorescence, which can grow up to 3 meters tall. The flowers are usually dark red or maroon and have a ruffled skirt-like structure that surrounds the central spadix. The spadix is covered with tiny male and female flowers that are responsible for pollination.
The corpse flower uses the foul odor to attract carrion beetles and flies, which are attracted to rotting flesh. When the insects visit the flower, they become coated with pollen from the male flowers. They then fly off to another flower, where they transfer the pollen to the female flowers. This process allows for cross-pollination, which is essential for genetic diversity in the plant population.In conclusion, the corpse flower needs to attract insects to reproduce because it uses the pungent odor to attract carrion beetles and flies for pollination.
For such more questions on Titan arum(corpse flower):
brainly.com/question/28388434
#SPJ11
in eukaryotic cells, how do transcription factors act to control gene expression?
match the following organelles/structures with whether they are found in plant cells, animal cells, or both plant and animals (use the letters in the blanks to answer the questions).
Organelles or structures that are present in cells are given below:
Animal Cells: membrane plasma, Cytoplasm, Nucleus, Lysosomes, Centrioles.Plant Cells: cell wall, Membrane plasma, Chloroplast, Cytoplasm, Central vacuole, Nucleus.Organelles in cellsSome organelles are present only in animal or plant cells, while others are present in both. Some are the following:
Cell wall: provides structural support and protection in plant cells.Plasma membrane: regulates the passage of substances into and out of the cell.Chloroplast: converts light energy into chemical energy through photosynthesis in plant cells.Cytoplasm: houses the cell's organelles and is the site of many cellular processes.Central vacuole: stores water, nutrients, and waste products in plant cells.Nucleus: contains and protects the cell's genetic material and controls gene expression.Lysosomes: contain digestive enzymes that break down waste materials and cellular debris in animal cells.Centrioles: help to organize the cell's cytoskeleton and are involved in cell division in animal cells.The complete question is attached in the image below.
learn more about animal and plant cells
https://brainly.com/question/913732
#SPJ11
Calculate the amount of protein in 200ml low fat milk. Show calculations
The amount of protein in 200ml low-fat milk would be 6.97 g., approximately 7 g.
According to the WHO, dairy is a substantial source of superior protein and has a high level of edibility. Protein is essential for constructing and maintaining muscle mass and protecting bone tissue. Milk includes measurements of the many essential amino acids significantly in excess of international criteria due to the high nature of milk proteins (casein and whey).
So, by increasing the Kjeldahl N fixation = 6.38 (1 /15.67),
the milk protein emphasis is established in this manner.
The Kjeldahl method may not accurately reflect actual protein content or the assembling value of milk since the NPN concentration of milk can vary dramatically between groups.
A 200 ml glass of milk is thought to contain 6.97 g, or about 7 g, of protein. 3.5 g of protein are present in 100 ml of milk, for example. Hence, the protein level would be computed =
3.52 * 2 = 7 g for 200ml of low-fat milk.
To know more about protein click here:
https://brainly.com/question/31017191
#SPJ4
What process during meiosis is MOST likely responsible for creating the variation seen in the kitten compared to its two parents? A. independent assortment of allelesB. separation of the sister chromatids C. pairing of homologous chromosomes D. production of haploid daughter cells
A. independent assortment of alleles process during meiosis is MOST likely responsible for creating the variation seen in the kitten compared to its two parents
Which approach resulted in the highest genetic variation?Meiosis, in particular, generates novel genetic material combinations in each of the four daughter cells. These novel combinations are the outcome of DNA exchange between paired chromosomes. Because of this exchange, the gametes generated during meiosis have a wide spectrum of genetic diversity.
Homologous chromosomes (one from each parent) pair along their lengths during meiosis. The chromosomes cross across at chiasma sites. The chromosomes split and reunite at each chiasma, swapping some of their genes. Genetic variety comes through recombination.
learn more about meiosis
https://brainly.com/question/25995456
#SPJ1