Answer:
45 × 8 units = A + B as formular
A 2.5 kg block slides along a frictionless surface at 1.5 m/s.A second block, sliding at a faster 4.1 m/s , collides with the first from behind and sticks to it. The final velocity of the combined blocks is 2.5 m/s. What was the mass of the second block?
Answer:
1.5kg
Explanation:
Given data
mass m1= 2.5kg
mass m2=??
velocity of mass one v1= 1.5m/s
velocity of mass two v2= 4.1m/s
common velocity after impact v= 2.5m/s
Let us apply the formula for the conservation of linear momentum for inelastic collision
The expression is given as
m1v1+ m2v2= v(m1+m2)
substitute
2.5*1.5+ m2*4.1= 2.5(2.5+m2)
3.75+4.1m2= 6.25+2.5m2
collect like terms
3.75-6.25= 2.5m2-4.1m2
-2.5= -1.6m2
divide both sides by -1.6
m2= -2.5/-1.6
m2= 1.5 kg
Hence the second mass is 1.5kg
why is nut-cracker 2nd class lever?
2nd class leaver refers to such leaver in which load lies between effort and fulcrum.In a nut cracker too load is in between effort and fulcrum.Thus, nut cracker is a 2nd class leaver.......
What does E=mc2 stand for?
It stands for energy=mass times the speed of light squared.
Why do we use semiconductor instead of metal in thermopile?
Answer:
Metal or conductors , what they do is that they allow full flow of current that is conduction is due to free electrons only and there is literally no gap between valence and conduction band,so free electrons can easily jump into conduction band from valence band.
And now lets talk about insulators,what they do is that they don’t allow any current to flow i.e they act as strong dielectric,and gap between valence band and conduction band is so big that free electron can never come into conduction band from valence band ever if they try is for eternity…
But semiconductors can act both as an insulator as well as a conductor based on the voltage input. Hence, there is a possibility to control the current flow in semiconductors , so they don’t just relax and let the current pass by, they can control it, and that is why you can design logic circuits with it.
But as the temperature increases free electrons from valence band of insulators can jump to conduction band and can cause a little conductivity, and then the insulator will act as a semi-conductor.
A ball is launched from the ground with a horizontal speed of 30 m/s and a vertical speed of 30 m/s. How far horizontally will it travel in 2 seconds?
A. 30 m
B. 90 m
C. 45 m
D. 60 m
Answer:
It will travel Vx * t = 30 m/s * 2 s = 60 m
A wire, 0.60 m in length, is carrying a current of 2.0 A and is placed at a certain angle with respect to the magnetic field of strength 0.30 T. If the wire experiences a force of 0.18 N, what angle does the wire make with respect to the magnetic field
Answer:
[tex]\theta=30 \textdegree[/tex]
Explanation:
From the question we are told that:
Current [tex]I=2.0A[/tex]
Length [tex]L=0.60m[/tex]
Magnetic field [tex]B=0.30T[/tex]
Force [tex]F=0.18N[/tex]
Generally the equation for Force is mathematically given by
[tex]F = BIL sin\theta[/tex]
[tex]sin\theta=\frac{F}{BIL}[/tex]
[tex]\theta=sin^{-1}\frac{0.18}{0.3*2*0.6}[/tex]
[tex]\theta=30 \textdegree[/tex]
describe four energy changes that happen in the process.
Driving a motor........
chemical energy is converted into kinetic energy.
Falling off of cliff
.........gravitational potential energy is converted into kinetic energy.
Hydroelectric energy generation
.......gravitational potential energy is converted into kinetic energy (i.e. driving a generator), which is then converted into electrical energy.
Nuclear power generation
.........mass is converted into energy, which then drives a steam turbine, which is then converted into electrical energy.
Light of frequency f falls on a metal surface and ejects electrons of maximum kinetic energy K by the photoelectric effect. If the frequency of this light is doubled, the maximum kinetic energy of the emitted electrons will be
The question is incomplete, the complete question is;
Light of frequency f falls on a metal surface and ejects electrons of maximum kinetic energy K by the photoelectric effect.
Part A If the frequency of this light is doubled, the maximum kinetic energy of the emitted electrons will be If the frequency of this light is doubled, the maximum kinetic energy of the emitted electrons will be
K/2.
K.
2K.
greater than 2K.
Answer:
2K
Explanation:
Given that the kinetic energy of photo electrons is given by;
K= E -Wo
Where;
K = kinetic energy
E= energy of incident photon
Wo = work function
But;
E= hf
Wo = fo
h= Plank's constant
f= frequency of incident photon
fo= Threshold frequency
So:
K= hf - hfo
Where the frequency of incident light is doubled;
K= 2hf - hfo
Hence, maximum kinetic energy of the emitted electrons in this case will be 2K
With respect to a right handed Cartesian coordinate system and given that . A = 4i + k and B = 2i + j _ 3k find A cross B
Using the left-hand rule,
[tex](4\,\vec\imath+\vec k)\times(2\,\vec\imath+\vec\jmath-3\,\vec k) = \begin{vmatrix}\vec\imath&\vec\jmath&\vec k\\4&0&1\\2&1&-3\end{vmatrix} = -\vec\imath+14\,\vec\jmath+4\,\vec k[/tex]
Then in the right-handed rectangular coordinates, the cross product is the negative of this,
[tex]\boxed{\vec\imath-14\,\vec\jmath-4\,\vec k}[/tex]
When you shine a beam of light, which is composed of just two different colors, red and green, onto a diffraction grating which color gets diffracted more
Answer:
The diffraction grating separates light into colors as the light passes through the many fine slits of the grating. This is a transmission grating. ... The prism separates light into colors because each color passes through the prism at a different speed and angle.
what Is accuracy ............
Answer:
Accuracy is how much the consequence of an estimation adjusts to the right worth or a norm' and basically alludes to how close an estimation is to its concurred esteem
《OAmalaOHopeO》
Answer:
In a set of measurements, accuracy is closeness of the measurements to a specific value, while precision is the closeness of the measurements to each other.
Explanation:
_Hope it helps you_
Solve numerical problem. Please give me step - step explanation Help me out plz
Answer:
You should multiply 60 kg*9.8 and answer will come.
Hope this will help you.
Answer:
yes she is right you should multiple 60*9.8
have a great day God bless you
A mass weighing 4 lb stretches a spring 4in. Suppose the mass is given an additional in displacement downwards and then released. Assuming no friction and no external force, the natural frequency W (measured in radians per unit time) for the system is? (Recall that the acceleration due to gravity is 32ft/sec2).
a) None of the other alternatives is correct.
b) W = v2 3
c)w=212
d) w = 4/6
e) w=213
Answer:
4√6 rad/s
Explanation:
Since the spring is initially stretched a length of x = 4 in when the 4 lb mass is placed on it, since it is in equilibrium, the spring force, F = kx equals the weight of the mass W = mg.
So, W = F
mg = kx where m = mass = 4lb, g = acceleration due to gravity = 32 ft/s², k = spring constant and x = equilibrium displacement of spring = 4 in = 4 in × 1ft /12 in = 1/3 ft
making k the spring constant subject of the formula, we have
k = mg/x
substituting the values of the variables into the equation, we have
k = mg/x
k = 4 lb × 32 ft/s² ÷ 1/3 ft
k = 32 × 4 × 3
k = 384 lbft²/s²
Now, assuming there is no friction and no external force, we have an undamped system.
So, the natural frequency for an undamped system, ω = √(k/m) where k = spring constant = 384 lbft²/s² and m = mass = 4 lb
So, substituting the values of the variables into the equation, we have
ω = √(k/m)
ω = √(384 lbft²/s² ÷ 4 lb)
ω = √96
ω = √(16 × 6)
ω = √16 × √6
ω = 4√6 rad/s
What about Iceland's location makes it particularly well-suited to produce electricity from geothermal energy
Answer:
Iceland lies on a boundary where two plates are moving away from each other. Heat from Earth’s interior rises through this plate boundary at a fast rate. This fact makes Iceland well-suited to producing electricity using its abundance of geothermal energy.
Explanation:
Edmentum sample answer.
What distance do I cover if I travel at 10 m/s E for 10s?
Answer:
100m
Explanation:
i think this is the answer because the formula for distance is
d=speed×time in this case the speed is 10m/s and the time is 10s therefore the distance will be
10m/s×10s
=100m
I hope this helps
Answer:
100 m
Explanation: this is when you need to find velocity and the formula for velocity is displacement by time taken.
What can light and sound both vary in which one of these ?
Volume
Intensity
Number or prespective?
Answer:
intensity
Explanation:
b. example, The sun is very bright and intense. and sounds can be very loud.
A) In terms of electrolysis, it’s been said from multiple sources online that “Using water's density and relative atomic populations, it is estimated by a mass balance that approximately 2.38 gallons of water are consumed as a feedstock to produce 1 kg of hydrogen gas (14.13 liters), assuming no losses.”
B) However, 1 Gallon of water is said to contain approximately 4,707 liters of hydrogen.
How can both statements be correct under normal atmospheric conditions, since even with 80% efficiency of current PEM electrolyzers the first statement (A) is nowhere near the +4,000 liters of the second approximation (B)?
Answer:
hhhhhhhjjjkkllkcftkbgfjknhglncg
A rock is suspended by a light string. When the rock is in air, the tension in the string is 37.8 N. When the rock is totally immersed in water, the tension is 32.0 N. When the rock is totally immersed in an unknown liquid, the tension is 20.2 N. What is the Density of the unknown liquid?
When the rock is suspended in the air, the net force on it is
∑ F₁ = T₁ - m₁g = 0
where T₁ is the magnitude of tension in the string and m₁g is the rock's weight. So
T₁ = m₁g = 37.8 N
When immersed in water, the tension reduces to T₂ = 32.0 N. The net force on the rock is then
∑ F₂ = T₂ + B₂ - m₁g = 0
where B₂ is the magnitude of the buoyant force. Then
B₂ = m₁g - T₂ = 37.8 N - 32.0 N = 5.8 N
B₂ is also the weight of the water that was displaced by submerging the rock. Let m₂ be the mass of the displaced water; then
5.8 N = m₂g ==> m₂ ≈ 0.592 kg
If one takes the density of water to be 1.00 g/cm³ = 1.00 × 10³ kg/m³, then the volume of water V that was displaced was
1.00 × 10³ kg/m³ = m₂/V ==> V ≈ 0.000592 m³ = 592 cm³
and this is also the volume of the rock.
When immersed in the unknown liquid, the tension reduces further to T₃ = 20.2 N, and so the net force on the rock is
∑ F₃ = T₃ + B₃ - m₁g = 0
which means the buoyant force is
B₃ = m₁g - T₃ = 37.8 N - 20.2 N = 17.6 N
The mass m₃ of the liquid displaced is then
17.6 N = m₃g ==> m₃ ≈ 1.80 kg
Then the density ρ of the unknown liquid is
ρ = m₃/V ≈ (1.80 kg)/(0.000592 m³) ≈ 3040 kg/m³ = 3.04 g/cm³
A man is driving a car at speed 25m/s. calculate the distance covered by it in one hour.
Answer:
6.94 km/hr
Explanation:
m/s to km/hr -> Multiply by 18/5
25/(18/5)
=> 25 x 5/18
=> 125/18 km/hr
=> 6.94 km/hr
Answer: 90,000 m = 90 km
Explanation:
Given information
Time = 1 hour
Speed = 25 m/s
Given expression deducted from the given information
Distance = speed × time
Convert units of time
1 hour = 60 minutes
1 minute = 60 seconds
1 hour = 60 × 60 = 3600 seconds
Substitute values into the expression
Distance = 25 × 3600
Simplify by multiplication
Distance = [tex]\boxed{90,000 m=90km}[/tex]
Hope this helps!! :)
Please let me know if you have any questions
As a roller coaster car crosses the top of a 40-m-diameter loop-the-loop, its apparent weight (the normal force) is the same magnitude as the car's weight. What is the car's speed at the top?
Answer:
40 because if it is the same weight then there is no weight to make the ride slower so it 40
Explanation:
what is the energy of an electromagnetic wave that has a frequency of 8.0 x 10^15 Hz? Use the equation...
(C)
Explanation:
[tex]E = hf = (6.626×10^{-34}\:\text{J•s})(8.0×10^{15}\:\text{Hz})[/tex]
[tex]= 5.3×10^{-18}\:\text{J}[/tex]
Answer:
It's D
Explanation:
It's from alvs
What is the need for satellite communication elaborate
The high frequency radio waves used for telecommunications links travel by line of sight and so are obstructed by the curve of the Earth. The purpose of communications satellites is to relay the signal around the curve of the Earth allowing communication between widely separated geographical points.
Explanation:
hope it helps!!
1. A sequence of potential differences v is applied accross a wire (diameter =0.32 mm length = 11 cm and the resulting current I are measured as follows: V 0.1 0.2 0.3 0.4 0.5 I (MA) 72 144 216 288 360 2) a) plot a graph of v against I.
b) determine the wire's resistence , R.
c) State ohm's law and try to relate it . your results.
Answer:
a. Find the graph in the attachment
b. 720 kΩ
c. The ratio V/I gives us our resistance which is 720 kΩ
Explanation:
a) plot a graph of V against I.
To plot the graph of V against I, we plot the corresponding points against each other. With the voltage V measured in volts and the current I measured in mA, the plotted graph is in the attachment.
b) Determine the wire's resistance , R.
The resistance of the wire is determined as the gradient of the graph.
R = ΔV/ΔI = (V₂ - V₁)/(I₂ - I₁)
Taking the first two corresponding measurements. V₁ = 72 V, I₁ = 0.1 mA, V₂ = 144 V and I₂ = 0.2 mA
R = (144 V - 72 V)/(0.2 - 0.1) mA
R = 72 V/0.1 mA
R = 72 V/(0.1 × 10⁻³ A)
R = 720 × 10³ V/A
R = 720 kΩ
c) State ohm's law and try to relate it your results.
Ohm's law states that the current flowing through a conductor is directly proportional to the voltage across it provided the temperature and all other physical conditions remain constant.
Mathematically, V ∝ I
V = kI
V/I = k = R
Since the ratio V/I = constant, from our results, the ratio of V/I for each reading gives us the resistance. Since we have a linear relationship between V and I, the gradient of the graph is constant and for each value of V and I, the ratio V/I is constant. So, the ratio V/I gives us our resistance which is 720 kΩ.
Since V/I is constant, we thus verify Ohm's law.
A roller coaster uses 800 000 J of energy to get to the top of the first hill. During this climb, it gains 500 000 J of potential energy and pauses (velocity = 0) for a fraction of a second at the very top before heading down the other side.
a) Draw a sankey diagram for a roller coaster's climb.
A roller coaster uses 800 000 J of energy to get to the top of the first hill. During this climb, it gains 500 000 J of potential energy and pauses for a fraction of a second at the very top before heading down the other side. At the top of the hill total, the kinetic energy of the roller coaster would be zero as the velocity is zero at the top of the hill, therefore the total mechanical energy is only because of potential energy.
What is mechanical energy?Mechanical energy is the combination of all the energy in motion represented by total kinetic energy and the total stored energy in the system which is represented by total potential energy.
The expression for total mechanical energy is as follows
ME= KE+PE
As total mechanical energy is the sum of all the kinetic as well as potential energy stored in the system.As given in the problem a roller coaster uses 800000 J of energy to get to the top of the first hill. During this climb, it gains 500 000 J of potential energy which means 300000 J of energy is lost in the frictional energy while climbing the hill,
Thus at the top of the hill, the total energy of the roller coasters is only due to the potential energy.
Learn more about mechanical energy from here brainly.com/question/12319302
#SPJ2
Question 5 of 10
What must be the same for two resistors that are connected in parallel?
Answer:
in parallel combination : potential difference between two terminal of resistors are always constant. ... hence, potential difference ( voltage ) must be same across each resistor .
Explanation:
A sports car accelerates uniformly from rest to 24 m/s in 6 seconds. Calculate the acceleration of the car
Answer:
a = 4m/s^2
Explanation:
Velocity(V) = uniform = 24m/s
time(t) = 6sec
Acceleration(a) = V/t
= 24/6
= 4m/s^2
When a sports car accelerates uniformly from rest to 24 m/s in 6 seconds,then acceleration of the car would be 4 m/s²
What are the three equations of motion?There are three equations of motion given by Newton
The first equation is given as follows
v = u + at
the second equation is given as follows
S = ut + 1/2×a×t²
the third equation is given as follows
v² - u² = 2×a×s
Note that these equations are only valid for a uniform acceleration.
As given problem sport car accelerates uniformly from rest to 24 m/s in 6 seconds then the acceleration of the car can be calculated by using the first equation of motion
v = u + at
As given the initial velocity u= 0
The final velocity v = 24 m/s
The time taken is t= 6 seconds
By substituting the respective values of velocity and time
24 = 0+ a*6
a = 24/6
a = 4 m/s²
Thus, when a sports car accelerates uniformly from rest to 24 m/s in 6 seconds,then acceleration of the car comes out to be 4 m/s²
Learn more about equations of motion from here
brainly.com/question/5955789
#SPJ2
Consider a piston filled with 3 mols of an ideal gas, kept at a constant temperature 290 K. We slowly compress the gas starting at 2 m3 and ending at 1 m3. How much work do we need to do on the gas to perform this operation
Answer: [tex]-5013.65\ J[/tex]
Explanation:
Given
No of moles [tex]n=3[/tex]
Temperature [tex]T=290\ K[/tex]
Initial volume [tex]V_1=2\ m^3[/tex]
Final volume [tex]V_2=1\ m^3[/tex]
Work done in constant temperature process is
[tex]W=nRT\ln \left(\dfrac{V_2}{V_1}\right)[/tex]
Insert the values
[tex]\Rightarrow W=3\times 8.314\times 290\ln \left (\dfrac{1}{2}\right)\\\\\Rightarrow W=-870\times 8.314\times \ln (2)\\\Rightarrow W=-5013.65\ J[/tex]
Flapping flight is very energy intensive. A wind tunnel test
on an 89 g starling showed that the bird used 12 W of
metabolic power to fly at 11 m/s. What is its metabolic power for starting flight?
Answer:
The metabolic power for starting flight=134.8W/kg
Explanation:
We are given that
Mass of starling, m=89 g=89/1000=0.089 kg
1 kg=1000 g
Power, P=12 W
Speed, v=11 m/s
We have to find the metabolic power for starting flight.
We know that
Metabolic power for starting flight=[tex]\frac{P}{m}[/tex]
Using the formula
Metabolic power for starting flight=[tex]\frac{12}{0.089}[/tex]
Metabolic power for starting flight=134.8W/kg
Hence, the metabolic power for starting flight=134.8W/kg
An airplane which intends to fly due south at 250 km/hr experiences a wind blowing westward at 40 km/hr. What is the actual speed of the airplane relative to the ground?
Answer:
simple is rumple a daily ok I'll be
A rocket explodes into two fragments, one 25 times heavier than the other. The magnitude of the momentum change of the lighter fragment is A) 25 times as great as the momentum change of the heavier fragment. B) The same as the momentum change of the heavier fragment. C) 1/25 as great as the momentum change of the heavier fragment. D) 5 times as great as the momentum change of the heavier fragment. E) 1/4 as great as the momentum change of the heavier fragment.
Answer:
B) The same as the momentum change of the heavier fragment.
Explanation:
Since the initial momentum of the system is zero, we have
0 = p + p' where p = momentum of lighter fragment = mv where m = mass of lighter fragment, v = velocity of lighter fragment, and p' = momentum of heavier fragment = m'v' where m = mass of heavier fragment = 25m and v = velocity of heavier fragment.
0 = p + p'
p = -p'
Since the initial momentum of each fragment is zero, the momentum change of lighter fragment Δp = final momentum - initial momentum = p - 0 = p
The momentum change of heavier fragment Δp' = final momentum - initial momentum = p' - 0 = p' - 0 = p'
Since p = -p' and Δp = p and Δp' = -p = p ⇒ Δp = Δp'
So, the magnitude of the momentum change of the lighter fragment is the same as that of the heavier fragment.
So, option B is the answer