Answer:
UV spectroscopy measures the energy required to promote an electron from the highest occupied molecular orbital to the lowest unoccupied molecular orbital.
Explanation:
UV spectroscopy can measure the energy needed to promote the electron from the highest occupied molecular orbital to the lowest orbital.
What is UV spectroscopy?The UV spectroscopy is a UV visible spectrum and refers to the absorption spectrum or the reflectance spectroscopy that is a part of the UV and the full regions of the EMR or electromagnetic spectrum.
The spectroscopy measures the energy needed to promote the electrons from a higher to a lower molecular orbit.
Find out more information about spectroscopy.
brainly.com/question/14854785
20. An oxide of osmium (symbol Os) is a pale yellow solid. If 2.89 g of the compound contains 2.16 g of osmium, what is its empirical formula?
The empirical formula is OsO₄ :
Explanation:
Osmium oxide contains osmium and oxygen only.
Thus, we shall determine the mass of oxygen in osmium oxide. This can be obtained as follow:
Mass of compound = 2.89 g
Mass of Os = 2.16 g
Mass of O =?Mass of O = (Mass of compound) – (Mass of Os)
Mass of O = 2.89 – 2.16
Mass of O = 0.73 g
Finally, we shall determine the empirical formula of the compound. This can be obtained as follow:
Mass of Os = 2.16 g
Mass of O = 0.73 g
Empirical formula =..?Os = 2.16 g
O = 0.73 g
Divide by their molar mass of
Os = 2.16 / 190 = 0.011
O = 0.73 / 16 = 0.046
Divide by the smallest
Os = 0.011 / 0.011 = 1
O = 0.046 / 0.011 = 4
Empirical formula = OsO₄Learn more: https://brainly.com/question/23629778
Give the formula of each coordination compound. Include square brackets around the coordination complex. Do not include the oxidation state on the metal. Use parentheses only around polyatomic ligands.
a) potassium tetracyanonickelate(II)
b) sodium diamminedicarbonatoruthenate(III)
c) diamminedichloroplatinum(II)
Answer:
a) K2[Ni(CN)4]
b) Na3[Ru(NH3)2(CO3)2]
c) Pt(NH3)2Cl2
Explanation:
Coordination compounds are named in accordance with IUPAC nomenclature.
According to this nomenclature, negative ligands end with the suffix ''ato'' while neutral ligands have no special ending.
The ions written outside the coordination sphere are counter ions. Given the names of the coordination compounds as written in the question, their formulas are provided above.
4.
Ammonia gas occupies a volume of 450. mL at a pressure of 720 mm Hg. What volume in
liters will the gas occupy at standard atmospheric pressure?
Answer:
[tex]\boxed {\boxed {\sf 426 \ mL}}[/tex]
Explanation:
We are asked to find the volume of ammonia gas given a change in pressure. We will use Boyle's Law, which states the volume of a gas is inversely proportional to the pressure of a gas. The formula is:
[tex]P_1V_1= P_2V_2[/tex]
The ammonia gas originally occupies a volume of 450 milliliters at a pressure of 720 millimeters of mercury. Substitute the values into the formula.
[tex]450 \ mL * 720 \ mm \ Hg = P_2V_2[/tex]
The pressure is changed to standard atmospheric pressure, which is 760 millimeters of mercury. The new volume is unknown.
[tex]450 \ mL * 720 \ mm \ Hg = 760 \ mm \ Hg * V_2[/tex]
We are solving for the volume at standard pressure. We will need to isolate the variable V₂. It is being multiplied by 760 millimeters of mercury. The inverse of multiplication is division. Divide both sides of the equation by 760 mm Hg.
[tex]\frac {450 \ mL * 720 \ mm \ Hg }{760 \ mm \ Hg}= \frac{760 \ mm \ Hg * V_2}{760 \ mm \ Hg}[/tex]
[tex]\frac {450 \ mL * 720 \ mm \ Hg }{760 \ mm \ Hg}= V_2[/tex]
The units of millimeters of mercury (mm Hg) cancel.
[tex]\frac {450 \ mL * 720 }{760} = V_2[/tex]
[tex]\frac {324,000}{760} \ mL = V_2[/tex]
[tex]426.3157895 \ mL =V_2[/tex]
The original values of volume and pressure have 3 significant figures. Our answer must have the same. For the number we calculated, that is the ones place. The 3 in the tenths place tells us to leave the 6 in the ones place.
[tex]426 \ mL \approx V_2[/tex]
The volume at standard atmospheric pressure is approximately 426 milliliters.
If the starting material has no stereogenic centers, when carbonyl compounds are reduced with a reagent such as LiAlH4 or NaBH4 and a new stereogenic center is formed, what will the composition of the product mixture be?
A) Forms a racemic mixture of the two possible enantiomers.
B) Forms more of one enantiomer than another because of steric reasons around the carbonyl.
C) Forms more of one enantiomer than another depending on the temperature of the reaction.
D) Forms different products depending on the solvent used.
Answer:
A) Forms a racemic mixture of the two possible enantiomers
When carbonyl compounds are reduced with a reagent such as LiAlH₄ or NaBH₄ and new stereogenic center is formed chemical change will lead to products that form a racemic mixture of the two possible enantiomers.
What is a chemical change?
Chemical changes are defined as changes which occur when a substance combines with another substance to form a new substance.Alternatively, when a substance breaks down or decomposes to give new substances it is also considered to be a chemical change.
There are several characteristics of chemical changes like change in color, change in state , change in odor and change in composition . During chemical change there is also formation of precipitate an insoluble mass of substance or even evolution of gases.
There are three types of chemical changes:
1) inorganic changes
2)organic changes
3) biochemical changes
During chemical changes atoms are rearranged and changes are accompanied by an energy change as new substances are formed.
Learn more about chemical change,here:
https://brainly.com/question/2591189
#SPJ6
Give me an atom with the following characteristics:
Lanthanide series
Boron
Chalogen
Alkaline Earth metal
Explanation:
Lanthanide series= E4
Boron=Si
Chalogen=O
Alkaline Earth metal =M9
Consider the following reaction:
Cr(NO3)3 (aq) + 2NaF (aq) --> 3NaNO3 (aq) + CrF3 (s)
If 21.0 grams of NaF are needed to precipitate all of the Cr+3 ions present in 0.125L of a solution of Cr(NO3)3, what is the molarity of the Cr(NO3)3 solution?
Your answer should be to 2 decimal places.
Answer:
2.01
Explanation:
First, let's convert grams to moles
(Na) 22.99 + (F) 18.998 = 41.988
Every mole of NaF is 41.988 grams
21/41.988 = 0.500143 moles of NaF
For every Cr+3, we will need 2 NaF, so Cr+3 will be half of NaF
0.500143/2 = 0.250071
molarity = moles/liters
0.250071/0.125 = 2.0057 M
how many moles of oxygen are present in 16 g of oxygen gas
Answer:
Mole = molecular weight / molecular mass
Mole = 16/16
Mole= 1
1. What happens to global temperature averages that start an ice age?
Answer:
Around 46° F (7.8° C)
Explanation:
"Scientists have predicted that the global average temperature during the ice age was around 46 degrees Farenheit (7.8 degrees Celsius.) However, the polar regions were far colder, around 25 degrees Fahrenheit (14 degrees Celsius) colder than the global average."
Source: http://www.weforum.org
What type of bonding is occuring in the compound below?
A. Covalent polar
B. Metallic
C. Ionic
D. Covalent nonpolar
Answer:
(B). it's metallic bonding
Consider the chemical reaction: N2 3H2 yields 2NH3. If the concentration of the reactant H2 was increased from 1.0 x 10-2 M to 2.5 x 10-1 M, calculate the reaction quotient (Q) and determine which way the chemical system would shift by comparing the value of Q to K.
In this equilibrium, the chemical system will shift to the right in order to produce more NH₃.
The equilibrium constant of a reaction is defined as:
"The ratio between equilibrium concentrations of products powered to their reaction quotient and equilibrium concentration of reactants powered to thier reaction quotient".
The reaction quotient, Q, has the same algebraic expressions but use the actual concentrations of reactants.
To solve this question we need this additional information:
For this reaction, K = 6.0x10⁻² and the initial concentrations of the reactants are:
[N₂] = 4.0M; [NH₃] = 1.0x10⁻⁴M and [H₂] = 1.0x10⁻²M
Thus, for the reaction:
N₂ + 3H₂ ⇄ 2NH₃
The equilibrium constant, K, of this reaction, is defined as:
[tex]K = \frac{[NH_3]^2}{[H_2]^3[N_2]}[/tex]
Where [] are concentrations in equilibrium.
And Q, is:
[tex]Q = \frac{[NH_3]^2}{[H_2]^3[N_2]}[/tex]
Where actual concentrations are:
[NH₃] = 1.0x10⁻⁴M
[N₂] = 4.0M
[H₂] = 2.5x10⁻¹M
Replacing:
Q = 1.6x10⁻⁷
As Q < K,
The chemical system will shift to the right in order to produce more NH₃
Learn more about chemical equililbrium in:
https://brainly.com/question/24301138
what are the properety of covalent bond
Explanation:
1. boiling and melting point
2. electrical conductivity
3. Bond strength
4. bond length
A covalent bond consists of negative electrons that are shared in between atoms. Because of this bond, they possess and manifest physical abilities, including electrical pressure/conductivity and lower melting points compared to ionic compounds.
For the titration of 50. mL of 0.10 M ammonia with 0.10 M HCl, calculate the pH. For ammonia, NH3, Kb
Answer:
11.12 → pH
Explanation:
This is a titration of a weak base and a strong acid.
In the first step we did not add any acid, so our solution is totally ammonia.
Equation of neutralization is:
NH₃ + HCl → NH₄Cl
Equilibrium for ammonia is:
NH₃ + H₂O ⇄ NH₄⁺ + OH⁻ Kb = 1.8×10⁻⁵
Initially we have 50 mL . 0.10M = 5 mmoles of ammonia
Our molar concentration is 0.1 M
X amount has reacted.
In the equilibrium we have (0.1 - x) moles of ammonia and we produced x amount of ammonium and hydroxides.
Expression for Kb is : x² / (0.1 - x) = 1.8×10⁻⁵
As Kb is so small, we can avoid the x to solve a quadratic equation.
1.8×10⁻⁵ = x² / 0.1
1.8×10⁻⁵ . 0.1 = x²
1.8×10⁻⁶ = x²
√1.8×10⁻⁶ = x → 1.34×10⁻³
That's the value for [OH⁻] so:
1×10⁻¹⁴ = [OH⁻] . [H⁺]
1×10⁻¹⁴ / 1.34×10⁻³ = [H⁺] → 7.45×10⁻¹²
- log [H⁺] = pH
- log 7.45×10⁻¹² = 11.12 → pH
For an atoms electrons, how many energy sublevels are present in the principal energy level n = 4?
A. 4
B. 9
C. 10
D. 16
E. 32
Answer:
by the own's formula energy sublevels are 2 the power of n or principal quantum number this means 2 the power of 4 equal to 32
name a factor tht affects the value of electron affinity
Answer:
Atomic sizeNuclear chargesymmetry of the electronic configuration5. Calcule las concentraciones cuando se alcanza el equilibrio si partimos de unas concentraciones iniciales [A]=[B]=1M ; [C]=[D]=0M y una constante de equilibrio de 5.
Las concentraciones en el equilibrio para la reacción química presentada son:
[tex][A] = [B] = 1-x = 1-0.69 = 0.31 M\\[C] = [D] = x = 0.69 M[/tex]
Consideremos la siguiente reacción química genérica:
A + B ⇄ C + D
Para calcular las concentraciones en el equilibrio, debemos construir una Tabla ICE. Cada fila representa una instancia (Inicial, Cambio, Equilibrio) y la completamos con la concentración o cambio de concentración ("x" para concentraciones desconocidas). Como inicialmente no hay productos, la reacción se desplazará hacia la derecha para alcanzar el equilibrio.
A + B ⇄ C + D
I 1 1 0 0
C -x -x +x +x
E 1-x 1-x x x
La constante de equilibrio, Kc, es:
[tex]Kc = 5 = \frac{[C][D]}{[A][B]} = \frac{x^{2} }{(1-x)^{2} } \\\sqrt{5} = x/1-x\\x = 0.69[/tex]
Las concentraciones en el equilibrio son:
[tex][A] = [B] = 1-x = 1-0.69 = 0.31 M\\[C] = [D] = x = 0.69 M[/tex]
Puedes aprender más sobre equilibrio químico aquí: https://brainly.com/question/21632386
What is the energy of a photon emitted with a wavelength of 654 nm?
O A. 3.04 x 10^-19 J
O B. 1.01 * 10^-27 J
O C. 1.30 x 10^-22 J
O D. 4.33 * 10^-22 J
Answer:
A. 3.04×10^-19J
Explanation:
Hope this will help you.
6. Who stated that matter is not composed of particles
After careful consideration your answer is...
Leucippus and Democritus
*Hope I helped*
~Alanna~
Answer:
The first theories of matter were put forward by Empedocles in 450 BC, he proposed that all matter was composed of four elements - Earth, air, fire and water. Later, Leucippus and Democritus suggested matter was made up of tiny indestructible particles continuously moving in empty space.
Explanation:
Calculate the temperature in k of 3.05 moles of gas occupying 3.70 L at 4.12 atm
Answer:
[tex]{ \bf{PV = nRT}} \\ { \tt{(4.12 \times 3700) = 3.05 \times 0.083 \times T }} \\ { \tt{15244 = 0.25315 \: T}} \\ { \tt{T = 6.02 \times {10}^{4} \: kelvin }}[/tex]
The temperature of the given gas is 60.95 K when it is occupying 3.70 L at 4.12 atm.
What is the ideal gas equation?The ideal gas law can be described as a general equation of the state of an ideal gas. This equation gives the relationship between the volume and pressure of one-mole of gas equal to the multiplication of the universal gas constant and temperature.
The mathematical relationship can be shown for the ideal gas equation as:
PV = nRT
Where P is the pressure of the gas, n is the moles, V is the volume of the gas, and R is the gas constant.
Given, the volume of gas, V = 3.70 L
The pressure of the given gas, P = 4.12 atm
The value of the gas constant, R =0.082 atmL/K mol
The number of moles of the given gas, n = 3.05 mol
Substitute the values V, R, P, and n in the ideal gas equation, and we get:
T = PV/nR
T = 4.12 × 3.70/(0.082 × 3.05)
T = 60.95 K
Therefore, the temperature of the given gas is 60.95 K.
Learn more about ideal gas equation, here:
brainly.com/question/3637553
#SPJ2
Select the choice that best completes the following sentence: When cooled slowly, transformations near the melting temperature tend to yield ______ grains due to the formation of ______ nucleation sites followed by ______ grain growth.
Question Completion with Options:
O coarse...few...rapid
O fine...few...slow
O fine...multiple...rapid
O coarse...few...slow
O fine...multiple...slow
Answer:
The choice that best completes the sentence is:
O coarse...few...slow
Explanation:
Transformations near the melting temperature develop coarse grains because few nucleation sites are formed and the rate of the grain growth is usually slow. This is because of the process that starts with recrystallization, recovery, and nucleation before growth can occur. While recrystallization enables the grain to increase in size at high temperature, nucleation gives the grain the energy to irreversibly grow into larger-sized nucleus.
Considering a fish breeder decided to breed small fishes which needs a pH between 6,0 to 7,0 to stay alive. He needs to adjust the water's pH that is 5,0 to a value of 6.5, having available only calcium carbonate. The mass in mg added to 5L of water is about:
A)2,5
B)5,5
C)6,5
D)7,5
E)9,5
tea contains approximately 2% caffeine by weight. assuming that you started with 18g of tea leaves, calculate your percent yield of extraced caffeine
what is the difference between 25ml and 25.00ml
Answer:
There is no difference between the two.
Explanation:
They both show the same volume. But, adding decimal places shows the least count of the instrument used and is more acceptable when recording values in scientific experiments
How do I do this? What are the answers to the 5 questions shown?
Answer:
1. C₃H₆O₃
2. C₆H₁₂
3. C₆H₂₄O₆
4. C₆H₆
5. N₂O₄
Explanation:
1. Determination of the molecular formula.
Empirical formula => CH₂O
Mass of compound = 90 g
Molecular formula =?
Molecular formula = n × Empirical formula = mass of compound
[CH₂O]ₙ = 90
[12 + (2×1) + 16]n = 90
[12 + 2 + 16]n = 90
30n = 90
Divide both side by 30
n = 90/30
n = 3
Molecular formula = [CH₂O]ₙ
Molecular formula = [CH₂O]₃
Molecular formula = C₃H₆O₃
2. Determination of the molecular formula.
Empirical formula => CH₂
Mass of compound = 84 g
Molecular formula =?
Molecular formula = n × Empirical formula = mass of compound
[CH₂]ₙ = 84
[12 + (2×1)]n = 84
[12 + 2]n = 84
14n = 84
Divide both side by 14
n = 84/14
n = 6
Molecular formula = [CH₂]ₙ
Molecular formula = [CH₂]₆
Molecular formula = C₆H₁₂
3. Determination of the molecular formula.
Empirical formula => CH₄O
Mass of compound = 192 g
Molecular formula =?
Molecular formula = n × Empirical formula = mass of compound
[CH₄O]ₙ = 192
[12 + (4×1) + 16]n = 192
[12 + 4 + 16]n = 192
32n = 192
Divide both side by 32
n = 192/32
n = 6
Molecular formula = [CH₄O]ₙ
Molecular formula = [CH₄O]₆
Molecular formula = C₆H₂₄O₆
4. Determination of the molecular formula.
Empirical formula => CH
Mass of compound = 78 g
Molecular formula =?
Molecular formula = n × Empirical formula = mass of compound
[CH]ₙ = 78
[12 + 1]n = 78
13n = 78
Divide both side by 13
n = 78/13
n = 6
Molecular formula = [CH]ₙ
Molecular formula = [CH]₆
Molecular formula = C₆H₆
5. Determination of the molecular formula.
Empirical formula => NO₂
Mass of compound = 92 g
Molecular formula =?
Molecular formula = n × Empirical formula = mass of compound
[NO₂]ₙ = 92
[14 + (2×16)]n = 92
[14 + 32]n = 92
46n = 92
Divide both side by 46
n = 92/46
n = 2
Molecular formula = [NO₂]ₙ
Molecular formula = [NO₂]₂
Molecular formula = N₂O₄
PLEASE HELP ME
a)
b)
c)
or d)?
Answer:
D / 15.0 g
Explanation:
3 % volume thus shows that there are 3 g of an solute in every 100mL of solutions
.. there will be 3 × 5000÷ 100 of H2O2 in a 500 mL bottle
the density of oxygen 1.43 gm/liter at 0°c and pressure 1.0 atm. if a 20 liter cylinder is filled with oxygen at pressure of 25 atm and temperature of 27°c. what is the mass of oxygen in the cylinder
Answer:
640 g
Explanation:
Step 1: Given and required data
Volume of the cylinder (V): 20 LPressure of the oxygen (P): 25 atmTemperature (T): 27 °C (300 K)Ideal gas constant (R): 0.082 atm.L/mol.KStep 2: Calculate the moles of oxygen gas
We will use the ideal gas equation
P × V = n × R × T
n = P × V / R × T
n = 25 atm × 20 L / (0.082 atm.L/mol.K) × 300 K = 20 mol
Step 3: Calculate the mass corresponding to 20 moles of oxygen
The molar mass of oxygen is 32.00 g/mol.
20 mol × 32.00 g/mol = 640 g
Calculate the percent error in the atomic weight if the mass of a Cu electrode increased by 0.4391 g and 6.238x10-3 moles of Cu was produced. Select the response with the correct Significant figures. You may assume the molar mass of elemental copper is 63.546 g/mol. Refer to Appendix D as a guide for this calculation.
Answer:
10.77%
Explanation:
Molar mass of Cu = mass deposited/number of moles of Cu
Molar mass of Cu = 0.4391 g/6.238x10^-3 moles
Molar mass of Cu = 70.391 g/mol
%error = 70.391 g/mol - 63.546 g/mol/63.546 g/mol × 100
%error = 10.77%
Aqueous sulfuric acid will react with solid sodium hydroxide to produce aqueous sodium sulfate and liquid water . Suppose 2.9 g of sulfuric acid is mixed with 3.53 g of sodium hydroxide. Calculate the maximum mass of water that could be produced by the chemical reaction. Round your answer to significant digits.
Answer:
1.07 g of water.
Explanation:
A reaction between an acid and a base makes water and a salt as product.
Our reaction is:
H₂SO₄ + 2NaOH → Na₂SO₄ + 2H₂O
Reactants are the acid and the base. Which is the limiting?
2.9 g . 1mol /98 g = 0.0296 moles of acid
3.53 g . 1mol / 40 g = 0.088 moles of base
2 moles of base react to 1 mol of acid
0.088 moles may react to (0.088 . 1)/2 = 0.044 moles of acid
And we only have 0.0296, sulfuric acid is the limiting
Ratio is 1:2. 1 mol of acid can produce 2 moles of water.
Our 0.0296 moles may produce (0.0296 . 2) /1 = 0.0592 moles of water.
We convert moles to mass:
0.0592 mol . 18g /mol = 1.07 g
State the different radiations emitted by radioactive elements.
What is the molarity of a solution that contains 0.75 mol Naci in 3.0 L of solution? Select one: O a. 4.0 M O b. 2.3 M O d. 3.8 M O d. 0.25 M Clear my choice
Answer:
[tex]\boxed {\boxed {\sf D. \ 0.25 \ M}}[/tex]
Explanation:
Molarity is a measure of concentration in moles per liter.
[tex]molarity= \frac{moles \ of \ solute}{ liters \ of \ solution}[/tex]
The solution contains 0.75 moles of sodium chloride and has a volume of 3.0 liters.
moles of solute = 0.75 mol NaCl liters of solution = 3.0 LSubstitute these values into the formula.
[tex]molarity= \frac{ 0.75 \ mol \ NaCl}{3.0 \ L}[/tex]
[tex]molarity= 0.25 \ mol \ NaCl/L[/tex]
Molarity has the molar (M) as its unit. 1 molar is equal to 1 mole per liter.
[tex]molarity= 0.25 \ M \[/tex]
The molarity of the solution is 0.25 Molar and Choice D is correct.
if an element has an atomic number of 9 what is the electronic structure of the same element
9 is the element Florine
Florine has 9 electrons as well as the 9 protons that determine its atomic number.
The ground state configuration is the lowest energy configuration.