You're looking for a solution of the form
[tex]\displaystyle y = \sum_{n=0}^\infty a_n x^n[/tex]
Differentiating twice yields
[tex]\displaystyle y' = \sum_{n=0}^\infty n a_n x^{n-1} = \sum_{n=0}^\infty (n+1) a_{n+1} x^n[/tex]
[tex]\displaystyle y'' = \sum_{n=0}^\infty n(n-1) a_n x^{n-2} = \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^n[/tex]
Substitute these series into the DE:
[tex]\displaystyle (x-1) \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^n - x \sum_{n=0}^\infty (n+1) a_{n+1} x^n + \sum_{n=0}^\infty a_n x^n = 0[/tex]
[tex]\displaystyle \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^{n+1} - \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^n \\\\ \ldots \ldots \ldots - \sum_{n=0}^\infty (n+1) a_{n+1} x^{n+1} + \sum_{n=0}^\infty a_n x^n = 0[/tex]
[tex]\displaystyle \sum_{n=1}^\infty n(n+1) a_{n+1} x^n - \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^n \\\\ \ldots \ldots \ldots - \sum_{n=1}^\infty n a_n x^n + \sum_{n=0}^\infty a_n x^n = 0[/tex]
Two of these series start with a linear term, while the other two start with a constant. Remove the constant terms of the latter two series, then condense the remaining series into one:
[tex]\displaystyle a_0-2a_2 + \sum_{n=1}^\infty \bigg(n(n+1)a_{n+1}-(n+1)(n+2)a_{n+2}-na_n+a_n\bigg) x^n = 0[/tex]
which indicates that the coefficients in the series solution are governed by the recurrence,
[tex]\begin{cases}y(0)=a_0 = -7\\y'(0)=a_1 = 3\\(n+1)(n+2)a_{n+2}-n(n+1)a_{n+1}+(n-1)a_n=0&\text{for }n\ge0\end{cases}[/tex]
Use the recurrence to get the first few coefficients:
[tex]\{a_n\}_{n\ge0} = \left\{-7,3,-\dfrac72,-\dfrac76,-\dfrac7{24},-\dfrac7{120},\ldots\right\}[/tex]
You might recognize that each coefficient in the n-th position of the list (starting at n = 0) involving a factor of -7 has a denominator resembling a factorial. Indeed,
-7 = -7/0!
-7/2 = -7/2!
-7/6 = -7/3!
and so on, with only the coefficient in the n = 1 position being the odd one out. So we have
[tex]\displaystyle y = \sum_{n=0}^\infty a_n x^n \\\\ y = -\frac7{0!} + 3x - \frac7{2!}x^2 - \frac7{3!}x^3 - \frac7{4!}x^4 + \cdots[/tex]
which looks a lot like the power series expansion for -7eˣ.
Fortunately, we can rewrite the linear term as
3x = 10x - 7x = 10x - 7/1! x
and in doing so, we can condense this solution to
[tex]\displaystyle y = 10x -\frac7{0!} - \frac7{1!}x - \frac7{2!}x^2 - \frac7{3!}x^3 - \frac7{4!}x^4 + \cdots \\\\ \boxed{y = 10x - 7e^x}[/tex]
Just to confirm this solution is valid: we have
y = 10x - 7eˣ ==> y (0) = 0 - 7 = -7
y' = 10 - 7eˣ ==> y' (0) = 10 - 7 = 3
y'' = -7eˣ
and substituting into the DE gives
-7eˣ (x - 1) - x (10 - 7eˣ ) + (10x - 7eˣ ) = 0
as required.
A half-century ago, the mean height of women in a particular country in their 20s was inches. Assume that the heights of today's women in their 20s are approximately normally distributed with a standard deviation of inches. If the mean height today is the same as that of a half-century ago, what percentage of all samples of of today's women in their 20s have mean heights of at least inches?
Answer:
0.26684
Step-by-step explanation:
Given that :
Mean, μ = 62.5
Standard deviation, σ = 1.96
P(Z ≥ 63.72)
The Zscore = (x - μ) / σ
P(Z ≥ (x - μ) / σ)
P(Z ≥ (63.72 - 62.5) / 1. 96) = P(Z ≥ 0.6224)
P(Z ≥ 0.6224) = 1 - P(Z < 0.6224)
1 - P(Z < 0.6224) = 1 - 0.73316 = 0.26684
What is the area of the shaded part of the figure?
Answer:
14cm²
Step-by-step explanation:
3x2=6,
3x2=6,
2x1=2,
6+6+2=14 cm^2
Which equation does the graph represent?
A. x^2 + y^2 = 4
B. x^2/3^2 + y^2/4^2 = 1
C. (X - 1)^2 / 3^2 + y^2/4^2 = 1
D.X^2 / 4^2 + (y + 1)^2 / 3^2 = 1
9514 1404 393
Answer:
B. x^2/3^2 + y^2/4^2 = 1
Step-by-step explanation:
The graph looks like a circle, but is not. It is a unit circle scaled by a factor of 3 in the x-direction and a factor of 4 in the y-direction. Thus, its equation is ...
(x/3)^2 +(y/4)^2 = 1
x^2/3^2 +y^2/4^2 = 1
Please help due tomorrow
Answer: x= 2.5, y = 10
Step-by-step explanation:
I'm going to assume that these photocopies are proportional in relations to each other.
If they're proportional, you can set up two proportions:
[tex]1) \frac{x}{5} =\frac{3}{6} \\\\2) \frac{5}{y} =\frac{3}{6}[/tex]
And cross-multiply:
[tex]1) 6x = 5*3 \\\\2) 3y = 5*6[/tex]
Then solved for x and y:
[tex]1) 6x = 15\\x=\frac{15}{6} =\frac{5}{2} =2.5 \\\\2) 3y = 30\\y=\frac{30}{3} =10[/tex]
Look at the numbers below. −9.8 −5.4 1.0 14.8 Which shows the best way to add these numbers using the Commutative and Associative Properties? A. (–9.8 + 1.0) + (–5.4 + 14.8) B. (–9.8 + 14.8) + (–5.4 + 1.0) C. (1.0 + 14.8) + (–9.8 + (–5.4)) D. (1.0 + (–9.8)) + (14.8 + (–5.4)
Answer:
B
Step-by-step explanation:
i did the test and it was correct, ur welcome
Which inequality is shown in the graph?
I need help plz
Answer:
I am pretty sure it is B.
Step-by-step explanation:
This is a line with a positive slope, therefore we can discard c and d.
the sign < will mean that the shaded in area will be on your right side.
Write an equivalent expression to 1/2 (2n+6).
Answer:
n+3
Step-by-step explanation:
1/2 × 2(n+3)=n +3
I hope this helps
Find x and explain how you found x
Answer:
x=60
Step-by-step explanation:
There are different ways to find x but this is what I found easiest.
To solve first note that AOD and CFB are vertical angles; this means that they are congruent. AOD consists of two angles with the measurements of 90 and x. CFB consists of two angles with the measurements of 30 and 2x. So, to find x set add the adjacent angles and set them equal to the other pair of angles. The equation would be [tex]90+x=30+2x[/tex]. First, subtract x from both sides; this makes the equation [tex]90=30+x[/tex]. Then, subtract 30 from both sides. This gives the final answer, x=60.
Which of the following scatterplots do not show a clear relationship and would not have a trend line?
Answer:
the second one
Step-by-step explanation:
it is not going in any general direction
Answer:
B
Step-by-step explanation:
what is x divided by one
Answer:
[tex] x \div 1[/tex]
[tex] = x[/tex]
Answer:
[tex]x\div 1=x[/tex]
Step-by-step explanation:
When x is divided by one it is called reciprocal.
reciprocal is the inverse of a number or a value.
examples: The reciprocal of 3 is 1/3, and the reciprocal of 5 is 1/3.
OAmalOHopeO
Evaluate −a2+c2 when c=−4.
Answer:
[tex]a = 4, -4[/tex]
Step-by-step explanation:
Step 1: Plug in -4 for c
[tex]-a^{2} + c^{2}[/tex]
[tex]-a^{2} + (-4)^{2}[/tex]
[tex]-a^{2} + 16[/tex]
Step 2: Solve for a
[tex]-a^{2}+16-16=0-16[/tex]
[tex]-a^{2}/-1 = -16/-1[/tex]
[tex]a^{2} = 16[/tex]
[tex]\sqrt{a^{2}} = \sqrt{16}[/tex]
[tex]a = 4, -4[/tex]
Answer: [tex]a = 4, -4[/tex]
Use differentials to approximate the change in cost corresponding to an increase in sales (or production) of one unit. Then compare this with the actual change in cost.
Function x-Value
C=0.025x^2 + 3x + 4 x=10
dC= ___________
ΔC= __________
Answer:
dC=3.5
DC is between 3.475 and 3.525
Step-by-step explanation:
So let dx=1 since the change there is a change in 1 unit.
Find dC/dx by differentiating the expression named C.
dC/dx=0.05x+3
So dC=(0.05x+3) dx
Plug in x=10 and dx=1:
dC=(0.05×10+3)(1)
dC=(0.5+3)
dC=3.5
Let D be the change in cost-the triangle thing.
Since dx=1 we only want the change in unit to be within 1 in difference.
So this means we want it to be from x=9 to x=1] ot from x=10 to x=11.
Let's do from x=9 to x=10 first:
DC=C(10)-C(9)
DC=[0.025×10^2+3×10+4]-[0.025×9^2+3×9+4]
DC=[2.5+30+4]-[0.025×81+27+4]
DC=[36.5]-[2.025+31]
DC=[36.5]-[33.025]
DC=3.475
Now let's do from x=10 to x=11
DC=[0.025×11^2+3×11+4]-[0.025×10^2+3×10+4]
DC=[0.025×121+33+4]-[36.5]
DC=[3.025+37]-[36.5]
DC=[40.025]-[36.5]
DC=3.525
So DC, the change in cost where the change in unit is 1, is between 3.475 and 3.525.
Think of a two-digit number. What is the probability that it has different digits?
Answer:
9/10
Step-by-step explanation:
The first two digit number is 10 and the last is 99. That's a total of 99-10+1 numbers in all. That simplifies to 90. (Just like if we wanted to see how many numbers was 3,4,5, we would do 5-3+1=3 to get the total number.
Anyways, let's consider first how many 2 digjt numbers whose digits are equal. You have 11 22,33,44 55,66,77,88,99 which is 9 numbers total.
So the amount of 2 digits number whose digits differ is 90-9=81.
The probability that a 2 digit number have different digits is 81/90.
This can reduce. Divide top and bottom by 9 giving 9/10.
Find the value of x on this triangle
Answer:
33
a2+b2 =c2
a2+ 33 squared = 55 squared
a + 1936 = 3025
3025-1936=1089
square root of 1089 is 33
pleeeaaasssseeee mark as brainliest
To make concrete, the ratio of cement to sand is 1 : 3. If cement and sand are sold in bags of equal mass, how many bags of cement are required to make concrete using 15 bags of sand?
Answer:
5 bags of cement are required.
Step-by-step explanation:
Since to make concrete, the ratio of cement to sand is 1: 3, if cement and sand are sold in bags of equal mass, to determine how many bags of cement are required to make concrete using 15 bags of sand the following calculation must be done:
Cement = 1
Sand = 3
3 = 15
1 = X
15/3 = X
5 = X
Therefore, 5 bags of cement are required.
if (a + b) = 73 and a b =65 find value of a²+ b²
Step-by-step explanation:
Here,
by formula a^2+b^2=(a+b)^2-2ab
so,
or,(a+b)^2-2ab
or,(73)^2-2×65
or,5329-126
=5203 is the answer
Which expression is equivalent to 7x , if b > 0?
Work Shown:
[tex]7x^2*\sqrt{2x^4}*6\sqrt{2x^{12}}\\\\7*6x^2*\sqrt{2x^4*2x^{12}}\\\\42x^2*\sqrt{4x^{4+12}}\\\\42x^2*\sqrt{4x^{16}}\\\\42x^2*\sqrt{(2x^8)^2}\\\\42x^2*(2x^8)\\\\42*2x^{2+8}\\\\84x^{10}\\\\[/tex]
So that's why the answer is choice C
The requirement that x is nonzero isn't technically necessary. The original expression simplifies to choice C even when x = 0 is the case. Also, we don't have issues such as division by zero errors that could arise. It's a bit curious why your teacher put in that condition.
Answer:
C.
Step-by-step explanation:
7x²×sqrt(2x⁴)×6×sqrt(2x¹²)
we see right away that as constant multiplication factor we have 7×6 = 42.
and then we get from each sqrt expression a sqrt(2), which leads to sqrt²(2) = 2 and therefore 42×2=84.
the only answer option with 84 is C.
now, to be completely sure, and to get some practice, let's look at the other parts :
sqrt(2x⁴) = sqrt(2)×sqrt(x⁴) = sqrt(2)×x²
sqrt(2x¹²) = sqrt(2)×sqrt(x¹²) = sqrt(2)×x⁶
=>
7x²×sqrt(2)×x²×6×sqrt(2)×x⁶ =7×6×2×x²×x²×x⁶ = 84x¹⁰
perfect. C is confirmed.
How
many solutions are there to the equation below?
4(x - 5) = 3x + 7
A. One solution
B. No solution
O C. Infinitely many solutions
SUB
Answer:
A one solution
Step-by-step explanation:
4(x - 5) = 3x + 7
Distribute
4x - 20 = 3x+7
Subtract 3x from each side
4x-3x-20 = 3x+7-3x
x -20 = 7
Add 20 to each side
x -20+20 = 7+20
x = 27
There is one solution
Answer:
Step-by-step explanation:
Let's simplify that before we make the decision, shall we? We'll get rid of the parenthesis by distribution and then combine like terms.
4x - 20 = 3x + 7 and combining like terms and getting everything on one side of the equals sign:
1x - 27 = 0. Since that x has a power of 1 on it (linear), that means we have only 1 solution. If that was an x², we would have 2 solutions; if that was an x³, we would have 3 solutions, etc.
The figures to the right are similar. Compare the first figure to the second. Give the ratio of the perimeters and the ratio of the areas
(integer or a simplified fraction)
Thank you!
9514 1404 393
Answer:
perimeter: 3 : 4area: 9 : 16Step-by-step explanation:
The perimeter ratio smaller : larger is the same as the side length ratio.
18 : 24 = 3 : 4 . . . smaller : larger perimeter ratio
The area ratio is the square of this.
3^2 : 4^2 = 9 : 16 . . . smaller : larger area ratio
prove ||a+b|| ≤ ||a||+|b||
Step-by-step explanation:
|a+b|=✓(a²+b²)
|a|+|b|=a+b
||a+b|| ≤ ||a||+|b||
Simplify the trigonometric expression cos(2x)+1 using Double-Angle identities
9514 1404 393
Answer:
C. 2cos²(x)
Step-by-step explanation:
The relevant identities are ...
cos(2x) = cos²(x) -sin²(x)
cos²(x) = 1 -sin²(x)
__
Then the expression can be simplified to ...
cos(2x) +1 = (cos²(x) -sin²(x)) +1 = cos²(x) +(1 -sin²(x)) = cos²(x) +cos²(x)
= 2cos²(x)
Pls help me? I’m struggling
Answer: Number 1 is 150
Step-by-step explanation: If you put 72 / 48% in your calculator, you will get your answer.
Rationalize the denominator and simplify
Answer:
x² - √3x / x² - 3
Step-by-step explanation:
To Do :-
To rationalize the denominator .Solution :-
We need to rationalize ,
x/ x + √3Multiply numerator and denominator by x-√3 :-
x( x - √3 ) / ( x +√3)( x -√3) x² - √3x / (x)² - (√3)² x² - √3x / x² - 3The length of the base of a triangle is twice it’s height. If the area of the triangle is 441 square kilometers, find the height
Answer:
21 kilometers
Step-by-step explanation:
Let the height be [tex]x[/tex]. Then, the length of the base is [tex]2x[/tex]. The formula for the area is of the triangle is given by base*height/2. Therefore, the area of the triangle is equal to [tex]\frac{x \cdot 2x}{2} = x^2[/tex], which is in turn equal to 441. Since [tex]x[/tex] must be positive, then [tex]21^2=441[/tex], meaning that the height is [tex]21[/tex] kilometers.
12,963 rounded to the nearest hundredth
9514 1404 393
Answer:
12,963.00 (in the US)12,96 (some other places)Step-by-step explanation:
In the US, a decimal point is represented by a period. This value is interpreted as an integer with no fractional part, so the fractional part is zero:
12,963.00
__
Some other places, a comma is used to identify the beginning of the decimal fraction. In that form, this number has a fractional part that has 3 as its thousandths digit. The value of 3 is less than 5, so the number is simply truncated at the hundredths place.
12,96
If the thousandths digit were 5 or greater, then 1 hundredth would be added to the truncated number.
My flvs teacher said that she was asked to hold off on grading my assignment. She will give me a call back when when gets more information. Anyone have the same problem?
Answer:
yeah, teachers kinda suck
What is the y-intercept of the line y+11= -2(x+5)?
Answer:
y-intercept is (0, -21)
Step-by-step explanation:
For y-intercept, x = 0:
[tex]{ \sf{y + 11 = - 2(0 + 5)}} \\ { \sf{y + 11 = - 10}} \\ { \sf{y = - 21}}[/tex]
What type of object is pictured below?
O A. Point
O B. Ray
C. Segment
D. Line
Answer:
It is a ray because there are two points with a line passing through them which is extenging on one side but not on the other.
A quality control inspector has drawn a sample of 18 light bulbs from a recent production lot. If the number of defective bulbs is 1 or more, the lot fails inspection. Suppose 30% of the bulbs in the lot are defective.
Required:
What is the probability that the lot will pass inspection?
Answer:
0.0016 = 0.16% probability that the lot will pass inspection.
Step-by-step explanation:
For each bulb, there are only two possible outcomes. Either it is defective, or it is not. The probability of a bulb being defective is independent of any other bulb, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
Sample of 18 light bulbs
This means that [tex]n = 18[/tex]
30% of the bulbs in the lot are defective.
This means that [tex]p = 0.3[/tex]
What is the probability that the lot will pass inspection?
It will pass inspection if there are no defective bulbs, that is, we have to find P(X = 0). So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{18,0}.(0.3)^{0}.(0.7)^{18} = 0.0016[/tex]
0.0016 = 0.16% probability that the lot will pass inspection.
Use the definition of a Taylor series to find the first four nonzero terms of the series for f(x) centered at the given value of a. (Enter your answers as a comma-separated list.)
f(x) = 7/1+x a=2
If f(x) = 7/(1 + x), then
f (2) = 7/3
f '(x) = -7/(x + 1)² ==> f ' (2) = -7/9
f ''(x) = 14/(x + 1)³ ==> f '' (2) = 14/27
f '''(x) = -42/(x + 1)⁴ ==> f ''' (2) = -14/27
Then the Taylor series of f(x) about a = 2 is
7/3 + 1/1! (-7/9) (x - 2) + 1/2! (14/27) (x - 2)² + 1/3! (-14/27) (x - 2)³
= 7/3 - 7/9 (x - 2) + 7/27 (x - 2)² - 7/81 (x - 2)³