Use the model to show to help find the sum 0.34 plus 0.49

Use The Model To Show To Help Find The Sum 0.34 Plus 0.49

Answers

Answer 1

Answer/Step-by-step explanation:

The idea to use in solving this problem using the model, is to express the number of shaded boxes in fraction form.

Thus, the blue red shaded boxes has 34 boxes shaded out of 100 boxes. This represents [tex] \frac{34}{100} [/tex]. This will give us 0.34.

The other shaded boxes represents [tex] \frac{49}{100} = 0.49 [/tex].

Using the model, we can solve 0.34 + 0.49.

Add both fractions together.

[tex] \frac{34}{100} + \frac{49}{100} = \frac{34+49}{100} [/tex]

[tex] \frac{83}{100} = 0.83 [/tex]


Related Questions

True or False. The statistician should use Printout C to perform a t-test on the GROUP variable in the regression model. g

Answers

Answer:

False

Step-by-step explanation:

Regression model is a set of statistical process which estimates the relationship between two variables. The one variable is dependent variable and the other is independent variable. The statistician should not use printout C to perform a t-test in regression model.

A system of equations consists of the two equations shown.
{4x+5y=18
6x−5y=20
Which procedure will produce a single equation in one variable? Select all the procedures that apply.
A. Subtract the first equation from the second equation.
B. Subtract the second equation from the first equation.
C. Multiply the first equation by 18; multiply the second equation by 18; add the equations.
D. Multiply the first equation by − 6; multiply the second equation by 4; add the two equations.
E. Multiply the first equation by 3; multiply the second equation by − 2; add the two equations.
F. Multiply the first equation by 3; multiply the second equation by 2; subtract the equations in any order.

Answers

Answer:

C, D, E and F

Step-by-step explanation:

Given

4x+5y=18

6x−5y=20

Required

Determine which procedure will result in a single equation in one variable

To do this; we'll test each of the options

A. Subtract the first equation from the second equation.

[tex](6x - 5y=20) - (4x+5y=18)[/tex]

[tex]6x - 4x - 5y - 5y = 20 - 18[/tex]

[tex]2x - 10y = 2[/tex] --- This didn't produce the desired result

B.  Subtract the second equation from the first equation.

[tex](4x+5y=18) - (6x - 5y=20)[/tex]

[tex]4x - 6x + 5y + 5y =18 - 20[/tex]

[tex]-2x + 10y = -2[/tex] --- This didn't produce the desired result

C. Multiply the first equation by 18; multiply the second equation by 18; add the equations.

First Equation

[tex]18 * (4x+5y=18)[/tex]

[tex]72x + 90y = 324[/tex]

Second Equation

[tex]18 * (6x - 5y=20)[/tex]

[tex]108x - 90y = 360[/tex]

Add Resulting Equations

[tex](72x + 90y = 324) + (108x - 90y = 360)[/tex]

[tex]72x + 108x + 90y - 90y = 324 + 360[/tex]

[tex]72x + 108x = 324 + 360[/tex]

[tex]180x = 684[/tex] --- This procedure is valid

D. Multiply the first equation by − 6; multiply the second equation by 4; add the two equations.

First Equation

[tex]-6 * (4x+5y=18)[/tex]

[tex]-24x - 30y = -108[/tex]

Second Equation

[tex]4 * (6x - 5y=20)[/tex]

[tex]24x - 20y = 80[/tex]

Add Resulting Equations

[tex](-24x - 30y = -108) + (24x - 20y = 80)[/tex]

[tex]-24x + 24x - 30y -20y = -108+ 80[/tex]

[tex]-50y = -28[/tex]

[tex]50y = 28[/tex]  --- This procedure is valid

E. Multiply the first equation by 3; multiply the second equation by − 2; add the two equations.

First Equation

[tex]3 * (4x+5y=18)[/tex]

[tex]12x + 15y = 54[/tex]

Second Equation

[tex]-2 * (6x - 5y=20)[/tex]

[tex]-12x + 10y = -40[/tex]

Add Resulting Equations

[tex](12x + 15y = 54) + (-12x + 10y = -40)[/tex]

[tex]12x - 12x + 15y - 10y =54 - 40[/tex]

[tex]5y = 14[/tex]  --- This procedure is valid

F. Multiply the first equation by 3; multiply the second equation by 2; subtract the equations in any order

First Equation

[tex]3 * (4x+5y=18)[/tex]

[tex]12x + 15y = 54[/tex]

Second Equation

[tex]2 * (6x - 5y=20)[/tex]

[tex]12x - 10y = 40[/tex]

Subtract equation 1 from 2 or 2 from 1 will eliminate x;

Hence, the procedure is also valid;

If A and B are independent events with P( A) = 0.60 and P( B) = 0.70, then P( A or B) equals: a. 1.00 b. 0.42 c. 0.88 d. 1.30

Answers

Answer:

The correct option is D

P(A or B) = 1.30

Step-by-step explanation:

Given two independent (or mutually exclusive) events with P(A) = 0.60, and P(B) = 0.70

P(A or B) = P(A) + P(B)

= 0.60 + 0.70

= 1.30

This is however absurd, as the probability of an event can only be less than or equal to 1, and not less than 0.

Based on the information given, the value of then P(A or B) will be D. 1.30.

From the information given, A and B are independent events with P( A) = 0.60 and P( B) = 0.70.

Then, the value of P(A or B) will be calculated thus:

= 0.60 + 0.70

= 1.30

In conclusion, the correct option is D.

Learn more about probability on:

https://brainly.com/question/24756209

Pentagon ABCDE and pentagon A”B”C”D”E” are shown on the coordinate plane below. Which two transformations are applied to pentagon ABCDE to create A”B”C”D”E”?

Answers

Answer:

Translated according to the rule (x, y)⇒ (x+7, y+1)  , reflected across the  x-axis

Step-by-step explanation:

Transformation involves changing the orientation, or even size of a given figure or object to produce its image. The methods of transformation include; translation, rotation, reflection, and dilation.

Comparing the pentagon ABCDE and A”B”C”D”E”, the two transformations applied are reflection across the x-axis first, then translation.

Please help. I’ll mark you as brainliest if correct

Answers

Answer:

(a)

dependent

(b)

x = -3t - 12

y = -5t - 16

z = t

Step-by-step explanation:

2x - 3y - 9z = 24       Eq. 1

x + 3z = -12                Eq. 2

-3x + y - 4z = 20        Eq. 3

      2x - 3y - 9z = 24

(+)  -9x + 3y - 12x = 60     3 * Eq. 3

--------------------------------

     -7x           -21z = 84     Eq. 4

       7x + 21z = -84          7 * Eq. 2

(+)    -7x - 21z = 84            Eq. 4

-----------------------------

                  0  = 0

(a) The system is dependent.

(b)

z = t

x + 3z = -12                Eq. 2

x + 3t = -12

x = -3t - 12

2x - 3y - 9z = 24       Eq. 1

2(-3t - 12) - 3y - 9t = 24

-6t - 24 - 3y - 9t = 24

-3y - 15t = 48

-y - 5t = 16

-y = 5t + 16

y = -5t - 16

x = -3t - 12

y = -5t - 16

z = t

Help Me With This
show work​

Answers

Answer:

1. Make a list of activities and the number of students:

Watching TV: 32

Talking on the phone: 41

Video games: 24

Reading: 15

2. Then combine the data in a bar graph as shown in the picture


Find the value of the variable x in the equation x - 21 = 8.
A) -13
B) 29
C) -29
D) 13​

Answers

Answer: x=29

Step-by-step explanation:

[tex]x-21=8[/tex]

add 21 to both sides

[tex]x-21+21=8+21[/tex]

[tex]21+8=29\\[/tex]

[tex]x=29[/tex]

The correct answer is letter B.
29 - 21= 8

Hope this helps ya.

What is the solution to X+9 = 24?
A. x = 33
B. x= 15
C. x= 18
D. x= 9​

Answers

Answer:

X+9=24

Or,x=24-9

:.x=15

Step-by-step explanation:

Answer:

B. x=15

Step-by-step explanation:

To find the solution to the equation, we must get x by itself on one side of the equation.

[tex]x+9=24[/tex]

9 is being added to x. The inverse of addition is subtraction. Subtract 9 from both sides of the equation.

[tex]x+9-9=24-9[/tex]

[tex]x=24-9[/tex]

[tex]x=15[/tex]

Let's check our solution. Plug 15 in for x.

[tex]x+9=24 (x=15)[/tex]

[tex]15+9=24[/tex]

[tex]24=24[/tex]

This checks out, so we know our solution is correct. The answer is B. x=15

-58.58 is equal to the rational number

Answers

Answer:

This is true

Step-by-step explanation:

Because a rational number can be expressed as going on forever.

Eliminate the parameter for the following set of parametric equations: x= t^2 + 2 y= 4t^2

Answers

Answer:

Solution : y = 4x - 8

Step-by-step explanation:

The first thing we want to do is isolate t², rather than t. Why? As you can see when we substitute t² into the second equation, it will be easier than substituting t, as t is present in the form t². So, let's isolate t² in the first equation --- ( 1 )

x = t² + 2,

t² = x - 2

Now let's substitute this value of t² in the second equation --- ( 2 )

y = 4t²,

y = 4(x - 2),

y = 4x - 8 ~ And hence our solution is option c.

for each of the following express the first quantity as a percentage of the second quantity 1 year ' 4 month​

Answers

Answer:

300%

Step-by-step explanation:

1 year = 12 months

percent = part/whole * 100%

percent = 12/4 * 100% = 300%

Answer:

please can u follow me I've started following you

if 2x-y=2, what is the value of 9^x/3^y?

1) 3
2) 9
3) 27
4) 81

Answers

Answer: 9

Work Shown:

(9^x)/(3^y)

( (3^2)^x )/(3^y)

( 3^(2x) )/( 3^y )

3^(2x-y)

3^2 .... use the equation 2x-y = 2

9

I think the answer to this question is 9

write the equation of a horizontal ellipse with a major axis of 30, a minor axis of 14, and a center at (-9,-7).​

Answers

Answer:  [tex]\dfrac{(x+9)^2}{225}-\dfrac{(y+7)^2}{49}=1[/tex]

Step-by-step explanation:

The equation for a horizontal ellipse is: [tex]\dfrac{(x-h)^2}{a^2}-\dfrac{(y-k)^2}{b^2}=1[/tex]  where

(h, k) is the centera is x-radiusb is the y-radius

Given: major axis (diameter on x) is 30 --> x-radius (a) = 15  -->  a² = 225

           minor axis (diameter on y) is 14 --> y-radius (b) = 7   --> b² = 49

           center (h, k) is (-9, -7)

Input those values into the equation for a horizontal ellipse and simplify:

  [tex]\dfrac{(x-(-9))^2}{15^2}-\dfrac{(y-(-7))^2}{7^2}=1\\\\\\\large\boxed{\dfrac{(x+9)^2}{225}-\dfrac{(y+7)^2}{49}=1}[/tex]  

If sin2 x + cos2 y = 2 sec2 z, then general solution of triplets (x, y, z) is

Answers

Answer:

x=(n+12)π, y=mπ∴x=n+12π, y=mπ and z = rπ where n∈I, m∈I, r∈I

Step-by-step explanation:

∴ LHS ≤ 2 and RHS ≥ 2

So, sin2 x = 1, cos2 y = 1 and sec2 z = 1

∴x=(n+12)π, y=mπ∴x=n+12π, y=mπ and z = rπ where n∈I, m∈I, r∈I

Write an equation perpendicular to the line y=3/2x-2 that goes through (-4,3)

Answers

Answer: y=-2/3x-2/3

Step-by-step explanation:

concept to know: two lines that are perpendicular has opposite reciprocal slopes.

y=-2/3x+b

in order to find b or the y-intercept, we need to plug in a point

3=-2/3(-4)+b

3=8/3+b

b=-2/3

y=-2/3x-2/3

Hope this helps!! :)

Gerald graphs the function f(x) = (x – 3)2 – 1. Which statements are true about the graph? Select three options.

Answers

Answer:

The answer is "Choice B, C, and F is correct".

Step-by-step explanation:

The following are choices, which is missing in the question, that can be defined as follows:

A) {x| x ≥ 3} is the domain.  

B) The set shall be {y| y ≥ –1}.  

C) over the interval  (–∞, 3), is the function, that decreases.  

D) it's over the duration the function increases its value, that is (–1, ∞).  

E) The symmetry axis will be x = – 1.  

F) vertex is (3, – 1).

In choice A, It is incorrect even though f is the domain, which is all true numbers because it has a quadrant function.  In choice B, it is correct.  In choice C, It is valid because it was a parable open with vertex so if we exploded view f (3, -1). Because as value opens up, its value with x from-∞ to 3 drops while it goes up from increasing from 3 to ∞.    In choice D, It is wrong since we have just said f decreases from-∞ to 3. Therefore, f decreases from -1 to 3, too. Therefore, f doesn't grow from -1 to ∞.  In choice E, It is incorrect because the symmetry axis is x = 3.  In choice F, it is true.

Answer:

the answers are b, c, e

Step-by-step explanation:

i just took the test

Find a8 of the sequence 10,9.75,9.5,9.25,….

Answers

Answer:

10,9.75,9.5,9.25,9, 8.75 , 8.5, 8.25, 8...

Step-by-step explanation:

Subtract 0.25 from each to find the next number

Answer:

8.25

Step-by-step explanation:

If you substract .25 from each number until you get to a8 you will get 8.25


Two hot air balloons are flying above a park. One balloon started at a height of 3,000 feet above the ground and is decreasing in height at a rate
of 40 feet per minute. The second balloon is rising at a rate of 50 feet per minute after beginning from a height of 1.200 feet above the ground.
Given that his the height of the balloons after m minutes, determine which system of equations represents this situation.

Answers

Answer:

a

Step-by-step explanation:

its a

The answer is m = 3000 - 40h

m = 1200 + 50h.

The answer is option A.

What is a problem in problem-solving?

Problem-solving is the act of defining a problem; figuring out the reason for the hassle; identifying, prioritizing, and selecting options for an answer; and enforcing an answer.

What is an example of problem-solving?

Problem-solving begins with identifying the issue. For example, a teacher would possibly need to parent out a way to enhance scholar performance on writing scalability take a look at it. To do this, the trainer will assess the writing tests seeking out regions for improvement.

Learn more about Problem-solving here: https://brainly.com/question/13818690

#SPJ2

Find m A. 10 B. 5 C.√53 D. 10√3/3

Answers

Answer:

[tex]m = 10[/tex]

Step-by-step explanation:

Looking at the angles, we can see that this is a 30-60-90 triangle.

The side that is with the 30° angle and the 90° angle is represented by [tex]x\sqrt{3}[/tex].

So let's find x.

[tex]x\sqrt{3} = 5\sqrt{3}[/tex]

Divide both sides by [tex]\sqrt{3}[/tex]:

[tex]x = 5[/tex].

Now the hypotenuse is always [tex]2x[/tex] (the leg with the 90° and 60° is just x.) So,

[tex]2x = 2\cdot5 = 10[/tex].

Hope this helped!

If you are offered one slice from a round pizza (in other words, a sector of a circle) and the slice must have a perimeter of 28 inches, what diameter pizza will reward you with the largest slice

Answers

Answer:

The diameter that will reward with the largest pizza is 14 in

Step-by-step explanation:

The perimeter of a sector of a circle is:

P = 2r + l

l = rθ

P = 2r + rθ

P=28 inches

28=2r + rθ

28-2r=rθ

θ=(28-2r/r)

=(2*14 - 2*r)/r

=2(14-r)/r

Area of the sector of the circle is:

A = r²/2 * θ

A = r²/2 * 2(14 - r)/r

A = r² * (14 - r)/r

A = r(14 - r)

A = 14r - r²

For the maximum area:

A = 14r - r²

A' = 14 - 2r

Set A' = 0

14 - 2r = 0

14= 2r

r = 7 in

The diameter (D) of the circle is twice of the radius:

D = 2r = 2 * 7= 14 in

The maximum area is:

A = 14r - r²

r = 7 in

A = 14 * 7 - 7²

A = 98 - 49

A = 49 in²

It has been found that 26% of men 20 years and older suffer from hypertension (high blood pressure) and 31.5% of women are hypertensive. A random sample 150 of each gender was selected from recent hospital records, and the following results were obtained. Construct 95% confidence interval for the difference of the two proportion. Round your answer to nearest ten-thousandth. Interpret the result.

Answers

Complete Question

It has been found that 26% of men 20 years and older suffer from hypertension (high blood pressure) and 31.5% of women are hypertensive. A random sample 150 of each gender was selected from recent hospital records, and the following results were obtained.

Men. 43 patients had high blood pressure

Woman. 52 patients had high blood pressure.

Answer:

The  95% confidence interval is  

      [tex]- 0.1651 < p_m - p_f <0.0451[/tex]

This mean that there is a 95 % confidence that the difference between the true proportions of male and  female that are hypertensive  is within this interval and given that the interval contains zero then there is no statistically significant difference between the genders that are hypertensive        

Step-by-step explanation:

From the question we are told that

    The  sample size for male is  [tex]n_1 = 150[/tex]

    The  number of male that are hypertensive is  [tex]m = 42[/tex]

    The  sample size of female is  [tex]n_2 = 150[/tex]

     The  number of female that are hypertensive is [tex]q = 52[/tex]

The proportion of male that are hypertensive is mathematically represented as

         [tex]\r p_m = \frac{43}{150}[/tex]

         [tex]\r p_m = 0.287[/tex]          

The proportion of female that are hypertensive is mathematically represented as

       [tex]p_f = \frac{52}{150}[/tex]

      [tex]p_f = 0.347[/tex]

From the question we are told that confidence level is 95%, hence the level of significance is mathematically represented as

       [tex]\alpha = 100 -95[/tex]

      [tex]\alpha =5\%[/tex]

     [tex]\alpha =0.05[/tex]

Next we obtain the critical value of  [tex]\frac{ \alpha }{2}[/tex] from  the normal distribution table, the value is  

           [tex]Z_{\frac{ \alpha }{2} } = 1.96[/tex]

Generally the margin of error is mathematically represented as

          [tex]E = Z_{\frac{\alpha }{2} } * \sqrt{\frac{ \r p_m (1- \r p_m )}{n_1} + \frac{ \r p_f (1- \r p_f )}{n_2} }[/tex]

substituting value

         [tex]E = 1.96 * \sqrt{\frac{ 0.287 (1- 0.287 )}{150} + \frac{ 0.347 (1- 0.347 )}{150} }[/tex]

         [tex]E = 0.1051[/tex]

The  95% confidence interval is mathematically represented as  

           [tex](\r p_m - \r p_f ) - E < p_m - p_f < (\r p_m - \r p_f ) + E[/tex]

substituting values

          [tex]( 0.287 - 0.347 ) - 0.1051 < p_m - p_f <( 0.287 - 0.347 ) + 0.1051[/tex]    

           [tex]- 0.1651 < p_m - p_f <0.0451[/tex]

This mean that there is a 95 % confidence that the difference between the true proportion is within this interval and given that the interval contains zero then there is no statistically significant difference between the genders that are hypertensive.

An 8×8×8 cm cube was painted red, and then broken up into small cubes with side lengths of 1 cm. How many small cubes have none of their faces painted red?

Answers

Answer:

216

Step-by-step explanation:

If you just paint the surface of the cube, then the inside of the cube would not have any of their faces painted red.

Just looking at the cube from a side view, you would realize that there would be a smaller cube, 6 x 6 x 6 (not 7 since you have to account for both the top side and the bottom side), and so that is the answer, 6 ^ 3, which is 216.

Answer:

216

Step-by-step explanation:

8 * 8 * 8 = 512

8 * 8 = 64

Each face is 64 cubes, overlapping at the edges, with 6 faces total.

16 + 12 = 28 for each overlapping cube on each side

64 * 6 = 384

384 - 2(28) = 328

Top & Bottom dealt with, overlap from them is 56 units total, 14 units on top and bottom of each face..

64 - 14 = 50

50 * 2 = 100

Front & Back dealt with.

328 - 100 = 228

64 - 28 = 36

36 * 2 = 72

228 - 72 = 156

...

OR

6^3 = 216

What is the error in this problem?

Answers

Answer:

wrong position of tan 64

WILLL GIVE ALL MY POINT PLUS MARK BRAILIEST PLS HELP ASAP TY <3

Answers

Answer:

The unknown integer that solves the equation is 6.

Step-by-step explanation:

In order to find the missing number, we can set up an equation as if we are solving for x.

x + (-8) = -2

Add 8 on both sides of the equation.

x = 6

So, the unknown integer is 6.

Answer:

6

Step-by-step explanation:

6 plus -8 is -2

Jamar rolls a 6-sided number cube with the numbers 1 through 6 on it. What is the
probability that he does not roll a prime number?​

Answers

Answer:

[tex]\frac{1}{2}[/tex]

Step-by-step explanation:

In a 6 sided die, the numbers that are possible to be rolled are

1, 2, 3, 4, 5, and 6.

We know that the numbers 2, 3, and 5 are prime, while 1, 4, and 6 are not.

3 out of the 6 numbers are prime, therefore 3 out of the 6 numbers are not prime.

So the fraction is [tex]\frac{3}{6}[/tex]

This simplifies to [tex]\frac{1}{2}[/tex].

Hope this helped!

Answer:

1/2

Step-by-step explanation:

the prime numbers between 1 and 6 inclusive are:  2, 3, 5  (i.e 3 possible outcomes)

the non prime numbers are : 1, 4 and 6 (i.e 3 possible outcomes)

for each roll, the total number of possible outcomes is 6 (because its a 6-sided die)

P(does not roll a prime number) = P (rolls 1, 4 or 6)

= number of possible non-prime outcomes / total number of outcomes

= 3/6

= 1/2

n a survey of a group of​ men, the heights in the​ 20-29 age group were normally​ distributed, with a mean of inches and a standard deviation of inches. A study participant is randomly selected. Complete parts​ (a) through​ (d) below. ​(a) Find the probability that a study participant has a height that is less than inches. The probability that the study participant selected at random is less than inches tall is nothing. ​(Round to four decimal places as​ needed.) ​(b) Find the probability that a study participant has a height that is between and inches. The probability that the study participant selected at random is between and inches tall is nothing. ​(Round to four decimal places as​ needed.) ​(c) Find the probability that a study participant has a height that is more than inches. The probability that the study participant selected at random is more than inches tall is nothing. ​(Round to four decimal places as​ needed.) ​(d) Identify any unusual events. Explain your reasoning. Choose the correct answer below.

Answers

Answer:

(a) The probability that a study participant has a height that is less than 67 inches is 0.4013.

(b) The probability that a study participant has a height that is between 67 and 71 inches is 0.5586.

(c) The probability that a study participant has a height that is more than 71 inches is 0.0401.

(d) The event in part (c) is an unusual event.

Step-by-step explanation:

The complete question is: In a survey of a group of​ men, the heights in the​ 20-29 age group were normally​ distributed, with a mean of 67.5 inches and a standard deviation of 2.0 inches. A study participant is randomly selected. Complete parts​ (a) through​ (d) below. ​(a) Find the probability that a study participant has a height that is less than 67 inches. The probability that the study participant selected at random is less than inches tall is nothing. ​(Round to four decimal places as​ needed.) ​(b) Find the probability that a study participant has a height that is between 67 and 71 inches. The probability that the study participant selected at random is between and inches tall is nothing. ​(Round to four decimal places as​ needed.) ​(c) Find the probability that a study participant has a height that is more than 71 inches. The probability that the study participant selected at random is more than inches tall is nothing. ​(Round to four decimal places as​ needed.) ​(d) Identify any unusual events. Explain your reasoning. Choose the correct answer below.

We are given that the heights in the​ 20-29 age group were normally​ distributed, with a mean of 67.5 inches and a standard deviation of 2.0 inches.

Let X = the heights of men in the​ 20-29 age group

The z-score probability distribution for the normal distribution is given by;

                          Z  =  [tex]\frac{X-\mu}{\sigma}[/tex]  ~ N(0,1)

where, [tex]\mu[/tex] = population mean height = 67.5 inches

            [tex]\sigma[/tex] = standard deviation = 2 inches

So, X ~ Normal([tex]\mu=67.5, \sigma^{2}=2^{2}[/tex])

(a) The probability that a study participant has a height that is less than 67 inches is given by = P(X < 67 inches)

 

      P(X < 67 inches) = P( [tex]\frac{X-\mu}{\sigma}[/tex] < [tex]\frac{67-67.5}{2}[/tex] ) = P(Z < -0.25) = 1 - P(Z [tex]\leq[/tex] 0.25)

                                                                 = 1 - 0.5987 = 0.4013

The above probability is calculated by looking at the value of x = 0.25 in the z table which has an area of 0.5987.

(b) The probability that a study participant has a height that is between 67 and 71 inches is given by = P(67 inches < X < 71 inches)

    P(67 inches < X < 71 inches) = P(X < 71 inches) - P(X [tex]\leq[/tex] 67 inches)

    P(X < 71 inches) = P( [tex]\frac{X-\mu}{\sigma}[/tex] < [tex]\frac{71-67.5}{2}[/tex] ) = P(Z < 1.75) = 0.9599

    P(X [tex]\leq[/tex] 67 inches) = P( [tex]\frac{X-\mu}{\sigma}[/tex] [tex]\leq[/tex] [tex]\frac{67-67.5}{2}[/tex] ) = P(Z [tex]\leq[/tex] -0.25) = 1 - P(Z < 0.25)

                                                                = 1 - 0.5987 = 0.4013

The above probability is calculated by looking at the value of x = 1.75 and x = 0.25 in the z table which has an area of 0.9599 and 0.5987 respectively.

Therefore, P(67 inches < X < 71 inches) = 0.9599 - 0.4013 = 0.5586.

(c) The probability that a study participant has a height that is more than 71 inches is given by = P(X > 71 inches)

 

      P(X > 71 inches) = P( [tex]\frac{X-\mu}{\sigma}[/tex] > [tex]\frac{71-67.5}{2}[/tex] ) = P(Z > 1.75) = 1 - P(Z [tex]\leq[/tex] 1.75)

                                                                 = 1 - 0.9599 = 0.0401

The above probability is calculated by looking at the value of x = 1.75 in the z table which has an area of 0.9599.

(d) The event in part (c) is an unusual event because the probability that a study participant has a height that is more than 71 inches is less than 0.05.

Use the number line below, where RS = 6y + 2, ST = 3y + 7, and RT = 14y - 11.
a. What is the value of y?
b. Find RS, ST, and RT.

Answers

Answer:

a) y = 4

b) RS = 26, ST = 19, RT = 45

Step-by-step explanation:

From the line given, the following vector equation is true, RS + ST = RT since R, S and T lies in the same straight line.

Given RS = 6y + 2, ST = 3y + 7, and RT = 14y - 11

On substituting this values into the equation above we will have;

6y+2+(3y+7) = 14y-11

6y+2+3y+7 = 14y-11

Collect the like terms

6y+3y-14y = -11-7-2

9y-14y = -20

-5y = -20

y = 20/5

y = 4

Since RS = 6y + 2

RS = 6(4)+2

RS = 24+2

RS = 26

ST = 3y + 7

ST = 3(4)+7

ST = 12+7

ST = 19

Also, RT = 14y - 11

RT = 14(4)-11

RT = 56-11

RT = 45

For the given data value, find the standard score and the percentile. A data value 0.6 standard deviations above the mean.

Answers

Answer:

The z-score is [tex]z = 0.6[/tex]

The percentile is  [tex]p(Z < 0.6) = 72.57\%[/tex]

Step-by-step explanation:

From the question we are told that

   The  data value is  0.6 standard deviations above the mean i.e  [tex]x = \mu + 0.6 \sigma[/tex]

Where  [tex]\mu[/tex] is the population mean and [tex]\sigma[/tex] is the standard deviation

Generally the z-score is mathematically represented as

        [tex]z = \frac{x - \mu }{\sigma }[/tex]

=>     [tex]z = \frac{(\mu + 0.6\sigma ) - \mu }{\sigma }[/tex]

=>    [tex]z = 0.6[/tex]

The percentile is obtained from the z-table and the value is

     [tex]p(Z < 0.6) = 0.7257[/tex]

=>   [tex]p(Z < 0.6) = 72.57\%[/tex]

A lottery exists where balls numbered 1 to "20" are placed in an urn. To​ win, you must match the balls chosen in the correct order. How many possible outcomes are there for this​ game?

Answers

Answer: 1860480

Step-by-step explanation:

Initially, there are 20 balls where 5 must be chosen in order.

The number of possible outcomes may be calculated using the concept of permutations.

The formula for permutations is:

nPr =n!/(n−r)!

where n represents the number of items and r represents the number of items to be selected.

The number of ways of selecting 5 balls in order out of 20 is:

20P5 = 20!/15!

= 1860480

To conclude, there are 1860480 possible outcomes.

Given two points M & N on the coordinate plane, find the slope of MN , and state the slope of the line perpendicular to MN . (there's two questions)
1) M(9,6), N(1,4)

2) M(-2,2), N(4,-4)

Answers

Answer:

Problem 1)       [tex] m = \dfrac{1}{4} [/tex]     [tex] slope_{perpendicular} = -4 [/tex]

Problem 2)      [tex] m = \dfrac{1}{3} [/tex]     [tex] slope_{perpendicular} = -3 [/tex]

Step-by-step explanation:

[tex] slope = m = \dfrac{y_2 - y_1}{x_2 - x_1} [/tex]

[tex] slope_{perpendicular} = \dfrac{-1}{m} [/tex]

Problem 1) M(9,6), N(1,4)

[tex] slope = m = \dfrac{6 - 4}{9 - 1} = \dfrac{2}{8} = \dfrac{1}{4} [/tex]

[tex] slope_{perpendicular} = \dfrac{-1}{\frac{1}{4}} = -4 [/tex]

Problem 2) M(-2,2), N(4,-4)

[tex] slope = m = \dfrac{4 - 2}{4 - (-2)} = \dfrac{2}{6} = \dfrac{1}{3} [/tex]

[tex] slope_{perpendicular} = \dfrac{-1}{\frac{1}{3}} = -3 [/tex]

Other Questions
If someone loathes snakes, would that person be likely to adopt a snake as a pet? The value of y varies jointly with x and z. If y = 7 when z = 196 and x = 2, find the value of y when x = 3 and z = 336. I will rate you brainliest Assume a corporation has earnings before depreciation and taxes of $123,000, depreciation of $41,000, and that it has a 35 percent tax bracket. a. Compute its cash flow using the following format. (Input all answers as positive values.) b. How much would cash flow be if there were only $21,000 in depreciation Which is NOT true of balanced forces?A. Balanced forces will cause the motion of an object toincreaseB. Balanced forces are two equal forces pushing againsteach other on an object,C. Balanced forces do not cause a change in the motion ofan object A mixture of 50ml of 0.1M HCOOH and 50ml of 0.05M NaOH is equivalent to any know how to get rid if a blocked nose if blowing it isnt working Average Rate of ReturnDetermine the average rate of return for a project that is estimated to yield total income of $148,500 over five years, has a cost of $300,000, and has a $30,000 residual value.% did maRGIE HAVE regular days and hours Take thus quote, and embed (introduce) it into a complete sentence: "TV plotsand characters tended to be simple" The author is Ostergaard. Lyla walks three times per week for 45 minutes at a speed of 4.0 miles per hour. She wants to increase her time what should she do The ability of a multinational or global competitor to shift production from country to country to take advantage of exchange rate fluctuations, energy costs, wage rates, or changes in tariffs is an example of Multiple Choice cross-market subsidization. cross-market differences in cultural, demographic, and market conditions. an international strategic alliance. cross-border coordination. a profit sanctuary. Help please! If income rises from $1,000 to $1,400 and consumption rises from $800 to $1,168, the marginal propensity to consume is __________ percent. Gina, Sam, and Robby all rented movies from the same video store. They each rented some dramas, comedies, and documentaries. Gina rented 11 movies total. Sam rented twice as many dramas, three times as many comedies, and twice as many documentaries as Gina. He rented 27 movies total. If Robby rented 19 movies total with the same number of dramas, twice as many comedies, and twice as many documentaries as Gina, how many movies of each type did Gina rent? solve 1 for x if a=-9.8, v=2.7, and t= 35 A technical analyst has been charting the price movements of ABC stock. The stock has been fluctuating in price between $63 and $67 per share for the past 3 months. If the analyst expects a breakout through the support level, which order should be placed Question:A school's band members raised money by selling magazine subscriptions and shirts. Their profit from selling shirts was per shirt minus a one-time set-up fee. Their profit from selling magazine subscriptions was per subscription. They made exactly the same profit from shirts as they did from magazines. They also sold the same number of shirts as magazine subscriptions. How many shirts did they sell? Jamie has a jar of coins containing the same number of nickels, dimes and quarters. The total value of the coins in the jar is 13.20. How many nickels does Jamie have? The gasoline gauge on a van initially read full. When 15 gallons of gasoline were added to the tank, the gauge then read full. How many more gallons would be needed to fill the tank? A car travels 120m along a straight road that is inclined at 8 to the horizontal. Calculate the vertical distance through which the car rises. (Sin8=0.1392) what is the value of x ? What is the FIRST major step of the writing process?