Answer:
Step-by-step explanation:
its m<2=degrees
Answer:
m∠1 = 131
m∠2 = 49
m∠2 = 112
Step-by-step explanation:
The fair spinner shown in the diagram above is spun.
Work out the probability of getting a factor of 10.
Give your answer in its simplest form.
Answer:
The answer is "0.2"
Step-by-step explanation:
Given value:
factor = 10
The amount of two divided by the number of options. When both fours and eight gaps are available, that probability can be defined as follows:
[tex]\Rightarrow \frac{2}{10}\\\\\Rightarrow \frac{1}{5}\\\\\Rightarrow 0.2\\[/tex]
A fair coin is flipped 10 times and lands on heads 8 times. Provide a reason to justify the difference between the experimental and theoretical
probabilities. Use the drop-down menus to explain your answer.
There should be a
Choose...
number of trials. With Choose...
flips of the coin, the experimental probability will likely
approach the theoretical probability of Choose...
Answer:
THere will be 8 heads and 2 tails
Step-by-step explanation:
I don't know
Solve for x
8 (V2 - x) = 11
Answer:
V^2 - 11/8
Step-by-step explanation:
8(V^2 - x) =11
V^2 = 11/ 8 + X
X= V^2 - 11/8
Answer:
x= - [tex]\frac{11}{8}[/tex]+[tex]\sqrt{2[/tex]
Step-by-step explanation:
Distribute the 8, which becomes.... 8[tex]\sqrt{2}[/tex] - 8x = 11
Move the numbers to one side.... -8x= 11-8[tex]\sqrt{2}[/tex]
Divide by -8.......- [tex]\frac{11}{8}[/tex]+[tex]\sqrt{2[/tex]
What’s the correct answer for this?
Answer:
D: 8 and 2 and then 8 and 6.
Step-by-step explanation:
Corresponding angles are angles in the same position at an intersection of lines. For example, some of the corresponding angles in this picture are 1 and 7, and 8 and 2. Alternate interior angles are angles that are on the opposite sides of a transversal but are on the inner sides. For example, 8 and 6 and 7 and 5. If you look at all the options and use process of elimination, D will be the only possible answer. For A, 1 and 2 are not corresponding angles, as they are on opposite sides of the same line. For B, 4 and 6 are not alternate interior angles. They are vertical angles, congruent angles mirrored on the opposite side. For C, 7 and 2 are not corresponding angles, as they are not in the same relative position. Therefore, D is the only answer left. 8 and 2 are corresponding angles: they are both on the right side of the lines next to them. 8 and 6 are alternate interior angles, since they are on the opposite sides of the line, but on the inside.
Daryl wishes to save money to provide for his retirement. He is now 30 years old and will be
retiring at age 64. Beginning one month from now, he will begin depositing a fixed amount into
a retirement savings account that will earn 12% compounded monthly. Then one year after
making his final deposit, he will withdraw $100,000 annually for 25 years. In addition, and after
he passes away (assuming he lives 25 years after retirement) he wishes to leave in the fund a sum
worth $1,000,000 to his nephew who is under his charge. The fund will continue to earn 12%
compounded monthly. How much should the monthly deposits be for his retirement plan?
Answer:
Step-by-step explanation:
Today's Age = 30
Retirement Age = 64
Total Monthly Deposits = ( 64 - 30 ) * 12 = 408
In case of 12% Compounded Monthly , Interest Rate per month = ( 12% / 12 ) = 1%
Effective Interest Rate per year = ( 1 + 0.12/12 )12 - 1 = 1.1268 - 1 = 0.1268 = 12.68%
Present value of Annual 25 Years withdrawal of $100,000 at time of Retirement = $100,000 * PVAF ( 12.68% , 25 )
= $100,000 * 7.4864
= $748,642.20
Present Value of Money for nephew at time of Retirement = $1,000,000 * PVF ( 12.68% , 25 )
= $1,000,000 * 0.050535
= $50,534.52
Now the Present Value of total Amount Required at time of Retirement = $748,642.20 + $50,534.52
= $799,176.70
Now the monthly deposit be X
= X * FVAF ( 408 , 1% ) = $799,176.70
= X * 5752.85 = $799,176.70
X = $138.918
Therefore Monthly Deposit = $138.92
plzz help i hav a test after i need the answer quick plzz.
Answer:Oop
Step-by-step explanation:
The scores on one portion of a standardized test are approximately Normally distributed, N(572, 51). a. Use the 68-95-99.7 rule to estimate the range of scores that includes the middle 95% of these test scores. b. Use technology to estimate the range of scores that includes the middle 90% of these test scores.
Answer:
a) The range of scores that includes the middle 95% of these test scores is between 470 and 674.
b) The range of scores that includes the middle 90% of these test scores is between 488.1 and 655.9.
Step-by-step explanation:
68-95-99.7 rule:
The Empirical Rule states that, for a normally distributed random variable:
68% of the measures are within 1 standard deviation of the mean.
95% of the measures are within 2 standard deviation of the mean.
99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Z-score:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question:
Mean [tex]\mu = 572[/tex], standard deviation [tex]\sigma = 51[/tex]
a. Use the 68-95-99.7 rule to estimate the range of scores that includes the middle 95% of these test scores.
By the 68-95-99.7 rule, within 2 standard deviations of the mean.
572 - 2*51 = 470
572 + 2*51 = 674
The range of scores that includes the middle 95% of these test scores is between 470 and 674.
b. Use technology to estimate the range of scores that includes the middle 90% of these test scores.
Using the z-score formula.
Between these following percentiles:
50 - (90/2) = 5th percentile
50 + (90/2) = 95th percentile.
5th percentile.
X when Z has a pvalue of 0.05. So when X when Z = -1.645.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-1.645 = \frac{X - 572}{51}[/tex]
[tex]X - 572 = -1.645*51[/tex]
[tex]X = 488.1[/tex]
95th percentile.
X when Z has a pvalue of 0.95. So when X when Z = 1.645.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]1.645 = \frac{X - 572}{51}[/tex]
[tex]X - 572 = 1.645*51[/tex]
[tex]X = 655.9[/tex]
The range of scores that includes the middle 90% of these test scores is between 488.1 and 655.9.
The function fff is given in three equivalent forms. Which form most quickly reveals the zeros (or "roots") of the function? Choose 1 answer: Choose 1 answer: (Choice A) A f(x)=-3(x-2)^2+27f(x)=−3(x−2) 2 +27f, (, x, ), equals, minus, 3, (, x, minus, 2, ), squared, plus, 27 (Choice B) B f(x)=-3(x+1)(x-5)f(x)=−3(x+1)(x−5)f, (, x, ), equals, minus, 3, (, x, plus, 1, ), (, x, minus, 5, )(Choice C) C f(x)=-3x^2+12x+15f(x)=−3x 2 +12x+15f, (, x, ), equals, minus, 3, x, squared, plus, 12, x, plus, 15 Write one of the zeros. xxx =
Answer:
(B) [tex]f(x)=-3(x+1)(x-5)[/tex]
x=5
Step-by-step explanation:
Given the three equivalent forms of f(x):
[tex]f(x)=-3(x-2)^2+27\\f(x)=-3(x+1)(x-5)\\f(x)=-3x^2+12x+15[/tex]
The form which most quickly reveals the zeros (or "roots") of f(x) is
(B) [tex]f(x)=-3(x+1)(x-5)[/tex]
This is as a result of the fact that on equating to zero, the roots becomes immediately evident.
[tex]f(x)=-3(x+1)(x-5)=0\\-3\neq 0\\Therefore:\\x+1=0$ or x-5=0\\The zeros are x=-1 or x=5[/tex]
Therefore, one of the zeros, x=5
Answer:
i dont think the one above is correct. here is the correct answer
Step-by-step explanation:
I don’t understand it
Answer:39.6x + 26.4
Step-by-step explanation:
length=3x+2
Width=13.2
area of rectangle=length x width
area of rectangle=(3x+2) x 13.2
area of rectangle=13.2(3x+2)
area of rectangle=39.6x + 26.4
Answer:
39.6x + 26.4
Step-by-step explanation:
13.2 (3x + 2)
Multiply each term in the parentheses by 13.2.
13.2 × 3x + 13.2 × 2
Multiply the numbers.
39.6x + 13.2 × 2
39.6x + 26.4
39.6x + 26.4
The object below is a cubical lunch box having each edge as 10 cm.
Find its surface area.
A
600 cm2
B
360 cm2
C
300 cm2
D
36 cm2
Answer:
B
Step-by-step explanation:
The total surface area of a cubical lunch box having each edge as 10 cm is 600 square centimeter. Therefore, option A is the correct answer.
What is surface area of a cube?The surface area of the cube all six faces of the cube are made up of squares of the same dimensions then the total surface area of the cube will be the surface area of one face added six times to itself. The formula to find the surface area of a cube is 6a², where a is edge.
Given that, the cubical lunch box having each edge as 10 cm.
Here, surface area = 6×10²
= 600 square centimeter
Therefore, option A is the correct answer.
Learn more about the surface area of a cube here:
brainly.com/question/23273671.
#SPJ2
Trust me,I will give braineist. I swear to god.
Answer:
= 1696m^3
Step-by-step explanation:
V = πr²h
= 3.14 x 6 x 6 x 15
= 3.14 x 540
= 1695.6 m^3
= 1696m^3
There is one missing number in the “Which One Doesn’t Belong” game.
• Select a number that does not belong with any of the numbers. Explain your reasoning.
• Select a number that has a characteristic similar to the other two numbers. Explain your reasoning.
Answer:
I am not I understand the game but
1. 17 doesn't belong cause it a prime number and doesn't dived with any of the other numbers and double digit
2. 4 divides with 216 and 8 and single digit similar to 8
Step-by-step explanation:
What is the value of 5x+3 when x = 4?
Answer:
Step-by-step explanation:
5(4)+ 3
20+3
23
Find the first five terms of the geometric sequence defined by a (n)=10
(.1)^n
Answer:
Step-by-step explanation:
a(1) = 10(.1)^1 = 1
a(2) = 10(.1)^2 = 10(0.01) = 0.1
a(3) = 10(.1)^3 = 10(0.001) = 0.01
a(4) = 0.001
a(5) = 0.0001
if f(x)=-x^2 and g(x) = -x^2+4x+5 what is the product
Answer:
[tex]x^{4}[/tex] - 4x³ - 5x²
Step-by-step explanation:
-x²(-x² + 4x + 5) Distribute
[tex]x^{4}[/tex] - 4x³ - 5x²
If this answer is correct, please make me Brainliest!
$32 for a 14 2/19 km taxi ride
Answer:
What about it? If you need to know how much that is per km, it would be about $2.27 per km
Step-by-step explanation:
A polynomial function has a root of -5 with multiplicity 3, a root of 1 with multiplicity 2, and a root of 3 with multiplicity 7. If the
function has a negative leading coefficient and is of even degree, which statement about the graph is true?
The graph of the function is positive on (-0, 5).
The graph of the function is negative on (-5, 3)
The graph of the function is positive on (-0, 1).
The graph of the function is negative on (3,co)
Mark this and return
Save and Exit
Sabem
Answer:
The graph of the function is negative on (3, ∞)
Step-by-step explanation:
The function starts negative at the left side of the graph, crosses the x-axis at x = -5, touches the x-axis at x = 1, again crosses into negative values at x = 3.
The function is positive on the open intervals (-5, 1) and (1, 3). It is negative on the open intervals (-∞, -5) and (3, ∞). The latter description matches the last answer choice:
the graph of the function is negative on (3, ∞).
Problem 1.) A researcher claims that 96% of college graduates say their college degree has
been a good investment. In a random sample of 2000 graduates, 1500 say their college degree has
been a good investment. At a = 0.05 is there enough evidence to reject the researcher's claim?
Answer:
|Z| = |-52.5| = 52.5 > 1.96 at 0.05 level of significance
Null hypothesis is rejected
We rejected the researcher's claim
A researcher do not claims that 96% of college graduates say their college degree has been a good investment.
Step-by-step explanation:
Explanation:-
Given data A researcher claims that 96% of college graduates say their college degree has been a good investment.
Population proportion 'P' = 0.96
Q = 1-P = 1- 0.96 = 0.04
In a random sample of 2000 graduates, 1500 say their college degree has
been a good investment.
Sample proportion
[tex]p^{-} = \frac{x}{n} = \frac{1500}{2000} = 0.75[/tex]
Level of significance ∝ = 0.05
[tex]Z_{\frac{\alpha }{2} } = Z_{\frac{0.05}{2} } = Z_{0.025} = 1.96[/tex]
Test statistic
[tex]Z = \frac{p^{-} - P }{\sqrt{\frac{PQ}{n} } }[/tex]
[tex]Z = \frac{0.75 - 0.96 }{\sqrt{\frac{0.96 X 0.04}{2000} } }[/tex]
[tex]Z = \frac{-0.21}{0.00435} = -52.5[/tex]
|Z| = |-52.5| = 52.5 > 1.96 at 0.05 level of significance
Null hypothesis is rejected
We rejected the researcher's claim
Conclusion:-
A researcher do not claims that 96% of college graduates say their college degree has been a good investment.
Find the compound interest on GHS 50,200 invested at 13% p.a. compounded annually for 3 years ( to the nearest
GHS).
Select one:
A. GHS 19,578
B. GHS 69,778
O
C. GHS 72,433
D. GHS 22.233
Answer:
D
Step-by-step explanation:
First found amount yielded
A = P(1+r)^nt
P is amount deposited 50,200
r is interest rate 13% = 13/100 = 0.13
t = 3
A = 50,200(1+0.13)^3
A = 50,200(1,13)^3
A = 72,433.42939999998
A is approximately 72,433.43
interest = A - P = 72,433.43-50,200 = 22,233.43= 22,233 to the nearest GHS
WILL MARK BRAINLIEST!
I thought of a three-digit number. If I add all the possible two-digit numbers made by using only the digits of this number, then one third of this sum is equal to the number I thought of. What is the number I thought of?
Answer:
198
Step-by-step explanation:
If you add 11,18, 19, 81, 88, 89, 91, 98, 99 then the sum would be 594 then dividing by 3 would be 198.
PLZ MARK BRAINLIEST!!!
The average cost of tuition plus room and board at small private liberal arts colleges is reported to be less than $18,500 per term. A financial administrator at one of the colleges believes that the average cost is higher. The administrator conducted a study using 150 small liberal arts colleges. It showed that the average cost per term is $18,200. The population standard deviation is known to be $1,400. Let α= 0.05. What are the null and alternative hypothesis for this study?
Answer:
The null and alternative hypothesis for this study are:
[tex]H_0: \mu=18500\\\\H_a:\mu< 18500[/tex]
The null hypothesis is rejected (P-value=0.004).
There is enough evidence to support the claim that the average cost of tuition plus room and board at small private liberal arts colleges is less than $18,500 per term.
Step-by-step explanation:
This is a hypothesis test for the population mean.
The claim is that the average cost of tuition plus room and board at small private liberal arts colleges is less than $18,500 per term.
Then, the null and alternative hypothesis are:
[tex]H_0: \mu=18500\\\\H_a:\mu< 18500[/tex]
The significance level is 0.05.
The sample has a size n=150.
The sample mean is M=18200.
The standard deviation of the population is known and has a value of σ=1400.
We can calculate the standard error as:
[tex]\sigma_M=\dfrac{\sigma}{\sqrt{n}}=\dfrac{1400}{\sqrt{150}}=114.31[/tex]
Then, we can calculate the z-statistic as:
[tex]z=\dfrac{M-\mu}{\sigma_M}=\dfrac{18200-18500}{114.31}=\dfrac{-300}{114.31}=-2.624[/tex]
This test is a left-tailed test, so the P-value for this test is calculated as:
[tex]P-value=P(z<-2.624)=0.004[/tex]
As the P-value (0.004) is smaller than the significance level (0.05), the effect is significant.
The null hypothesis is rejected.
There is enough evidence to support the claim that the average cost of tuition plus room and board at small private liberal arts colleges is less than $18,500 per term.
The probability of event A is 0.5 and probability of event B is 0.2. Given that A and B are independent, then the probability of A and B (A intersection B) is:
A) 2.5%
B)7 %
C)10%
D) 14%
A boathouse costs $2750 a month to operate, and it spends $650 each
month for every boat that it docks. The boathouse charges a monthly fee of
$900 to dock a boat. If n is the number of boats, which equation represents
the profit function of the boathouse?
O A. p = 2750n + 250
O B. p= 900n + 2750
O c. p = 250n- 2750
O D. p = 650n + 2750
Answer: P=250n-2750
Step-by-step explanation:
The profit function of the boathouse is given as follows p = 250n- 2750.
What is the profit function?The profit function is a mathematical function that reflects a company's or business's profit as a function of the number of products or services produced and sold.
The revenue generated by the boathouse with n boats is given by the monthly fee per boat multiplied by the number of boats, which is $900n.
The total cost to operate the boathouse with n boats is the fixed cost of $2750 plus the variable cost of $650 per boat, which is $2750 + $650n.
Therefore, the profit function of the boathouse is given by the revenue minus the cost:
p = 900n - (2750 + 650n)
Simplifying this expression, we get:
p = 250n - 2750
Thus, the answer is (c) p = 250n - 2750.
Learn more about the profit function here:
https://brainly.com/question/29106570
#SPJ5
How many sundaes did the shop make if they used 32 spoonfuls of sprinkles?
Answer:
32?
Step-by-step explanation:
Answer:
Depends on how many spoonfuls of sprinkles per sundae. Is there more details to this question?
A theater can seat 160 people . If the theater is 60%full, how many more can fit in the theater
Answer:
64 people can fit in the theater.
Step-by-step explanation:
If 60% is full then calculate how many people is it
[tex] \frac{60}{100} \times 160 = 96 \\ 160 - 96 = 64[/tex]
64 is 40% of 160
So this many people can be accommodated in the theater
Answer:
64 more people can fit in the theater
Step-by-step explanation:
You need to find 60% of 160
10%=16 (divided by 10)
16×6=96
160 (total people)-96(60%)=64
Two part-time employees share one full-time job. A girl works Mondays. Thursday, Wednesdays, and Fridays, and a boy works Tuesdays. The job pays an annual salary of $28,612. What annual salary does each employee earn?
The girls salary is______
How would you describe the translation from f(x)=x2 to f(x)=x2+5 ?
Answer:
5 units up
Step-by-step explanation:
Adding 5 to the y-value of an (x, y) coordinate moves it up 5 units.
f(x) = x^2 +5 is translated 5 units upward from f(x) = x^2.
The table shows the heights of 40 students in a class.
-Height (h)
in cm-
120 < t < 124
124 < t < 128
128 < t < 132
132 <t< 136
136 <t< 140
__________
-Frequency-
7
8
13
9
3
__________
a) Calculate an estimate for the mean height of the students
Answer:
129.3
Step-by-step explanation:
You have to find the number in the middle of all of the heights and multiply them by the all of the frequency (122x7 etc). When you have those answers, add them together and divide the answer by 40.
You walk in a room and on the bed there are 2 dogs, 4 cats, one giraffe, 5 cows and a duck, 3 chickens flying above; how many legs are on the floor?
Answer:
0
Step-by-step explanation:
they are on the bed
The total legs on the floor excluding chicken is 50 legs
Word problemsFrom the given question, the following animals have 4 legs
dogs, cats, girraffe and cows
Duck and chickens both have 2 legs
The total number of legs on the floor = 4(2) + 4(4) + 1(4) + 5(4) + 1(2)
Total number. = 8 + 20 + 22
Total number = 50legs
Hence the total legs on the floor excluding chicken is 50 legs
Learn more on word problems here:
https://brainly.com/question/13818690
#SPJ5
The box plots show the weights, in pounds, of the dogs in two different animal shelters.
Weights of Dogs in Shelter A
2 box plots. The number line goes from 6 to 30. For the weights of dogs in shelter A, the whiskers range from 8 to 30, and the box ranges from 17 to 28. A line divides the box at 21. For shelter B, the whiskers range from 10 to 18, and the box ranges from 16 to 20. A line divides the box at 18.
Weights of Dogs in Shelter B
One-half of the dogs in each shelter are between which weights?
between 8 and 30 pounds in shelter A; between 10 and 28 pounds in shelter B
between 8 and 17 pounds in shelter A; between 10 and 16 pounds in shelter B
between 21 and 30 pounds in shelter A; between 18 and 28 pounds in shelter B
between 28 and 30 pounds in shelter A; between 20 and 28 pounds in shelter B
Answer:
the 2nd one
i am pretty sure
Step-by-step explanation: