Answer: $5650
Step-by-step explanation:
El precio de la carrera es:
y = ($50/km)*x + $4500.
Donde x representa la cantidad recorrida en Km.
Ahora se nos pregunta:
¿ Cuanto cuesta una carrera si la distancia recorrida fue de 23 kilómetros?
Para esto, debemos reemplazar la variable en la equacion por 23km:
x = 23km
y = ($50/km)*23km + $4500 = $5650
Use a definition, postulate, or theorem to find the value of x in the figure described. Point E is between points D and F. If DE = x − 3, EF = 6x + 5, and DF = 8x − 3, find x. Select each definition, postulate, or theorem you will use. A)definition of segment bisector B)definition of midpoint C)Linear Pair Theorem D)Segment Addition Postulate The solution is x =?
Answer:
Option (D)
x = 5
Step-by-step explanation:
Since point E is in the mid of the segment DF,
Therefore, by the Segment addition postulate,
DF = DE + EF
Since DF = (8x - 3), DE = (x - 3) and EF = (6x + 5)
By substituting these values in the given postulate,
(8x - 3) = (x - 3) + (6x + 5)
8x - 3 = (x + 6x) + (5 - 3)
8x - 3 = 7x + 2
8x - 7x = 3 + 2
x = 5
Therefore, x = 5 will be the answer.
Answer:
x=6 and D
Step-by-step explanation:
In triangle ABC, ∠ABC=70° and ∠ACB=50°. Points M and N lie on sides AB and AC respectively such that ∠MCB=40° and ∠NBC=50°. Find m∠NMC.
Answer:
∠NMC = 50°
Step-by-step explanation:
The interpretation of the information given in the question can be seen in the attached images below.
In ΔABC;
∠ A + ∠ B + ∠ C = 180° (sum of angles in a triangle)
∠ A + 70° + 50° = 180°
∠ A = 180° - 70° - 50°
∠ A = 180° - 120°
∠ A = 60°
In ΔAMN ; the base angle are equal , let the base angles be x and y
So; x = y (base angle of an equilateral triangle)
Then;
x + x + 60° = 180°
2x + 60° = 180°
2x = 180° - 60°
2x = 120°
x = 120°/2
x = 60°
∴ x = 60° , y = 60°
In ΔBQC
∠a + ∠e + ∠b = 180°
50° + ∠e + 40° = 180°
∠e = 180° - 50° - 40°
∠e = 180° - 90°
∠e = 90°
At point Q , ∠e = ∠f = ∠g = ∠h = 90° (angles at a point)
∠i = 50° - 40° = 10°
In ΔNQC
∠f + ∠i + ∠j = 180°
90° + 10° + ∠j = 180°
∠j = 180° - 90°-10°
∠j = 180° - 100°
∠j = 80°
From line AC , at point N , ∠y + ∠c + ∠j = 180° (sum of angles on a straight line)
60° + ∠c + ∠80° = 180°
∠c = 180° - 60°-80°
∠c = 180° - 140°
∠c = 40°
Recall that :
At point Q , ∠e = ∠f = ∠g = ∠h = 90° (angles at a point)
Then In Δ NMC ;
∠d + ∠h + ∠c = 180° (sum of angles in a triangle)
∠d + 90° + 40° = 180°
∠d = 180° - 90° -40°
∠d = 180° - 130°
∠d = 50°
Therefore, ∠NMC = ∠d = 50°
A factory produces plate glass with a mean thickness of 4 mm and a standard deviation of 1.1 mm. A simple random sample of 100 sheets of glass is to be measured, and the mean thickness of the 100 sheets is to be computed. What is the probability that the average thickness of the 100 sheets is less than 3.74 mm
Answer:
0.0090483
Approximately = 0.00905
Step-by-step explanation:
z = (x - μ)/σ, where
x is the raw score = 3.74
μ is the sample mean = population mean = 4 mm
σ is the sample standard deviation
This is calculated as:
= Population standard deviation/√n
Where n = number of samples = 100
σ = 1.1/√100
σ = 1.1/10 = 0.11
z = (3.74 - 4) / 0.11
z = -2.36364
Using the z score table to determine the probability,
The probability that the average thickness of the 100 sheets is less than 3.74 mm
P(x<3.74) = 0.0090483
Approximately = 0.00905
Using the normal distribution and the central limit theorem, it is found that there is a 0.0091 = 0.91% probability that the average thickness of the 100 sheets is less than 3.74 mm.
In a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
It measures how many standard deviations the measure is from the mean. After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.By the Central Limit Theorem, the sampling distribution of sample means for size n has standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].In this problem:
Mean thickness of 4 mm, thus [tex]\mu = 4[/tex].Standard deviation of 1.1 mm, thus [tex]\sigma = 1.1[/tex].Sample of 100, thus [tex]n = 100, s = \frac{1.1}{\sqrt{100}} = 0.11[/tex].The probability is the p-value of Z when X = 3.74, then:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{3.74 - 4}{0.11}[/tex]
[tex]Z = -2.36[/tex]
[tex]Z = -2.36[/tex] has a p-value of 0.0091.
0.0091 = 0.91% probability that the average thickness of the 100 sheets is less than 3.74 mm.
A similar problem is given at https://brainly.com/question/14228383
Stephanie is twice as old as her sister Rosa. If Stephanie is 18 years old, how old is Rosa?
Answer:
rose. is. 18/2=9 years old
Answer:
Stephanie is 18years old and she is twice older than her sister
so rosa is 18÷2(since stephanie is twice older than rosa
so rosa is 9 years old
A soda bottling company’s manufacturing process is calibrated so that 99% of bottles are filled to within specifications, while 1% is not within specification. Every hour, 12 random bottles are taken from the assembly line and tested. If 2 or more bottles in the sample are not within specification, the assembly line is shut down for recalibration. What is the probability that the assembly line will be shut down, given that it is actually calibrated correctly? Use Excel to find the probability. Round your answer to three decimal places.
Answer:
The probability that the assembly line will be shut down is 0.00617.
Step-by-step explanation:
We are given that a soda bottling company’s manufacturing process is calibrated so that 99% of bottles are filled to within specifications, while 1% is not within specification.
Every hour, 12 random bottles are taken from the assembly line and tested. If 2 or more bottles in the sample are not within specification, the assembly line is shut down for recalibration.
Let X = Number of bottles in the sample that are not within specification.
The above situation can be represented through binomial distribution;
[tex]P(X=r)=\binom{n}{r} \times p^{r}\times (1-p)^{n-r};x=0,1,2,3,.....[/tex]
where, n = number of trials (samples) taken = 12 bottles
x = number of success = 2 or more bottles
p = probabilitiy of success which in our question is probability that
bottles are not within specification, i.e. p = 0.01
So, X ~ Binom (n = 12, p = 0.01)
Now, the probability that the assembly line will be shut down is given by = P(X [tex]\geq[/tex] 2)
P(X [tex]\geq[/tex] 2) = 1 - P(X = 0) - P(X = 1)
= [tex]1-\binom{12}{0} \times 0.01^{0}\times (1-0.01)^{12-0}-\binom{12}{1} \times 0.01^{1}\times (1-0.01)^{12-1}[/tex]
= [tex]1-(1 \times 1\times 0.99^{12})-(12 \times 0.01^{1}\times 0.99^{11})[/tex]
= 0.00617
What is the area of a parallelogram if the coordinates of its vertices are (0, -2), (3,2), (8,2), and (5, -2)?
Answer: 20 sq. units .
Step-by-step explanation:
Let A(0, -2), B(3,2), C(8,2), and D(5, -2) are the points for the parallelogram.
First we plot these points on coordinate plane, we get parallelogram ABCD.
By comparing the y-coordinate of B and C with A and D , we get
height = 2+2 = 4 units
Also by comparing the x coordinates of A and D, we get base = 5-0= 5 units
Area of parallelogram = Base x height
= 5 x 4 = 20 sq. units
Hence, the area of a parallelogram ABCD is 20 sq. units .
Which is the zero of the function f(x)=(x+3) (2x-1)(x+2) ?
Answer:
x= -3 x = 1/2 x=-2
Step-by-step explanation:
f(x)=(x+3) (2x-1)(x+2)
Set equal to zero
0 =(x+3) (2x-1)(x+2)
Using the zero product property
x+3 =0 2x-1 =0 x+2 =0
x= -3 2x =1 x = -2
x= -3 x = 1/2 x=-2
g a video game claims that the drop rate for a certain item is 5% according to the game publisher. in online forums, a number of players are complaining that the drop rate seems to be low. in order to test the drop rate claim, 100 players agree to attempt to get the drop, each attempting 10 times. of the 1000 tries, the item only drops 40 times state the null hypothesis needed to test this claim group of answer choices
Answer:
p0 = 0.05
Step-by-step explanation:
Which of the following is the correct set notation for the set of perfect squares between 1 and 100 (including 1 and 100)?
Select the correct answer below:
{p2∣p∈ℤ and 1≤p≤10}
{p2∣p∈ℤ and 1
Answer:
[tex]\{P^2: P\ E\ Z\ and\ 1\leq p\leq 10\}[/tex]
Step-by-step explanation:
Given
Range: = 1 to 100 (Inclusive)
Required
Determine the notation that represents the perfect square in the given range
Represent the range with P
P = 1 to 100
Such that the perfect squares will be P² and integers
In set notation, integers are represented with Z
The set notation becomes
[tex]\{P^2: P\ E\ Z\ and\ 1\leq p\leq 10\}[/tex]
The [tex]\leq[/tex] shows that 1 and 100 are inclusive of the set
Five more than the square of a number Five more than twice a number Five less than the product of 3 and a number Five less the product of 3 and a number Twice the sum of a number and 5 The sum of twice a number and 5 The product of the cube of a number and 5 The cube of the product of 5 and a number. 5 + x2 5 + 2x 5 - 3x 3x - 5 2x + 5 2(x + 5) 5x3 (5x)3 WILL MARK BRAINLIEST AND DON'T PUT A FAKE ANSWER TO GET POINTS EITHER CUS I NEED HELP
Answer:
BelowStep-by-step explanation: Let all unknown no be x
Five more than the square of a number
= [tex]5 + x^2[/tex]
Five more than twice a number ;
[tex]5+2x\\= 2x+5[/tex]
Five less than the product of 3 and a number ;
[tex]5- 3x\\= 3x-5[/tex]
Twice the sum of a number and 5 ;
[tex]2(x+5)\\[/tex]
The sum of twice a number and 5 ;
[tex]2x+5[/tex]
The product of the cube of a number and 5;
[tex]x^3 \times 5\\=5x^3[/tex]
The cube of the product of 5 and a number ;
[tex](5\times x)^3\\(5x)^3[/tex]
round 38562 to one significant figure
Answer:
plz refer the attachment
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hi my lil bunny!
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
ROUND 38562 to ONE significant figure.
Answer:
= 4000
Rounding Significant Figures Rules
~ ↓↓↓↓↓↓↓ ~
Non-zero digits are always significant
Zeros between non-zero digits are always significantLeading zeros are never significantTrailing zeros are only significant if the number contains a decimal pointExamples of Significant Figures❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
If this helped you, could you maybe give brainliest..?
❀*May*❀
Armando is baking 36 batches of brownies for the bake sale. Each batch of brownies takes cups of flour. What is a reasonable estimate of the amount of flour that he will need to bake all thirty-six batches of brownies?
Answer:
Well, let's assume that "cups" = 3 cups of flour.
Step-by-step explanation:
First, multiply 3x36.
If for some reason this is incorrect, try 2 cups instead of 3. Both are reasonable measurements when it comes to baking.
what number has 7 ten thousands, 1 thousand, 1 hundred, and no ones?
Answer:
[tex]71,100[/tex]
Step-by-step explanation:
If you are trying to find a number that is written in word form, we can just use place values to find what goes where.
A number is broken down into this:
Ten thousands, thousands, hundreds, tens, ones.
If they have 7 ten thousands, the first digit will be a 7.
If they have 1 thousand, the second digit will be a 1.
If they have 1 hundred, the third digit will be a 1.
Since nothing is stated about tens, we assume it's value is 0.
And since there are no ones, it's value is 0.
So:
71,100.
Hope this helped!
What value of x makes this equation true?
17 5 - 7 = -4
x=
y Su
What value of x makes this equation true? X/6-7=-4
Answer:
x=18
Step-by-step explanation:
x/6 - 7 = -4
x/6 = 3
(x/ 6) * 6 = 3*6
x = 18
The volume of a gas in a container varies inversely as the pressure on the gas. If a gas has a volume of 356 cubic inches under a pressure of 6 pounds per square inch, what will be its volume if the pressure is increased to 7 pounds per square inch? Round your answer to the nearest integer if necessary.
Answer:
[tex]V_2=305.14\ \text{inch}^3[/tex]
Step-by-step explanation:
The volume of a gas in a container varies inversely as the pressure on the gas.
[tex]V\propto \dfrac{1}{P}\\\\V_1P_1=V_2P_2[/tex]
If V₁ = 356 inch³, P₁ = 6 pounds/in², P₂ = 7 pounds/in², V₂ = ?
So, using the above relation.
So,
[tex]V_2=\dfrac{V_1P_1}{P_2}\\\\V_2=\dfrac{356\times 6}{7}\\\\V_2=305.14\ \text{inch}^3[/tex]
So, the new volume is [tex]305.14\ \text{inch}^3[/tex].
Fiona wrote the linear equation y = y equals StartFraction 2 over 5 EndFraction x minus 5.x – 5. When Henry wrote his equation, they discovered that his equation had all the same solutions as Fiona’s. Which equation could be Henry’s? x – x minus StartFraction 5 over 4 EndFraction y equals StartFraction 25 over 4 EndFraction.y = x – x minus StartFraction 5 over 2 EndFraction y equals StartFraction 25 over 4 EndFraction.y = x – x minus StartFraction 5 over 4 EndFraction y equals StartFraction 25 over 2 EndFraction.y = x – x minus StartFraction 5 over 2 EndFraction y equals StartFraction 25 over 2 EndFraction.y =
Answer:
D. [tex]x-\frac{5}{2}y = \frac{25}{2}[/tex]
Step-by-step explanation:
Given
[tex]y = \frac{2}{5}x - 5[/tex]
Required
Determine its equivalent
From the list of given options, the correct answer is
[tex]x - \frac{5}{2}y = \frac{25}{2}[/tex]
This is shown as follows;
[tex]y = \frac{2}{5}x - 5[/tex]
Multiply both sides by [tex]\frac{5}{2}[/tex]
[tex]\frac{5}{2} * y = \frac{5}{2} * (\frac{2}{5}x - 5)[/tex]
Open Bracket
[tex]\frac{5}{2} * y = \frac{5}{2} * \frac{2}{5}x - \frac{5}{2} *5[/tex]
[tex]\frac{5}{2}y = x - \frac{25}{2}[/tex]
Subtract x from both sides
[tex]\frac{5}{2}y - x = x -x - \frac{25}{2}[/tex]
[tex]\frac{5}{2}y - x = - \frac{25}{2}[/tex]
Multiply both sides by -1
[tex]-1 * \frac{5}{2}y - x * -1 = - \frac{25}{2} * -1[/tex]
[tex]-\frac{5}{2}y + x = \frac{25}{2}[/tex]
Reorder
[tex]x-\frac{5}{2}y = \frac{25}{2}[/tex]
Hence, the correct option is D
[tex]x-\frac{5}{2}y = \frac{25}{2}[/tex]
Answer:
The 4th option
Step-by-step explanation:
What is the lateral area of the drawing is it a 200 km.b. 425.c.114d.1021km
Answer:
114 km
Step-by-step explanation:
Each side is an isosceles trapezoid, so ED=2 since you would need to add 2 to each end of the bottom line to get the top line. Now use Pythagorean Theorem to get ED^2+AD^2=AE^2. Plug in your numbers to solve for AE. This is the height of each trapezoid. Then use your formula for the area of a trapezoid, (B1+B2)h/2, to get the area of each side, then multiply by 4 to get the lateral area since there are 4 sides. Remember lateral area is just the sides, then surface area is when you include the area of the two bases.
Solve 5(2x + 4) = 15. Round to the nearest thousandth.
[tex]5(2x + 4) = 15\\10x+20=15\\10x=-5\\x=-\dfrac{5}{10}=-0,5[/tex]
Answer:
[tex]\huge\boxed{x=-0.5}[/tex]
Step-by-step explanation:
[tex]5(2x+4)=15\qquad\text{divide both sides by 5}\\\\\dfrac{5\!\!\!\!\diagup(2x+4)}{5\!\!\!\!\diagup}=\dfrac{15\!\!\!\!\!\diagup}{5\!\!\!\!\diagup}\\\\2x+4=3\qquad\text{subtract 4 from both sides}\\\\2x+4-4=3-4\\\\2x=-1\qquad\text{divide both sides by 2}\\\\\dfrac{2x}{2}=\dfrac{-1}{2}\\\\\boxed{x=-0.5}[/tex]
PLS HELP :Find all the missing elements:
Answer:
[tex]\large \boxed{\mathrm{34.2}}[/tex]
Step-by-step explanation:
[tex]\sf B= arcsin (\frac{b \times sin(A)}{a} )[/tex]
[tex]\sf B= arcsin (\frac{7 \times sin(40\°)}{8} )[/tex]
[tex]\sf B = 0.59733 \ rad = 34.225\°[/tex]
Given below are descriptions of two lines. Line 1: Goes through (-2,10) and (1,1) Line 2: Goes through (-2,8) and (2,-4)
Answer:
Option (2)
Step-by-step explanation:
1). If two lines have the same slope, lines are defined as parallel.
m₁ = m₂
2). If the multiplication of the slopes of two lines is (-1), lines will be perpendicular.
m₁ × m₂ = (-1)
Line 1 : It passes through two points (-2, 10) and (1, 1).
Slope of the line 1 = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]
= [tex]\frac{1+2}{10-1}[/tex]
= [tex]\frac{3}{9}[/tex]
m₁ = [tex]\frac{1}{3}[/tex]
Line 2 : It passes through two points (-2, 8) and (2, -4).
Slope of the line 2 = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]
= [tex]\frac{8+4}{-2-2}[/tex]
= [tex]-\frac{12}{4}[/tex]
m₂ = -3
Since, m₁ × m₂ = [tex]\frac{1}{3}\times (-3)[/tex]
= (-1)
Therefore, given lines are perpendicular to each other.
Option (2) is the correct option.
A certain game involves tossing 3 fair coins, and it pays .14 for 3 heads, .06 for 2 heads, and .01 for 1 head. The expected winnings are?
Answer:
Total expected amount = $0.04375
Step-by-step explanation:
We need to calculate probability of getting heads on every combination of coin tosses
HHH = 1/8 = 3 heads
HHT = 1/8 = 2 heads
HTH = 1/8 = 2 heads
HTT = 1/8 = 1 head
THH = 1/8 = 2 heads
THT = 1/8 = 1 head
TTH = 1/8 = 1 head
TTT = 1/8 = 0 head
So the probability of 3 heads is 1/8 and the amount is (1/8)* 0.14 = $0.0175
Probability of 2 heads is 3/8 and the amount is (3/8) * 0.06 = $0.0225
Probability of 1 head is 3/8 and amount is (3/8) * 0.01 = $0.00375
Total expected amount = 0.00375 + 0.0225 + 0.0175
Total expected amount = $0.04375
somebody please help
Find the sum (x^3+5x^2+3x-7)+(8x-6^2+6)
Find the difference (7x-3x^2+2)-(x^3+5x^2+2x-5)
Answer:
x^3 - x^2 + 11x - 1
-x^3 - 8x^2 + 5x + 7
Step-by-step explanation:
Find the sum
(x^3+5x^2+3x-7)+(8x-6x^2+6)
=x^3+5x^2+3x-7+8x-6x^+6
Collect like terms
=x^3 +5x^2-6x^2+3x+8x-7+6
Add the like terms
= x^3 - x^2 + 11x - 1
Find the difference (7x-3x^2+2)-(x^3+5x^2+2x-5)
(7x-3x^2+2)-(x^3+5x^2+2x-5)
= 7x-3x^2+2-x^3-5x^2-2x+5
Collect like terms
= -x^3-3x^2-5x^2+7x-2x+2+5
Add the like terms
= -x^3 - 8x^2 + 5x + 7
An octagonal pyramid ... how many faces does it have, how many vertices and how many edges? A triangular prism ... how many faces does it have, how many vertices and how many edges? a triangular pyramid ... how many faces does it have, how many vertices and how many edges?
1: 8 faces and 9 with the base 9 vertices and 16 edges
2: 3 faces and 5 with the bases 6 vertices and 9 edges
3: 3 faces and 4 with the base 4 vertices and 6 edges
Hope this can help you.
Please answer this correctly without making mistakes
Answer:
Put 1/10 in the box.
Step-by-step explanation:
Since, Bluepoint and Milford are at same distance from Weston, the distance further than this to Oakdale is 1/10 miles.
Best Regards!
Answer:
To Oakdale to Milford:
2/5 mi
Step-by-step explanation:
1/10 + 3/20 + 3/20
1/10 = 2/20
then;
2/20 + 3/20 + 3/20 = (2+3+3)/20 = 8/20
8/20 = 2/5
I don't understand word problems can someone please answer it for me and I need it ASAP.
Answer:
Inequality: 3 + 1.2c
What you'd put on graph: 1 ≥ 13.50
a radion station usa 1\6 of its time for the news. in a 12 hour day, how many hours are used for music & entertainment?
Answer:
10 hours
Step-by-step explanation:
In order to answer this question, you must assume that all air time not spent on news is spent on music & entertainment. That would usually not be the case, as there would usually be advertisements and public service programming along with everything else.
The time spent on news is ...
(1/6)(12 hours) = 2 hours
If the rest is spent on music and entertainment, then ...
12 -2 = 10 . . . hours are used for music and entertainment
In which set(s) of numbers would you find the number -832 a. whole number b. irrational number c. integer d. rational number e. real number f. natural number
Answer:
integer of course
Step-by-step explanation:
an integer can either be negative or positive.
In the figure below, angle y and angle x form vertical angles. Angle x forms a straight line with the 50° angle and the 40° angle. A straight line is shown and is marked with three angles. The first angle measures 50 degrees. The second angle measures 60 degrees. The third angle is labeled x. The line between the 40 degree angle and angle x extends below the straight line. The angle formed is labeled angle y. Write and solve an equation to determine the measure of angle y.
Step-by-step explanation:
sorry but u should provide with a diagram for better understanding of ur question
what number must be added to the sequence of 7,13 and 10 to get an average of 13
Answer:
22
Step-by-step explanation:
We can write an equation:
(7+13+10+x)/4=13
x represents the number that needs to be added to get an average of
(7+13+10+x)/4=13
(30+x)/4=13
30+x=52
x=22
The number is 22
Hope this helps! Have a wonderful day :)