Answer:
31 Feets
Step-by-step explanation:
Given the expression for the height of a baseball:
Height(t) = -16t^2 +64t +3
Height in Feets ; time (t) in seconds
Height of baseball after 3.5 seconds :
Height(3.5) = -16(3.5)^2 + 64(3.5) + 3
Height = - 16(12.25) + 64(3.5) + 3
Height = - 196 + 224 + 3
Height = 31 Feets
Height after 3.5 seconds = 31 feets
make u the subject of the formula
u-x/v-x=u/v²
Answer:
See below.
Step-by-step explanation:
[tex]\frac{u-x}{v-x}=\frac{u}{v^2} \\[/tex]
Cross multiply and distribute.
[tex]u(v-x)=v^2(u-x)\\uv-ux=uv^2-xv^2[/tex]
Move all the u to the left side:
[tex]uv-ux-uv^2=-xv^2[/tex]
Factor out a u:
[tex]u(v-x-v^2)=-xv^2[/tex]
Divide:
[tex]u=\frac{-xv^2}{v-x-v^2}=\frac{xv^2}{x+v^2-v}[/tex]
(I factored out a negative in the second term.)
A students wants to report on the number of movies her friends watch each week. The collected date are below:
0, 0, 1, 1, 2, 2, 2, 14
which measure of center is most appropriate for this situation and what's its value?
A.) Median; 1.5
B.) Median; 3
C.) Mean; 1.5
D.) Mean; 3
Answer:
A.) median; 1.5
Step-by-step explanation:
Hello!
The median is the number that is in the middle when the numbers are listed from least to greatest
0, 0, 1, 1, 2, 2, 2, 14
We can take one from both sides till there are one or two numbers left
0, 1, 1, 2, 2, 2
1, 1, 2, 2
1, 2
If there are two numbers left we add them then divide by 2 to get the median
1 + 2 = 3
3 / 2 = 1.5
The answer is A.) median; 1.5
Hope this helps!
Please Help me with this math question
On Wednesday at camp, Samuel went for a hike at 6:30 A.M. The hike took 2 hours and 15 minutes. As soon as he got back from the hike, Samuel played volleyball for 1 hour. What time did Samuel finish playing volleyball?
Answer:
9:45 A.M.
Step-by-step explanation:
First, add the time that took him to hike:
6:30 + 2 hours and 15 minutes = 8:45 A.M.
Next, add the 1 hour that he played volleyball for:
8:45 + 1 hour = 9:45 A.M.
So, he finished playing volleyball at 9:45 A.M.
Answer:
9:45 am
Step-by-step explanation:
He went at 6:30 am to a hike.
It took him 2 hours 15 minutes
=> 6 : 30
+ 2 15
=> 8 : 45
He came back from the Hike at 8:45 am
He played volleyball for 1 hour.
=> 8 : 45
+ 1
=> 9 : 45
He finished playing volleyball at 9:45 am
Triangle Q M N is shown. The length of Q M is 18, the length of M N is 17, and the length of Q N is 20. Law of cosines: a2 = b2 + c2 – 2bccos(A) What is the measure of AngleQ to the nearest whole degree? 43° 49° 53° 58°
The measure of angle Q in the triangle QMN is 52.83°
What is an equation?An equation is an expression that shows the relationship between two or more variables and numbers.
For a triangle with sides a, b, c and respective opposite angles A, B, C, cosine rule is:
a² = b² + c² - 2bc * cos(A)
In triangle QMN, QM = 18, MN = 17, QN = 20, hence:
17² = 18² + 20² - 2(18)(20) * cos(Q)
Q = 52.83°
The measure of angle Q in the triangle QMN is 52.83°
Find out more on equation at: https://brainly.com/question/2972832
#SPJ2
Answer:
53
Step-by-step explanation:
its rounded
Kapil deposited Rs. 1600 in a bank on 1st January 2005. Find the amount in his bank account on 1st January 2006, if the bank pays interest at 8% per annum and the interest is calculated every year on 30th June and 31st December.
Answer:
SI=PRT/100
=10000*5*42/12*100
=1750
SI=1750
TOTAL AMOUNT=PRINCIPLE+SI
=10000+1750
=101750
Help with this find the image of (1 ,2) after a reflection about y=x followed by a reflection about y=-x
Answer: (-1, -2)
Step-by-step explanation:
so at first you have (1, 2)
then you were asked to reflect about y=x which is (x, y) = (y, -x)
(1, 2) = (2, -1)
then followed by y=-x which is (x, y) = (-y, -x)
(2, -1) = (-1, -2)
I hope this helps!
The sum of the ages of Noi's and Noy's is 26 years. The different between four times Noi's age and two times Noy's age is 28 years. Find the age of Noi and Noy.
WRITE AS AN EQUATION
Answer:
The age of Noi is 13.333 Years and the age of Noy is 12.67 years
Step-by-step explanation:
The given information are;
The sum of the ages of Noi and Noy = 26 years
Four times Noi's age - Two times Noy's age = 28
Let the age of Noi = X and let the age of Noy = Y
We have;
X + Y = 26 years.................(1)
4X - 2Y = 28 years.............(2)
Divide equation (2) by 2 to get;
(4X - 2Y)/2 = (28 years)/2 which gives;
2X - Y = 14 years.................(3)
Add equation (3) to equation (1), to get;
X + Y + 2X - Y = 26 years + 14 years
3X = 40 years
X = 40/3 = 13.333 Years
From equation (1), X + Y = 26 years, therefore;
Y = 26 - X = 26 - 13.33 = 12.67 years
Therefore, the age of Noi = 13.333 Years and the age of Noy = 12.67 years.
Thomas had 19 problems correct of the 25 problems on a recent math quiz. What percent of the
problems on the quiz did he answer correctly?
A.
24%
B. 36%
C. 76%
D.95%
Hey There!!
Your best choice is 76%
Because, 19/25 = x/100
25x = 1900
x = 76
°He got 76% correct!!°
By °Itsbrazts°
Answer:
76%
Step-by-step explanation:
Thomas got 19/25 marks.
** Note: Percents are always out of 100.
We don't know how many marks he got out of 100.
=> 19/25 = x/100
There are two ways to solve it from now.
=> Multiply 19 and 100; 25 and x
=> 25x = 1900
Next, Divide 25 on each side.
=> 25x/25 = 1900/25
=> x = 76
He got 76% on the quiz.
Another way is:
=> 19/25 = x/100
=> We need to divide 25 from 100.
=> We get 4.
So, 25 x 4 = 100
=> 19 x 4 = x
=> x = 76
He got 76% on the quiz.
Both ways are correct.
The height of the sail on a boat is 7 feet less than 3 times the length of its base. If the The area of the sail is 68 square feet, find its height and the length of the base.
Step-by-step explanation:
It is given that,
The height of the sail on a boat is 7 feet less than 3 times the length of its base.
Let the length of the base is x.
ATQ,
Height = (3x-7)
Area of the sail is 68 square feet.
Formula for area is given by :
[tex]A=lb\\\\68=x(3x-7)\\\\3x^2-7x=68\\\\3x^2-7x-68=0[/tex]
x = 8 feet and x = -3.73 feet
So, length is 8 feet
Height is 3(8)-7 = 17 feet.
So, its height and the length of the base is 17 feet and 8 feet respectively.
How many solutions does the nonlinear system of equations graphed below
have?
y
10+
-10
10
-10
A. One
B. Two
0
O
C. Four
O
D. Zero
Answer:
D. zero
Step-by-step explanation:
Since the graphs do not intersect, there are zero solutions.
The number of solutions on the graph is zero
How to determine the number of solutions?The graph shows a linear equation (the straight line) and a non linear equation (the curve)
From the graph, we can see that the straight line and the curve do not intersect
This means that the graph do not have any solution
Hence, the number of solutions on the graph is zero
Read more about non-linear graphs at:
https://brainly.com/question/16274644
#SPJ5
If the sphere shown above has a radius of 17 units, then what is the approximate volume of the sphere?
A.
385.33 cubic units
B.
4,913 cubic units
C.
6,550.67 cubic units
D.
3,275.34 cubic units
Answer:
20582.195 unitsStep-by-step explanation:
This problem is on the mensuration of solids.
A sphere is a solid shape.
Given data
radius of sphere = 17 units
The volume of a sphere can be expressed as below
[tex]volume = \frac{4}{3}\pi r^3[/tex]
Substituting our data into the expression we have
[tex]volume = \frac{4}{3}*3.142*17^3[/tex]
[tex]volume = \frac{4}{3}*3.142*4913\\\\volume = \frac{61746.584}{3}= 20582.195[/tex]
The volume of the sphere is given as
20582.195 units
Could someone clarrify this for me Factor completely 3x^2 + 2x − 1. (3x + 1)(x − 1) (3x + 1)(x + 1) (3x − 1)(x + 1) (3x − 1)(x − 1)
Answer:
(3x-1) (x+1)
Step-by-step explanation:
3x^2 + 2x − 1
3x^2 factors into 3x and x
-1 factors into -1 and 1
We want a postive 2x
(3x-1) (x+1)
Answer:
(3x-1)(x+1)
Step-by-step explanation:
3x² + 2x − 1
when factorizing , first look at the constant number( in this case it is 1 prime number), then find the GCF if found.
(3x )(x ) first step : 3x*x=3x^2
(3x- ) (x+ ) the sign for the constant is minus so the factoring has to be minus and plus on each side
(3x-1)(x+1) look at the 2x it has positive sign, means the sign is plus:
3x-1
x+1
regular standard multiplication
3x(x)-1(x)+1(3x)-1
3x²+2x-1
20 POINTS! ***CORRECT*** ANSWER GETS BRAINLIEST!!!!
The fraction model below shows the steps that a student performed to find a quotient.
Which statement best interprets the quotient?
A. There are 5 1/6 three-fourths in 4 1/8
B. There are 5 1/6 three and one-eights in 3/4
C. There are 5 1/2 three and one-eights in 3/4
D. There are 5 1/2 three-fourths in 4 1/8
Answer:
(D) There are [tex]5 \frac{1}{2}[/tex] three-fourths in [tex]4 \frac{1}{8}[/tex]
Step-by-step explanation:
We can see that in this model, the student tried to put [tex]\frac{3}{4}[/tex] into [tex]4 \frac{1}{8}[/tex]. We know this because the top of Step 2 is [tex]4 \frac{1}{8}[/tex] and he is counting how many fourths in the bottom.
So this becomes the division statement:
[tex]4 \frac{1}{8} \div \frac{3}{4}[/tex].
We can convert [tex]4 \frac{1}{8}[/tex] into a mixed number by multiplying 8 and 4, then adding 1.
[tex]\frac{33}{8} \div \frac{3}{4}[/tex].
Multiply by the reciprocal:
[tex]\frac{33}{8} \cdot \frac{4}{3} = \frac{132}{24}[/tex]
Which simplifies down to
[tex]\frac{11}{2}[/tex], which is just [tex]5 \frac{1}{2}[/tex] in improper form.
Hope this helped!
Answer:
D
Step-by-step explanation:
how do you find the length of the hypotenuse when you have only the length of the altitude of the hypotensuse and a length of a leg?
Answer:
By using The Pythagorean Theorem:
[tex]/Hypotenuse/^{2} = /Length of altitude/^{2} + /Length of leg/^{2} \[/tex]
/Hypotenuse/ = [tex]\sqrt\ /Length of altitude/^{2} + /Length of leg/^{2} \}[/tex]
Step-by-step explanation:
The Pythagorean theorem states that: Given a Right-angled triangle, the square of the hypotenuse equals the sum of squares of the other two sides ( Here, being the length of the altitude and length of leg). That is,
[tex]/Hypotenuse/^{2} = /Length of altitude/^{2} + /Length of leg/^{2} \[/tex] and hence,
/Hypotenuse/ = [tex]\sqrt\ /Length of altitude/^{2} + /Length of leg/^{2} \}[/tex]
For example, If the length of the altitude is 4m and the length of leg is 3m. Using The Pythagorean theorem, the length of the hypotenuse will be
[tex]/Hypotenuse/^{2} = /Length of altitude/^{2} + /Length of leg/^{2} \\\/Hypotenuse/ = \sqrt{/Length of altitude/^{2} + /Length of leg/^{2}} \\/Hypotenuse/ = \sqrt{4^{2} + 3^{2} }[/tex]
[tex]/Hypotenuse/ = \sqrt{16+9} \\/Hypotenuse/ = \sqrt{25} \\/Hypotenuse/ = 5m[/tex]
The length of the hypotenuse for the given example will be 5m.
This is how to find the length of an hypotenuse.
what is the value of the discriminant of the quadratic equation −1 = 5x2 −2x, and what does its value mean about the number of real number solutions the equation has?
Answer:
-16, 0 real solutions. (Complex Roots)
Step-by-step explanation:
[tex]5x^2-2x=-1\\5x^2-2x+1\\A=5\\B=-2\\C=1\\(-b±√(b^2-4ac))/2a\\=\\=-2^2-4(5)(1)\\=4-20\\=-16[/tex]
PLEASE HELP ASAP!!
The image above shows two dilated figures with lines IJ and JK drawn. If the smaller figure was dilated by a scale factor of 2, what relationship do lines IJ and KL have?
Answer:
[tex] IJ = 2(KL) [/tex]
Step-by-step explanation:
From the information given, the smaller figure was dilated on a scale factor of 2, to produce the bigger figure. In essence, the bigger figure is times 2 of the smaller figure.
Therefore, line IJ would be twice the length of KL.
The relationship that both lines have can be represented as: [tex] IJ = 2(KL) [/tex]
Use distributive property to evaluate the expression 5(4/1/5)
Answer:
21
Step-by-step explanation:
4[tex]\frac{1}{5}[/tex] = [tex]\frac{21}{5}[/tex]
5 × [tex]\frac{21}{5}[/tex] = (5×21)/5
[tex]\frac{105}{5}[/tex] = 21
Need help on the third question. how do i generalise the number of ways to win.(check the attatchment)
Answer:
2n+2 ways to win
Step-by-step explanation:
You generalize by observing patterns in the way you solve the smaller problems.
The number of winning moves is 2n+2: the total of the number of diagonals, columns, and rows.
For an n×n board, there are 2 full-length diagonals, n columns, and n rows, hence 2+n+n = 2n+2 ways to win.
If f(x) = 4x + 15, then f(-3) = ?
Answer:
[tex]\Huge \boxed{3}[/tex]
Step-by-step explanation:
The function is given :
f(x) = 4x + 15
For f(-3), the input for the function f(x) is -3.
Replace the x variable with -3.
f(-3) = 4(-3) + 15
Evaluate.
f(-3) = -12 + 15
f(-3) = 3
The output for f(-3) is 3.
Answer: f(-3) = 3
Step-by-step explanation: Notice that f is a function of x.
So we want to find f(-3).
We find f(-3) by plugging -3 in for x,
everywhere that x appears in the function.
So we have 4(-3) + 15.
4(-3) is -12 so we have -12 + 15 which is 3.
So f(-3) is 3.
Which type(s) of symmetry does the following object have?
Select all that apply.
Answer: You are correct. There is only one answer and that is choice B) vertical line of symmetry.
We can draw a vertical line through the center to have one half mirror over this line to get the other half. We can't do the same with a horizontal line or any other kind of line.
We do not have rotational symmetry. Rotating the figure will produce an image different from the original. The angle of rotation is some angle x such that 0 < x < 360.
Answer:
Theres more than one answer so b and a
Step-by-step explanation:
Please answer this question now
Answer:
156.6 square yards
Step-by-step explanation:
To find the surface area of the pyramid, find the area of each surface and add them together.
formula for area of a triangle = 1/2(b·h)
1. There are three triangles with a base of 9 and a height of 9
1/2(9·9) = 40.5
Multiply by the three triangles
40.5 · 3 = 121.5
2. There is one triangle with a base of 9 and a height of 7.8
1/2(9·7.8) = 35.1
3. Add the areas of all surfaces
121.5 + 35.1 = 156.6
Given: m∠V=103°, m∠VRT=71°, RS ∥ VU Find: m∠TRS, m∠U
Answer:
m∠U = 103° and m∠TRS = 6°
Step-by-step explanation:
In the given circle O,
Since, RS║VU, and VR is a transverse,
Therefor, m∠V + m∠R = 180° [Consecutive interior angles]
m∠R + 103° = 180° [m∠R = 103° given]
m∠R = 180° - 103°
m∠R = 77°
Since m∠R = m∠VRT + m∠TRS
77° = 71° + m∠TRS
m∠TRS = 77° - 71° = 6°
Quadrilateral RTUV is a cyclic quadrilateral.
Therefore, m∠U + m∠R = 180°
m∠U + 77° = 180°
m∠U = 180° - 77° = 103°
(a²b²-c²)(a²b²+c²)
simplify
Answer:
a⁴b⁴ - c⁴
Step-by-step explanation:
The difference of squares formula states that (a - b)(a + b) = a² - b². In this case, a = a²b² and b = c² so a² - b² = (a²b²)² - (c²)² = a⁴b⁴ - c⁴.
Answer:
a^4b^4 - c^4.
Step-by-step explanation:
(a²b²-c²)(a²b²+c²)
Difference of 2 squares:
= (a²b²)^2 - (c²)^2
= a^4b^4 - c^4.
Which graph solves the following system? x+2y=4 5x−2y=8
Answer:
elimination method
x+2y=4 1
5x-2y=8 2
1+2
6x=12
x=2
plug into x+2y=4
2+2y=4
2y=4-2
2y=2
y=1
(2,1)
so graph 1
Find the missing probability. P(A)=720,P(B)=35,P(A∩B)=21100 ,P(A∪B)=?
The missing probability P(A∪B) will be 37/50.
What is the probability?Probability refers to a possibility that deals with the occurrence of random events.
The probability of all the events occurring need to be 1.
Given information;
P(A)= 7/20,
P(B)=3/5,
P(A∩B) =21/100 ,
We need to find the missing probability P(A∪B).
We know that
P(A∪B)= P(A) + P(B) + P(A∩B)
P(A∪B) = 7/20 + 3/5 + 21/100
P (A U B) = 37/50
Therefore, the missing probability P(A∪B) will be 37/50.
Learn more about probability here;
https://brainly.com/question/11234923
#SPJ5
PLEASE HELP! 20 POINTS 1) A ball is thrown starting at a time of 0 and a height of 2 meters. The height of the ball follows the function H(t)=−4.9t2+25t+2. What is the height of the ball at each second from 0 to 5? (I'll put a picture of the graph.) 2) Which expression could represent the height of a soccer ball as it is in the air after being kicked? (This is part 2 to question 1) A. −16t+9 B. −16t2+4t3 C. 9t2+25t D. −16t2+25t+1
Answer:
a or b
Step-by-step explanation:
it just looks like b or a
H(t) = -4.9t^2 + 25t + 2
Height is a function of time
plug in 0, 1,2,3,4, and 5 to find the height at 0, 1,2,3,4, and 5 seconds.
at t = 0
H(0) = -4.9(0)^2+25(0) + 2 = 2 meters
Repeat for T=1,2,3,4 and 5
Notice the ball peaks around t = 3 seconds and starts to descend.
H(1) = (-4.9)(1^2) + 25(1) + 2 = 22.1 meters
H(2) = (-4.9)(2^2)+25(2)+2=32.4 meters
H(3) = 32.9 meters
H(4) = 23.6 meters
H(5) = 4.5 meters
PLEASE HELP Polynomial Graph Studies Polynomials are great functions to use for modeling real-world scenarios where different intervals of increase and decrease happen. But polynomial equations and graphs can be trickier to work with than other function types. In mathematical modeling, we often create an equation to summarize data and make predictions for information not shown on the original display. In this activity, you’ll create an equation to fit this graph of a polynomial function. Part A Describe the type of function shown in the graph. Part B What are the standard form and the factored form of the function? Part C What are the zeros of the function? Part D Use the zeros to find all of the linear factors of the polynomial function. Part E Write the equation of the graphed function f(x), where a is the leading coefficient. Use the factors found in part D. Express the function as the product of its leading coefficient and the expanded form of the equation in standard form. Part F Use the y-intercept of the graph and your equation from part E to calculate the value of a. Part G Given what you found in all of the previous parts, write the equation for the function shown in the graph.
Answer:
Here's what I get
Step-by-step explanation:
Part A
The graph shows a polynomial of odd degree. It is probably a third-degree polynomial — a cubic equation.
Part B
The standard form of a cubic equation is
y = ax³ + bx² + cx + d
The factored form of a cubic equation is
y = a(x - b₁)(x² + b₂x + b₃)
If you can factor the quadratic, the factored form becomes
y = a(x - c₁)(x - c₂)(x - c₃)
Part C
The zeros of the function are at x = -25, x = - 15, and x = 15.
Part D
The linear factors of the function are x + 25, x + 15, and x - 15.
Part E
y = a(x + 25)(x + 15)(x - 15) = a(x + 25)(x² - 225)
y = a(x³ + 25x² - 225x - 5625)
Part F
When x = 0, y = 1.
1 = a[0³ +25(0)² - 225(0) - 5625] = a(0 + 0 - 0 -5625) = -5625a
a = -1/5625
Part G
[tex]y = -\dfrac{1}{5625}( x^{3} + 25x^{2} - 225x - 5625)\\\\y = \mathbf{ -\dfrac{1}{5625} x^{3} - \dfrac{1}{225}x^{2} + \dfrac{1}{25} x + 1}[/tex]
Answer
Actually, the answer should be -0.0007(x+20)(x+5)(x-15)
Step-by-step explanation:
This is continuing off of the previous answer
PART C
The zeros should be (15,0), (-5,0), and (-20,0)
PART D
x - 15, x + 5, and x + 20
PART E
a(x - 15)(x + 5)(x + 20)
Standard: [tex]a(x^{3} + 10x^{2} -275x-1500)[/tex]
PART F
The y-intercept is at (0,1), so we replace the x's with 0:
1 =[tex][(0)x^{3} +10(0)x^{2} -275(0)-1500][/tex] and this gives us (0+0-0-1500) which also equals -1500
Then we do [tex]\frac{1}{-1500}[/tex] which gives us -0.0006 repeating which rounds to -0.0007
a= -0.0007
PART G
Just place the numbers where they should go and your answer is
y =-0.0007(x + 20)(x + 5)(x - 15)
the placement for (x + 20) (x + 5) and (x - 15) doesn't matter as long as they are behind -0.0007
Will someone please help me with this problem!! **It's multiple choice!
A = (-7,-6)
B = (8,-9)
Find the slope of line AB
m = (y2-y1)/(x2-x1)
m = (-9-(-6))/(8-(-7))
m = (-9+6)/(8+7)
m = -3/15
m = -1/5
The slope of line AB is -1/5.
Flip the fraction and the sign to go from -1/5 to +5/1 = 5. The perpendicular slope is 5.
Let m = 5.
Use the coordinates of point C (2,12) along with the perpendicular slope to get
y - y1 = m(x - x1)
y - 12 = 5(x - 2)
y - 12 = 5x - 10
y = 5x - 10+12
y = 5x + 2
Lastly, convert this to standard form
y = 5x + 2
5x+2 = y
5x+2-y = 0
5x-y = -2
Choice A is the closest match, but the -56 should be -2 instead. It seems like your teacher made a typo somewhere.
Answer:
5x - y = -2.
Step-by-step explanation:
The equation of this altitude line has a slope = -1/m where m is the slope of line AB . It will also pass through the point C.
The slope of line AB = (-9 - (-6)) / (8 - (-7))
= -3/15
= -1/5
So the slope of the required line = -1 / -1/5 = 5.
Using the point C and the point-slope form of a line:
y - y1 = m(x - x1)
y - 12 = 5(x - 2)
y - 5x = -10 + 12
y - 5x = 2
5x - y = -2.
The number of polynomials having zeros as -2 and 5 is a)1 b)2 c)3 d)more than 3
Answer:
d) More than 3.
Step-by-step explanation:
The polynomial (x - 5)(x + 2) ( = x^2 - 3x + 10) has zeros of -2 and 5 but so have the polynomials formed by multiplying this by any integer:
- for example 2(x - 5)(x + 2) , 4(x - 5)(x + 2) and so on.