. Two waves that have the same wavelengths and amplitudes are traveling in opposite directions on a string. If each wave has a speed of 10 m/s and there are moments when the string is not moving, what is the wavelength of the waves if the time between each moment that the string is flat is 0.5 s?

Answers

Answer 1

Answer:

10m

Explanation:

Since Given frequency f= 1/t

and velocity ν=10 m/s

We know ν=λf

λ= ν/f

​ = 10/1/0.5

=5m

Since both the waves are similar but moves in opposite direction its total wavelength of the wave will be 10 m


Related Questions

A semi-circular loop consisting of one turn of wire is place in the x-y plane. A constant magnetic field B=1.7T points along the negative z-axis(into the page), and a current I=0.7A flows counterclockwisefrom the positive z-axis. The net magnetic force on the circular section of the loop points in what direction? What is the net magnetice force on the circular section of the loop?

Answers

Answer:

The direction of net magnetic force on the circular section of the loop is in the positive y-axis

The net magnetic force on the circular section of the loop is 3.74 N

Explanation:

The magnetic field strength [tex]B[/tex] = 1.7 T

the current [tex]I[/tex] = 0.7 A

The diameter of the loop = 2 m

the length of the circular section of the semi-circular loop [tex]l[/tex] = πd/2

==> [tex]l[/tex] = (3.142 x 2)/2 = 3.142 m

The force on the semi-circular is given as

F = [tex]BIl[/tex] sin ∅

but the loop is perpendicular to the field, therefore

sin ∅ = sin 90° = 1

F = 1.7 x 0.7 x 3.142 x 1 = 3.74 N

The right hand rule states that "if the fingers of the right hand are held parallel to each other in the direction of the magnetic field, and the thumb is held at right angle to the other fingers in the direction of the flow of current. The palm will push in the direction of the magnetic force on the conductor".

According to the right hand rule, the direction of net magnetic force on the circular section of the loop is in the positive y-axis

You have a lightweight spring whose unstretched length is 4.0 cm. First, you attach one end of the spring to the ceiling and hang a 1.8 g mass from it. This stretches the spring to a length of 5.1 cm . You then attach two small plastic beads to the opposite ends of the spring, lay the spring on a frictionless table, and give each plastic bead the same charge. This stretches the spring to a length of 4.3 cm .

Requried:
What is the magnitude of the charge (in nC) on each bead?

Answers

Answer:

2.2nC

Explanation:

Call the amount by which the spring’s unstretched length L,

the amount it stretches while hanging x1

and the amount it stretches while on the table x2.

Combining Hooke’s law with Newton’s second law, given that the stretched spring is not accelerating,

we have mg−kx1 =0, or k = mg /x1 , where k is the spring constant. On the other hand,

applying Coulomb’s law to the second part tells us ke q2/ (L+x2)2 − kx2 = 0 or q2 = kx2(L+x2)2/ke,

where ke is the Coulomb constant. Combining these,

we get q = √(mgx2(L+x2)²/x1ke =2.2nC

6. You push an object, initially at rest, across a frictionless floor with a constant force for a time interval t, resulting in a final speed of v for the object. You then repeat the experiment, but with a force that is twice as large. What time interval is now required to reach the same final speed v?

Answers

Answer:

   t = t₀ / 2

Explanation:

In this exercise we must use Newton's second law

          F = m a

          a = F / m

now we can use kinematics

  as in object part of rest (v₀ = 0)

        v =a t₀

        t₀ = v / a

these results are with the first experiment

now repeat the experiment, but F = 2F₀

           a = 2F₀ / m = 2 a₀

          v = 2 a₀ t

          t = v / 2a₀

          t = t₀ / 2

The time interval that is required to reach the same final speed (V) is equal to [tex]t=\frac{\Delta t}{2}[/tex].

Given the following data:

Initial speed = 0 m/s (since the object is at rest)Final speed = VTime = [tex]\Delta t[/tex]Speed = V

To find the time interval that is now required to reach the same final speed (V), we would apply Newton's Second Law of Motion:

Mathematically, Newton's Second Law of Motion is given by this formula;

[tex]F = \frac{M(V-U)}{t}[/tex]

Where:

F is the force.V is the final velocity.U is the initial velocity.t is the time.

Substituting the given parameters into the formula, we have;

[tex]F = \frac{M(V-0)}{\Delta t}\\\\F = \frac{MV}{\Delta t}[/tex]

When the experiment is repeated, the magnitude of the force is doubled:

[tex]F = 2F[/tex]

Now, we can find the time interval that is required to reach the same final speed (V):

[tex]F = \frac{M(V-0)}{t}\\\\t=\frac{MV}{F}[/tex]

Substituting the value of F, we have:

[tex]t=\frac{MV}{2F} \\\\t=\frac{MV}{\frac{2MV}{\Delta t}} \\\\t=MV \times \frac{\Delta t}{2MV} \\\\t=\frac{\Delta t}{2}[/tex]

Read more here: https://brainly.com/question/24029674

A professor designing a class demonstration connects a parallel-plate capacitor to a battery, so that the potential difference between the plates is 275 V. Assume a plate separation of d 1.53 cm and a plate area of A = 25.0 cm2. when the battery is removed, the capacitor is plunged into a container of distilled water. Assume distilled water is an insulator with a dielectric constant of 80.0
(a) Calculate the charge on the plates in pC) before and after the capacitor is submerged. (Enter the magnitudes.)
before Qi = _____
after Qf = ______
(b) Determine the capacitance (in F) and potential difference (in V) after immersion
(c) Determine the change in energy (in n]) of the capacitor Δυ = nJ
(d) What If? Repeat parts (a) through (c) of the problem in the case that the capacitor is immersed in distilled water while still connected to the 275 V potential difference
Calculate the charge on the plates (in pC) before and after the capacitor is submerged. (Enter the magnitudes.)
Determine the capacitance (in F) and potential difference (in V) after immersion
Determine the change in energy (in nJ) of the capacitor AU nJ

Answers

Answer:

a)  Q = 397.57 pC , Q = 3.18 104 pC , b) C = 1.157 10⁻¹⁰ F ,  V = 3.4375 V ,

c)  U = 54.7 nJ ,  d) ΔU = 54 nJ,

Explanation:

a) The capacity of a capacitor is defined

        C = Q / V

        Q = C V

         

can also be calculated using geometry consideration

        C = e or A / d

         

we reduce to the SI system

       A = 25.0 cm² (1 m / 10² cm) 2 = 25.0 10⁻⁴ m²

       d = 1.53 cm = 1.53 10⁻² m

we substitute

         Q = eo A / d V

         Q = 8.85 10⁻¹² 25 10⁻⁴ / 1.53 10⁻² 275

         Q = 3.9757 10⁻¹⁰ C

         

let's reduce to pC

         Q = 3.9757 10⁻¹⁰ C (10¹² pC / 1 C)

          Q = 397.57 pC

when the capacitor is introduced into the water the dielectric constant is different

           Q = k Q₀

           Q = 80 397.57

           Q = 3.18 104 pC

b) Find capacitance and voltage after submerged in water

           C = k C₀

           C = 80 8.85 10⁻¹² 25 10⁻⁴ / 1.53 10⁻²

           C = 1.157 10⁻¹⁰ F

           V = Vo / k

            V = 275/80

            V = 3.4375 V

c) The stored energy is

             U = ½ C V²

              U = ½, 85 10⁻¹² 25 10⁻⁴ / 1.53 10⁻²     275²

             U = 5.47 10⁻⁸ J

let's reduce to nJ

              109 nJ = 1 J

               U = 54.7 nJ

d) energy after submerging

             U = ½ (kCo) (Vo / k) 2

             U = ½ Co Vo2 / k

             U = U₀ / k

             U = 54.7 / 80 nJ

              U = 0.68375 nJ

the energy change is

         ΔU = U₀ -U

          ΔU = 54.7 - 0.687375

           

(a) Charge on the plate before immersion, Qi is 5.258 x 10⁻³ pC and the charge after, Qf is 0.421 pC.

(b) The capacitance and potential difference after immersion is 1.157 x 10⁻¹⁰ F and 3.44 V respectively.

(c) The change in energy of the capacitor is 54.02 nJ.

Charge on the plate before immersion

The charge on the plate is calculated as follows;

[tex]Q =\frac{\varepsilon _o A}{Vd} \\\\Q_i = \frac{8.85 \times 10^{-12} \times (25 \times 10^{-4}) }{275\times 0.0153} \\\\Q_i = 5.258 \times 10^{-15} \ C\\\\Q_i = 5.258 \times 10^{-3} pC[/tex]

Charge on the plate after immersion

[tex]Q_f = k Q_i\\\\Q_f = 80 \times 5.258 \times 10^{-3} \ pC= 0.421 \ pC[/tex]

Capacitance and potential difference after immersion

[tex]C = \frac{k\varepsilon _o A}{d} \\\\C = \frac{80 \times 8.85 \times 10^{-12} \times (25\times 10^{-4} )}{0.0153} \\\\C = 1.157 \times 10^{-10} \ F[/tex]

[tex]V = \frac{V_0}{k}\\\\V = \frac{275}{80} \\\\V = 3.44 \ V[/tex]

Change in energy of the capacitor

The initial energy of the capacitor is calculated as follows;

[tex]U_i = \frac{1}{2} CV^2\\\\U_ i = \frac{1}{2} \times (\frac{\varepsilon _o A}{d} )V^2\\\\U_i = \frac{1}{2} \times (\frac{8.85\times 10^{-12} \times 25 \times 10^{-4}}{0.0153} )\times 275^2\\\\U_i = 5.47 \times 10^{-8} \ J\\\\U_i = 54.7 \ nJ[/tex]

The final energy of the capacitor is calculated as follows;

[tex]U_f = \frac{1}{2} (kC) \times (\frac{V}{k} )^2\\\\U_f = \frac{1}{2} C\times \frac{V^2}{k} \\\\U_f = \frac{1}{k} (\frac{1}{2} CV^2)\\\\U_f = \frac{U_i}{k} \\\\U_f = \frac{54.7 \ nJ}{80} \\\\U_f = 0.68 \ nJ[/tex]

Change in energy is calculated as follows;

[tex]\Delta U = U_i - U_f \\\\\Delta U = 54.7 \ nJ \ - \ 0.68 \ nJ\\\\\Delta U = 54.02 \ nJ[/tex]

Learn more about energy stored in a capacitor here: https://brainly.com/question/13578522

Which of the following frequencies could NOT be present as a standing wave in a 2m long organ pipe open at both ends? The fundamental frequency is 85 Hz.

Answers

Answer:

382Hz

Explanation:

The question lacks the required option. Find the complete question in the attachment.

The long organ pipe open at both ends is called an open pipe. The fundamental frequency for an open pipe is expressed as F0 = V/2L

Harmonics are integral multiples of the fundamental frequency. For open pipes its harmonics are 2fo, 3fo, 4fo, 5fo...

Given fundamental frequency f0 to be 85 Hz, the following frequencies will be present as a standing wave;

First overtone f1 = 2fo = 2(85) = 170Hz

Second overtone f2 = 3fo = 3(85) = 255Hz

Third overtone = 4fo = 4(85) = 340Hz

Based on the option it can be seen that the only frequency that is not present as a standing wave is 382Hz

An L-R-C series circuit has L = 0.450 H, C=2.50×10^−5F, and resistance R.

Required:
a. What is the angular frequency of the circuit when R = 0?
b. What value must R have to give a decrease in angular frequency of 10.0 % compared to the value calculated in Part a.

Answers

Answer:

298rad/s and 116.96 ohms

Explanation:

Given an L-R-C series circuit where

L = 0.450 H,

C=2.50×10^−5F, and resistance R= 0

In this situation we have a simple LC circuit with angular frequency

Wo = 1√LC

= 1/√(0.450)(2.50×10^-5)

= 1/√0.00001125

= 1/0.003354

= 298rad/s

B) Now we need to find the value of R such that it gives a 10% decrease in angular frequency.

Wi/W° = (100-10)/100

Wi/W° = 90/100

Wi/W° = 0.90 ............... 1

Angular frequency of oscillation

The complete aspect of the solution is attached, please check.

a. The angular frequency of the circuit when R = 0 Ohms is 294.12 rad/s.

b. The value R must have to give a decrease in angular frequency of 10.0 % compared to the initial value is equal to 116.96 Ohms.

Given the following data:

Inductance, L = 0.450 HenryCapacitance, C = [tex]2.50\times 10^{-5}[/tex] Farads

a. To determine the angular frequency of the circuit when R = 0 Ohms:

Mathematically, the angular frequency of a LC circuit is given by the formula:

[tex]\omega = \frac{1}{\sqrt{LC} } \\\\\omega =\frac{1}{\sqrt{0.450 \times 2.50\times 10^{-5}}} \\\\\omega =\frac{1}{\sqrt{1.125 \times 10^{-5}}} \\\\\omega = \frac{1}{0.0034} \\\\\omega = 294.12\;rad/s[/tex]

b. To find the value R must have to give a decrease in angular frequency of 10.0 % compared to the value calculated above:

The mathematical expression is given as follows:

[tex]\frac{\omega_f}{\omega_i} = \frac{100-10}{100} \\\\\frac{\omega_f}{\omega_i} =\frac{90}{100} \\\\\frac{\omega_f}{\omega_i} =0.9[/tex]

[tex](\frac{\omega_f}{\omega_i})^2 = 1 - \frac{R^2C}{4L} \\\\0.90^2=1 - \frac{R^2C}{4L}\\\\R=\sqrt{\frac{4L(1-0.81)}{C}} \\\\R=\sqrt{\frac{4\times 0.450 \times (0.19)}{2.50\times 10^{-5}}}\\\\R = \sqrt{\frac{0.342}{2.50\times 10^{-5}} }\\\\R =\sqrt{13680}[/tex]

R = 116.96 Ohms.

Read more: https://brainly.com/question/23754122

A uniform meter stick is hung at its center from a thin wire. It is twisted and oscillates with a period of 5 s. The meter stick is then sawed off to a length of 0.76 m, rebalanced at its center, and set into oscillation. With what period does it now oscillate?

Answers

Answer:

The new time period is  [tex]T_2 = 3.8 \ s[/tex]

Explanation:

From the question we are told that

  The period of oscillation is  [tex]T = 5 \ s[/tex]

   The  new  length is  [tex]l_2 = 0.76 \ m[/tex]

Let assume the original length was [tex]l_1 = 1 m[/tex]

Generally the time period is mathematically represented as

         [tex]T = 2 \pi \sqrt{ \frac{ I }{ mgh } }[/tex]

Now  I is the moment of inertia of the stick which is mathematically represented as

           [tex]I = \frac{m * l^2 }{12 }[/tex]

So

        [tex]T = 2 \pi \sqrt{ \frac{ m * l^2 }{12 * mgh } }[/tex]

Looking at the above equation we see that

        [tex]T \ \ \ \alpha \ \ \ l[/tex]

=>    [tex]\frac{ T_2 }{T_1} = \frac{l_2}{l_1}[/tex]

=>    [tex]\frac{ T_2}{5} = \frac{0.76}{1}[/tex]

=>     [tex]T_2 = 3.8 \ s[/tex]

Calcular la resistencia de una varilla de grafito de 170 cm de longitud y 60 mm2. Resistividad grafito 3,5 10-5 Ωm

Answers

Answer:

R = 0.992 Ω

Explanation:

En esta pregunta, dada la información que contiene, debemos calcular la resistencia de la varilla de grafito.

Matemáticamente,

Resistencia = (resistividad * longitud) / Área De la pregunta;

Resistividad = 3,5 * 10 ^ -5 Ωm

longitud = 170 cm = 1,7 m

Área = 60 mm ^ 2 = 60/1000000 = 6 * 10 ^ -5 m ^ 2

Conectando estos valores a la ecuación anterior, tenemos;

Resistencia = (3.5 * 10 ^ -5 * 1.7) / (6 * 10 ^ -5) =

(3.5 * 1.7) / 6 = 0.992 Ω

If a diode at 300°K with a constant bias current of 100μA has a forward voltage of 700mV across it, what will the voltage drop across this same diode be if the bias current is increased to 1mA? g

Answers

Answer:

the voltage drop across this same diode will be 760 mV

Explanation:

Given that:

Temperature T = 300°K

current [tex]I_1[/tex] = 100 μA

current [tex]I_2[/tex] = 1 mA

forward voltage [tex]V_r[/tex] = 700 mV = 0.7 V

To objective is to find the voltage drop across this same diode  if the bias current is increased to 1mA.

Using the formula:

[tex]I = I_o \begin {pmatrix} e^{\dfrac{V_r}{nv_T}-1} \end {pmatrix}[/tex]

[tex]I_1 = I_o \begin {pmatrix} e^{\dfrac{V_r}{nv_T}-1} \end {pmatrix}[/tex]

where;

[tex]V_r[/tex] = 0.7

[tex]I_1 = I_o \begin {pmatrix} e^{\dfrac{0.7}{nv_T}-1} \end {pmatrix}[/tex]

[tex]I_2 = I_o \begin {pmatrix} e^{\dfrac{V_r'}{nv_T}-1} \end {pmatrix}[/tex]

[tex]\dfrac{I_1}{I_2} = \dfrac{ I_o \begin {pmatrix} e^{\dfrac{0.7}{nv_T}-1} \end {pmatrix} }{ I_o \begin {pmatrix} e^{\dfrac{V_r'}{nv_T}-1} \end {pmatrix} }[/tex]

[tex]\dfrac{100 \ \mu A}{1 \ mA} = \dfrac{ \begin {pmatrix} e^{\dfrac{0.7}{nv_T}-1} \end {pmatrix} }{ \begin {pmatrix} e^{\dfrac{V_r'}{nv_T}-1} \end {pmatrix} }[/tex]

Suppose n = 1

[tex]V_T = \dfrac{T}{11600} \\ \\ V_T = \dfrac{300}{11600} \\ \\ V_T = 25. 86 \ mV[/tex]

Then;

[tex]e^{\dfrac{V_r'}{nv_T}-1} = 10 \begin {pmatrix} e ^{\dfrac{ 0.7} { nV_T} -1} \end {pmatrix}[/tex]

[tex]e^{\dfrac{V_r'}{nv_T}-1} = 10 \begin {pmatrix} e ^{\dfrac{ 0.7} { 25.86} -1} \end {pmatrix}[/tex]

[tex]e^{\dfrac{V_r'}{nv_T}-1} = 5.699 \times 10^{12}[/tex]

[tex]{e^\dfrac{V_r'}{nv_T}} = 5.7 \times 10^{12}[/tex]

[tex]{\dfrac{V_r'}{nv_T}} =log_{e ^{5.7 \times 10^{12}}}[/tex]

[tex]{\dfrac{V_r'}{nv_T}} =29.37[/tex]

[tex]V_r'=29.37 \times nV_T[/tex]

[tex]V_r'=29.37 \times 25.86[/tex]

[tex]V_r'=759.5 \ mV[/tex]

[tex]Vr' \simeq[/tex] 760 mV

Thus, the voltage drop across this same diode will be 760 mV

There is a hydraulic system that by means of a 5 cm diameter plunger to which a 5 N force is applied and that force is transmitted by means of a fluid to a 1 meter diameter plunger. Determine how much force can be lifted by the 1 m diameter plunger,

1) - 234 N
2) - 800 N
3) - 636 N
4) - 600 N

Answers

Explanation:

Pressure is the same for both plungers.

P = P

F / A = F / A

F / (¼ π d²) = F / (¼ π d²)

F / d² = F / d²

5 N / (0.05 m)² = F / (1 m)²

F = 2000 N

None of the options are correct.

Tech A says parallel circuits are like links in a chain. Tech B says total current in a parallel circuit equals the sum of the current flowing in each branch of the circuit. Who is correct?

Answers

Answer: Only Tech B is correct.

Explanation:

First, tech A is wrong.

The circuits that can be compared with links in a chain are the series circuit, and it can be related to the links in a chain because if one of the elements breaks, the current can not flow furthermore (because the elements in the circuit are connected in series) while in a parallel circuit if one of the branches breaks, the current still can flow by other branches.

Also in a parallel circuit, the sum of the currents of each path is equal to the current that comes from the source, so Tech B is correct, the total current is equal to the sum of the currents flowing in each branch of the circuit.

A locomotive is pulling three train cars along a level track with a force of 100,000N. The car next to the locomotive has a mass of 80,000kg, next one, 50,000kg, and the last one, 70,000 kg. you can neglect the friction on the cars being pulled.
A) what if the magnitude of the force between that the 80,000-kg car exerts on the 50,000-kg car?
B) what is the magnitude of the force that the 50,000-kg car exerts on the 70,000-kg car?

Answers

Answer:

a) 60000 N

b) 35000 N

Explanation:

Force from locomotive = 100000 N

mass of first car = 80000 kg

mass of second car = 50000 kg

mass of third car = 70000 kg

friction is neglected in this system

Total mass of the cars = 80000 + 50000 + 70000  = 200000 kg

All the car in the system will accelerate at the same rate since they are pulled by the same force

We know that force F = ma

where

a is the acceleration of the cars

m is the total mass in the system

from this we can say that

a = F/m

a = 100000/200000 = 0.5 m/s^2

a) The total mass involved in this case = mass of the last two cars after the 80000 kg car =  50000 + 70000 = 120000 kg

therefore force exerted F = ma

F = 0.5 x 120000 = 60000 N

b) The total mass in this case = mass of the third car only = 70000 kg

F = ma

F = 70000 x 0.5 = 35000 N

To celebrate a victory, a pitcher throws her glove straight upward with an initial speed of 5.0 m/s. How much time does it take for the glove to return to the pitcher

Answers

Answer:

The glove takes 1.02s to return to the pitchers hand.

Explanation:

Given;

initial velocity the pitcher's glove, u = 5 m/s

Apply kinematic equation

s = ut - ¹/₂gt²

where;

g is acceleration due to gravity = 9.8 m/s²

t is the time takes the glove to return to the pitchers hand

s is the displacement of the glove, which will be equal to zero when the glove returns to the pitchers hand. (s = 0)

0 = ut - ¹/₂gt²

ut = ¹/₂gt²

u = ¹/₂gt

gt = 2u

t = (2u) / g

t = (2 x 5) / 9.8

t = 1.02 s

Therefore, the glove takes 1.02s to return to the pitchers hand.

A woman was told in 2020 that she had exactly 15 years to live. If she travels away from the Earth at 0.8 c and then returns at the same speed, the last New Year's Day the doctors expect her to celebrate is:

Answers

Answer:

2035

Explanation:

The doctor does not travel with the woman, and therefore, he won't experience any relativistic effect on his time. The doctor will judge time by the time here on earth. Technically, the last new year's day the doctor, who is here on earth, would expect the woman to celebrate will be in 2020 + 15 years = 2035

If a train travels at a constant 18.0 m/s, how far would it move in one hour? In 1.00 minute? In 1.00 second?

Answers

Explanation:

Distance = speed × time

d = (18.0 m/s) (1 hr × 3600 s/hr)

d = 64,800 m

d = (18.0 m/s) (1 min × 60 s/min)

d = 1080 m

d = (18.0 m/s) (1 s)

d = 18.0 m

The magnitude of the magnetic field at point P for a certain electromagnetic wave is 2.12 μT. What is the magnitude of the electric field for that wave at P? (c = 3.0 × 108 m/s)

Answers

Answer:

The electric field is  [tex]E = 636 \ V/m[/tex]

Explanation:

From the question we are told that

     The magnitude of magnetic field is [tex]B = 2.12 \mu T = 2.12*10^{-6} \ T[/tex]

      The value for speed of light is  [tex]c = 3.0 *10^8 \ m/s[/tex]

Generally the magnitude of the electric field at point P is

        [tex]E = B * c[/tex]

substituting values

         [tex]E = 2.12 *10^{-6} * 3.0 *10^{8}[/tex]

         [tex]E = 636 \ V/m[/tex]

The magnitude of electric field for the wave at point P is 636 V/m.

Given data:

The strength of magnetic field at point P is, [tex]B = 2.12 \;\rm \mu T=2.12 \times 10^{-6} \;\rm T[/tex].

The speed of light is, [tex]c = 3.0 \times 10^{8} \;\rm m/s[/tex].

The given problem is based on the concept of electric field and magnetic field. The electromagnetic wave works on the principle of oscillating magnetic field and electric field at the same region. We can find any of the two using the expression,

[tex]E = B \times c[/tex]

here,

E is the strength of electric field.

Solving as,

[tex]E = (2.12 \times 10^{-6}) \times (3 \times 10^{8})\\\\E = 636 \;\rm V/m[/tex]

Thus, we can conclude that the magnitude of electric field for the wave at point P is 636 V/m.

Learn more about the electric field here:

https://brainly.com/question/15800304

If a convex lens were made out of very thin clear plastic filled with air, and were then placed underwater where n = 1.33 and where the lens would have an effective index of refraction n = 1, the lens would act in the same way
a. as a flat refracting surface between water and air as seen from the water side.
b. as a concave mirror in air.
c. as a concave lens in air.
d. as the glasses worn by a farsighted person.
e. as a convex lens in air.

Answers

Answer:

D. A convex lens in air

Explanation:

This is because the air tight plastic under water will reflect light rays in the same manner as a convex lens

Find the minimum thickness (in nm) of a soap bubble that appears green when illuminated by white light perpendicular to its surface. Take the wavelength to be 549 nm, and assume the same index of refraction as water (nw

Answers

Answer:

103nm

Explanation:

Pls see attached file

Which one of the following lists gives the correct order of the electromagnetic spectrum from low to high frequencies?
A) radio waves, infrared, microwaves, ultraviolet, visible, x-rays, gamma rays
B) radio waves, ultraviolet, x-rays, microwaves, infrared, visible, gamma rays
C) radio waves, microwaves, infrared, visible, ultraviolet, x-rays, gamma rays
D) radio waves, microwaves, visible, x-rays, infrared, ultraviolet, gamma rays
E) radio waves, infrared, x-rays, microwaves, ultraviolet, visible, gamma rays

Answers

Answer:

C) radio waves, microwaves, infrared, visible, ultraviolet, x-rays, gamma rays

Explanation:

radio waves have lowest  energy , lowest  frequency and highest  wavelength

gamma rays  have highest  energy , highest  frequency and least  wavelength

Answer: C

Explanation:

A stationary coil is in a magnetic field that is changing with time. Does the emf induced in the coil depend

Answers

Answer:

Explanation:

The e.m.f induced in the coil depend on the following :

(a) No. of turns in the coil

(b) Cross-sectional Area of the coil

(c) Magnitude of Magnetic field

(d) Angular velocity of the coil

A radiation worker is subject to a dose of 200 mrad/h of maximum QF neutrons for one 40 h work week. How many times the yearly allowable effective dose did she receive?

Answers

Answer:

16 times.

Explanation:

The rate of the radiation dose is , R = 200 ×10^{-3} rad/hr

Time consumed, t = 40 hr

The magnitude of Q.F for the neutrons, Q.F = 2

Thus the effective radiation dose is:

[tex]R_{Eff} = Rt(Q.F) \\= 200 \times 10^{-3} \frac{rad}{hr} (40hr)(2) \\= 16 \ rad[/tex]

Thus, the effective dose allowable yearly = 16 times

A weightlifter works out at the gym each day. Part of her routine is to lie on her back and lift a 43 kg barbell straight up from chest height to full arm extension, a distance of 0.53 m .
Part A: How much work does the weightlifter do to lift the barbell one time?
Part B: If the weightlifter does 23 repetitions a day, what total energy does she expend on lifting, assuming a typical efficiency for energy use by the body?
Part C: How many 500 Calorie donuts can she eat a day to supply that energy?

Answers

Answer:

A) Workdone = 223.57 N-m

B) 22357 J of energy

C) Number of donuts = 10.7 donuts

Explanation:

A) The work done is calculated from the formula;. Work done = Force × Distance

We are given;

Mass; m = 43 kg

Distance = 0.53 m

Force(weight) = mg = 43 × 9.81

Thus;

Work done = 43 × 9.81 × 0.53

Workdone = 223.57 N-m

B) We are told she does 23 repetitions a day.

Thus, we assume 23% efficiency.

So, Work = Energy

Thus;

At 100% efficiency;

Energy = (223.57/100%) × 23 repetitions = 5142.11 J

Now, since she is only 23% efficient, she will expend; 5142.11/0.23 J = 22357 J of energy to do 5390 J of work.

C) from conversions; 4.18 J = 1 calorie

Thus;

22357 J ÷ 4.18 J/cal = 5348.565 calories

We how many 500 calorie donuts she can eat in a day to supply that energy.

Thus;

Number of donuts = 5348.565 cal ÷ 500 cal /donut

Number of donuts = 10.7 donuts

When the electron is moving in the plane of the page in the direction indicated by the arrow, the force on the electron is directed:_____

a. into the page.
b. toward the left
c. toward the right
d. toward the bottom of the page.
e. toward the top of the page.
f. out of the page.

Answers

Answer: F

Out of the page.

Explanation:

For an electron with a charge of -e, the magnitude of the force on it is F = BeV

Where

F = force on the electron

e = charge ( electrons )

V = velocity

B = magnetic field

F is the force acting on all the electrons in a wire which gives rise to the F = BIL

Where

I = current

L = length of the wire

The force F is always at the right angle to the particle's velocity and its direction can be found using the left hand rule.

When the electron is moving in the plane of the page in the direction indicated by the arrow, the force on the electron is directed out of the page.

g A smart phone charger delivers charge to the phone, in the form of electrons, at a rate of -0.75 C/s . Part A How many electrons are delivered to the

Answers

Answer:

Approximately 5 x 10^18 electrons are delivered to the smart phone charger.

Explanation:

The electric current in a circuit is the flow of charges through a circuit with time.

The charges through the circuit are due to the electrons that flow through the circuit.

An individual electrons has a charge of -1.60 x 10^-19 C on it.

If the current through the circuit is -0.75 C/s, then the number of electrons that are delivered is gotten by dividing the charge per second by the charge on an electron.

==> -0.75/(-1.60 x 10^-19) = 4.67 x 10^18 electrons ≅ 5 x 10^18 electrons are delivered to the smart phone charger.

Are Quantum Physics, Quantum mechanics,Quantum Engagement same?
or, Do they branch of each others ​

Answers

Answer:

The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics lacking in classical mechanics. ... In the case of entangled particles, such a measurement will affect the entangled system as a whole

Explanation:

Answer:

quantum entanglement is thought to be one of the trickiest concepts in science, but the core issues are simple. And once understood, entanglement opens up a richer understanding of concepts such as the “many worlds” of quantum theory.

Explanation:

An optical disk drive in your computer can spin a disk up to 10,000 rpm (about 1045 rad/s ). If a particular disk is spun at 998.0 rad/s while it is being read, and then is allowed to come to rest over 0.502 seconds , what is the magnitude of the average angular acceleration of the disk?

Answers

Answer:

1988.05 rad/s^2

Explanation:

The angular speed of the optical disk ω = 998.0 rad/s

the time taken to come to rest t = 0.502 s

The magnitude of the average angular acceleration ∝ = ω/t

∝ = 998.0/0.502 = 1988.05 rad/s^2

A student uses a spring scale attached to a textbook to compare the static and kinetic friction between the textbook and the top of a lab
table. If the scale measures 1,580 g while the student is pulling the sliding book along the table, which reading on the scale could have been
possible at the moment the student overcame the static friction? (1 point)
1,860 g
820 g
1,580 g
1,140 g

Answers

Answer:

1,860 g

Explanation:

In a system, the coefficient of static friction is usually higher than the coefficient of kinetic friction. This means that the kinetic friction is usually less than the static friction. From the question, since the book is already sliding, it means that kinetic friction is the friction in play. This means that before the reading on the scale that could have been possible at the moment the student overcame the static friction must be greater than the reading on the scale during sliding. The only option above 1580 g is 1860 g

Radar is used to determine distances to various objects by measuring the round-trip time for an echo from the object. (a) How far away (in m) is the planet Venus if the echo time is 900 s? m (b) What is the echo time (in µs) for a car 80.0 m from a Highway Patrol radar unit? µs (c) How accurately (in nanoseconds) must you be able to measure the echo time to an airplane 12.0 km away to determine its distance within 11.5 m? ns

Answers

Answer:

a) 1.35 x 10^11 m

b) 0.53 µs

c) 8 ns

Explanation:

Radar involves the use of radio wave which has speed c = 3 x 10^8 m/s

a) for 900 s,

The distance for a round trip = v x t

==>  (3 x 10^8) x 900 =  2.7 x 10^11 m

The distance of Venus is half this round trip distance = (2.7 x 10^11)/2 = 1.35 x 10^11 m

b) for a 80.0 m distance of the car from the radar source, the radar will travel a total distance of

d = 2 x 80 = 160 m

the time taken = d/c = 160/(3 x 10^8) = 5.3 x 10^-7 s = 0.53 µs

c) accuracy in distance Δd = 11.5 m

Δt = accuracy in time = Δd/c = 11.5/(3 x 10^8) = 3.8 x 10^-8 = 38 ns

You are performing an experiment that requires the highest-possible magnetic energy density in the interior of a very long current-carrying solenoid. Which of the following adjustments increases the energy density?a. Increasing only the length of the solenold while keeping the turns per unit lengh flxed. b. Increasing the number of turns per unit length on the solenold. c. Increasing the cross-sectional area of the solenoid. d. None of these. e. Increasing the current in the solenoid.

Answers

Answer:

The correct choice is B & E.  

Explanation:

A solenoid is a coil of wire (usually copper) which is used as an electromagnet. Solenoids are used to convert electrical energy to mechanical energy. When this type of device is created it is also called a solenoid. One can increase the energy density within the solenoid or the coil by upping the electric current in the coil.

Cheers!

A hammer is used to hit a nail into a board. Which statement is correct about the forces at play between the nail and the hammer?
O The nail exerts a much smaller force on the hammer in the opposite direction
O The nail exerts a much smaller force on the hammer in the same direction.
The nail exerts an equal force on the hammer in the same direction.
O The nail exerts an equal force on the hammer in the opposite direction.

Answers

Answer:

reviewing the final statements, the correct one is the quarter

The nail exerts an equal force on the hammer in the opposite direction.

Explanation:

This is an action-reaction problem or Newton's third law, which states that forces in naturals occur in pairs.

This is the foregoing, the hammer exerts a force on the nail of magnitude F and it will direct downwards, if we call this action and the nail exerts a force on the hammer of equal magnitude but opposite direction bone directed upwards, each force is applied in one of the bodies.

The difference in result that each force is that the force between the nail exerts a very high pressure (relation between the force between the nail area), instead the area of ​​the hammer is much greater, therefore the pressure is small.

When reviewing the final statements, the correct one is the quarter

The nail exerts an equal force on the hammer in the opposite direction.

Other Questions
what is the value of 600.79-40.0032+5.01 to the nearest Hundredths Identify the statements that correctly describe the story of the ancient Hebrews . The people first had a polytheistic religion that involved worshiping many gods. The promises that God made to Abraham would happen only if Abraham obeyed God. Abraham was chosen by a prophet to be the next leader of the people. God referred to Abraham as Israel, which is how they got the name Israelites. The story of the ancient Hebrews is found in the Hebrew Bible. Twelve Israelite tribes formed the kingdom of Israel in the land of Canaan. Which of the following options have the same value as 75\%75%75, percent of 969696? The solutions to (x + 3)^2- 4=0 are x = -1 and x = -5True or false Moving to another question will save this response.Question 8Which of the following is NOT a reason for Alexander's success in conquering much of the known world?he learned from his father Philip of Macedonia, a brilliant military strategisthe slaughtered Greek foes but released foreign foes after conquesthe was intelligent enough to lead from the rear, thereby protecting himself from an early deathhe immortalized his name and reputation by naming conquered cities after himself and allowing the people to believe he descended from the gods (such as Achilles) 6th edition before we begin, let's first establish an understanding of basic terminology. it may be harder than you think to clearly define what is a chemical versus a chemical reaction. to help us better differentiate between closely related terms, review the words listed here. sort each of the words into the three categories: contains chemicals, chemical reaction, or neither. Someone please help me ASAP What type of chemist exclusively studies most carbon compounds?-biochemist-physical chemist-organic chemist-inorganic chemist A vertical cylinder with a heavy piston contains air at 300 K. The initial pressure is 2.0 x 105 Pa and the initial volume is 0.35 m3 . Take the molar mass of air as 28.9 g/mol and assume Cv= 5 2R. (A) Find the specific heat of air at constant volume in units of J kgK . (5 pts) (B) Calculate the mass of air in the cylinder. (5 pts) (C) Suppose the piston is fixed. Find the energy input required to raise the temperature to 700 K. (5 pts). (D) Assume again the conditions of the initial state and assume the piston is free to move. Find the energy input to raise the temperature to 700 K. (10 pts) Bianca took a job that paid $150 the first week. She was guaranteed a raise of 6% each week. How much money will she make in all over 8 weeks? Round the answer to the nearest cent. please answer with the reasoning, I want to learn how to solve this and not just get the answer. Thank you. Before an algebraic fraction is selected as a final answer what should you always check?That the power of the numerator is greater than the denominator.That the coefficients of the denominator are greater than those in the numerator.That the variables are all written in alphabetical order.That the fractions are reduced with all common factors canceled. Help will name brainliest Is plagiarism ok? If yes give an example of when it is acceptable to plagiarize. If no explain why not . What is the distance between the points (2, 10) and (-6,4) on the coordinateplane? The Curiosity rover now on Mars analyzed rocks and found magnesium to have the following isotopic composition. 79.70% Mg-24 (23.9872 amu), 10.13% Mg-25 (24.9886 amu), and 10.17% Mg-26 (25.9846 amu).A. How many neutrons are in Mg-25?B. What is the average atomic mass of magnesium in these rocks?C. Is the magnesium composition on Mars the same as that on Earth? Explain. The points shown on the graph represent the numbers in a geometric sequence.What is the initial value of the sequence? 1 2 3 8 Account for the change when NO2Cl is added using the reaction quotient Qc. Match the words in the left column to the appropriate blanks in the sentences on the right. 1. decreases2. loss 3. Increases4. greater A. Disturbing the equilibrium by adding NO2Cl______Qc to a value_____than Kc.B. To reach a new state of equilibrium, Qc therefore______which means that the denominator of the expression for Qc______. C. To accomplish this, the concentration of reagents______, and the concentration of products_______. Little Tots Gym has a required rate of return of 13%. The gym is considering the purchase of $12,500 of new equipment. The internal rate of return on the project has been calculated to be 11%. This project:________ g A chemist combines 59.9 mL of 0.282 M potassium bromide with 15.4 mL of 0.512 M silver nitrate. (a) How many grams of silver bromide will precipitate 4. .......how to stand up knowing what every man must one day know and most know many days, how to stand up. A. What message does the poet convey through these lines?B. Does the poet help the boy to stand up? Why / Why not? Sectoral shifts, frictional unemployment, and job searches Suppose the world price of steel falls substantially. The demand for labor among steel-producing firms in Pennsylvania will _____. The demand for labor among automobile-producing firms in Michigan, for which steel is an input, will _____. The temporary unemployment resulting from such sectoral shifts in the economy is best described as _____ unemployment.Suppose the government wants to reduce this type of unemployment. Which of the following policies would help achieve this goal? Check all that apply.a. Taxing the price of placing a resume or posting a job opening on a job-search websiteb. Improving a widely used job-search website so that it matches workers to job vacancies more effectivelyc. Increasing the benefits offered to unemployed workers through the government's unemployment insurance program