true or false compressed air can be used for cleaning as long as it is less than 30 psi

Answers

Answer 1

Answer:

True according to section 6(a) in the OSH act, compressed air can be used when cleaning if it is less than 30 Psi.


Related Questions

What is the electromagnetic force?A. a force that governs how elements break down naturallyB. a force that holds atomic nuclei togetherC. a force that attracts objects with mass towards each otherD. a force that acts on charged particles

Answers

Option D. The electromagnetic force is a force that acts on charged particles.

The electromagnetic force is a fundamental force of nature that acts on charged particles. It is one of the four fundamental forces of nature, the other three being the strong nuclear force, the weak nuclear force, and gravity. The electromagnetic force is responsible for all electromagnetic phenomena, including electricity, magnetism, and electromagnetic radiation. Charge is the property of matter that is responsible for the electromagnetic force.

All particles that have a charge, including electrons and protons, interact with the electromagnetic force. The electromagnetic force is mediated by the electromagnetic field, which is created by charged particles. When charged particles move, they create electromagnetic waves, which can travel through space at the speed of light.

The electromagnetic force is responsible for a wide range of phenomena, including the structure of atoms, the behavior of magnets, and the behavior of light. It is a very strong force, much stronger than the weak nuclear force and gravity, but weaker than the strong nuclear force. The electromagnetic force is responsible for the repulsion between like charges and the attraction between opposite charges. It is also responsible for the behavior of magnetic materials, such as iron, which can be magnetized by an external magnetic field.

Learn more about "electro magnetic force" at: https://brainly.com/question/3900938

#SPJ11

An object of mass m is initially at rest and free to move without friction in any direction in the xy-plane. A constant net force of magnitude F directed in the x direction acts on the object for 1 s. Immediately thereafter a constant net force of the same magnitude F directed in the y direction acts on the object for 1 s. After this, no forces act on the object. Write down the vectors that could represent the velocity of the object at the end of 3 s, assuming the scales on the x and y axes are equal

Answers

The graph would look like a series of two linear slopes, one going up and one going down.

A linear slope, also known as a straight-line slope, refers to the rate of change of a linear function, which is represented by a straight line on a graph. In mathematical terms, the slope is defined as the ratio of the change in the vertical coordinate (y) to the change in the horizontal coordinate (x) between any two points on the line.

The slope of a linear function is constant throughout the line, meaning that the rate of change remains the same regardless of the position on the line. Linear slopes are used in a variety of mathematical applications, including geometry, physics, engineering, and economics, among others. They are particularly useful for modeling relationships between two variables, such as distance and time, or price and quantity.

To learn more about Linear slopes visit here:

brainly.com/question/30352092

#SPJ4

what happens to a moist air mass as it moves upward in the atmosphere?

Answers

As moist air rises in the atmosphere, it cools and expands, which causes the moisture in the air to condense into clouds and precipitation.

A moist air mass is a volume of air with a high water vapor concentration. It is usually humid and can be found in tropical regions, where the temperature is high and the air is often saturated with water vapor. When this air mass rises in the atmosphere, it cools, and the water vapor begins to condense into clouds.

As the moist air mass rises in the atmosphere, it cools due to a decrease in pressure. The cooling causes the water vapor in the air to condense into clouds, and the clouds can then produce precipitation. The amount of precipitation that is produced will depend on factors such as the temperature, humidity, and the amount of moisture in the air mass.

For more question on precipitation click on

https://brainly.com/question/27695504

#SPJ11

an object is moving to the right in a straight line. the net force acting on the object is also directed to the right, but the magnitude of the force is decreasing with time. the object will

Answers

The object will decelerate over time, as the net force acting on it decreases. This is because the net force is the vector sum of all forces acting on the object.

What is the effect on object?

When an object is moving to the right in a straight line, and the net force acting on the object is also directed to the right, it means that there is no opposing force to halt its motion.

Therefore, the object will continue to move to the right in a straight line with constant speed since there is no change in the magnitude of the net force.

However, when the net force is directed to the right and is decreasing with time, the object's motion will be altered. The magnitude of the force is decreasing with time, so there will be less force acting on the object.

The force acting on the object is decreasing with time; thus, the object's acceleration will be less than before. As a result, the velocity of the object will decrease with time. Since there is no force opposing the motion, the object will continue to move to the right but with decreasing speed due to the decrease in net force acting on it.

Read more about force here:

https://brainly.com/question/12785175

#SPJ11

force 1 has a mangtiude of 7.5 and a direction that is 38 degrees to teh left of the y axis force 2 has a amgnitude of 12.2 and a direciton that is 31 degrees below the x axis what is the magnitude of the net force in units of n

Answers

The magnitude of the net force is 15.6 N.

Step by step explanation:

The net force is the combination of force 1 and force 2. The magnitude of the net force is calculated using the Pythagorean Theorem.

The x-component of the net force is the difference of the magnitudes of the two forces multiplied by the cosine of the difference of their directions.

The y-component of the net force is the difference of the magnitudes of the two forces multiplied by the sine of the difference of their directions.

The net force is then the square root of the sum of the squares of the x and y components. Thus, the magnitude of the net force is 15.6 N.

Learn more about force and magnitude at : https://brainly.com/question/30033702

#SPJ11

a clean nickel surface is exposed to light with a wavelength of 241 nm n m . the photoelectric work function for nickel is 5.10 ev e v . for related problem-solving tips and strategies, you may want to view a video tutor solution of a photoelectric-effect experiment. part a what is the maximum speed of the photoelectrons emitted from this surface?

Answers

The maximum speed of the photoelectrons emitted from the clean nickel surface is 6.70 × 10⁵ m/s.

Calculate the energy of a photon.E = hc/λwhere, h = Planck’s constant = 6.626 × 10⁻³⁴ Js, c = speed of light = 3 × 10⁸ m/sE = 6.626 × 10⁻³⁴ × 3 × 10⁸/241 × 10⁻⁹E = 8.21 × 10⁻¹⁸ J

Calculate the kinetic energy of the photoelectrons.

K.E. = E – W₀K.E. = 8.21 × 10⁻¹⁸ J – 5.10 × 1.6 × 10⁻¹⁹ J = 7.09 × 10⁻¹⁹ J

K.E. = 1/2 mv² where, m = mass of photoelectron, v = velocity of photoelectron, and K.E. = kinetic energy of photoelectronv = √(2K.E./m) = √[(2 × 7.09 × 10⁻¹⁹ J)/(9.1 × 10⁻³¹ kg)]v = 6.70 × 10⁵ m/s or 0.224c

So, the maximum speed of the photoelectrons emitted from this surface is 6.70 × 10⁵ m/s.

More on photoelectrons: https://brainly.com/question/16048908

#SPJ11

X-rays carry more energy than visible light. Compare the frequencies and wavelengths of these two types of EM radiation.

Answers

X-rays carry more energy than visible light. The frequency of X-rays is much higher than that of visible light, and their wavelengths are much shorter.

Electromagnetic waves are waves that transport electric and magnetic fields, fluctuating together in perpendicular planes. They are generated by the oscillation of charged particles, such as electrons. Electromagnetic radiation, often known as EM radiation, is another term for electromagnetic waves. X-rays are part of the electromagnetic spectrum that has a shorter wavelength than visible light.

The frequency of X-rays is much higher than that of visible light, and their wavelengths are much shorter. As a result, X-rays are more energetic and can penetrate through matter more easily than visible light. Visible light, on the other hand, has a longer wavelength and a lower frequency than X-rays. It is referred to as "visible" light because humans can see it. Visible light has a wavelength range of around 400-700 nanometers, with the red end of the spectrum having longer wavelengths and the violet end having shorter wavelengths.

For more question on visible light click on

https://brainly.com/question/26970988

#SPJ11

A fancart of mass 0.8 kg initially has a velocity of < 0.9, 0, 0 > m/s. Then the fan is turned on, and the air exerts a constant force of < -0.2, 0, 0 > N on the cart for 1.5 seconds. 1. What is the change in momentum of the fancart over this 1.5 second interval?(kg*m/s) 2.What is the change in kinetic energy of the fancart over this 1.5 second interval? (J) Thank you it is due tonight!

Answers

Answer:

Change in momentum: [tex]\langle -0.3,\, 0,\, 0\rangle\; {\rm kg \cdot m\cdot s^{-1}}[/tex].

Change in kinetic energy: approximately [tex](-0.2)\; {\rm J}[/tex].

Explanation:

Change in momentum [tex]\Delta p[/tex] is equal to the net impulse [tex]J[/tex] on the object. In order to find the net impulse [tex]J\![/tex], multiply the net force on the object [tex]F_{\text{net}[/tex] by the duration [tex]\Delta t[/tex]:

[tex]\begin{aligned} J &= F_{\text{net}}\, \Delta t \\ &= (1.5)\, \langle -0.2,\, 0,\, 0\rangle\; {\rm N\cdot s} \\ &= \langle -0.3,\, 0,\, 0\rangle\; {\rm kg \cdot m\cdot s^{-1}} \end{aligned}[/tex].

Since the change in momentum is equal to net impulse:

[tex]\Delta p = J = \langle -0.3,\, 0,\, 0\rangle\; {\rm kg \cdot m\cdot s^{-1}}[/tex].

Divide the change in momentum by mass [tex]m[/tex] to find the change in velocity [tex]\Delta v[/tex]:

[tex]\begin{aligned}\Delta v &= \frac{\Delta p}{m} \\ &= \frac{\langle -0.3,\, 0,\, 0\rangle}{0.8}\; {\rm m\cdot s^{-1}} \\ &\approx \langle -0.375,\, 0,\, 0\rangle\; {\rm m\cdot s^{-1}}\end{aligned}[/tex].

Thus, velocity has changed from [tex]u = \langle 0.9,\, 0,\, 0\rangle\; {\rm m\cdot s^{-1}}[/tex] to:

[tex]\begin{aligned} v &= u + \Delta v \\ &= \langle 0.9,\, 0,\, 0\rangle\; {\rm m\cdot s^{-1}} \\ &\quad + \langle -0.375,\, 0,\, 0\rangle\; {\rm m\cdot s^{-1}} \\ &= \langle 0.525,\, 0,\, 0\rangle\; {\rm m\cdot s^{-1}}\end{aligned}[/tex].

The initial kinetic energy (a scalar) was:

[tex]\begin{aligned}(\text{KE, initial}) &= \frac{1}{2}\, m\, {(\| u\|_{2})}^{2} \\ &\approx \frac{1}{2}\, (0.9^{2})\; {\rm J} \\ &=0.324\; {\rm J}\end{aligned}[/tex].

The new kinetic energy would be:

[tex]\begin{aligned}(\text{KE}) &= \frac{1}{2}\, m\, {(\| u\|_{2})}^{2} \\ &\approx \frac{1}{2}\, (0.525^{2})\; {\rm J} \\ &= 0.11025\; {\rm J}\end{aligned}[/tex].

Hence, the change in kinetic energy would be:

[tex]\begin{aligned} &(\text{KE}) - (\text{KE, initial}) \\ \approx\; & 0.324\; {\rm J} - 0.11025\; {\rm J}\\ \approx \; & (-0.2)\; {\rm J} \end{aligned}[/tex].

if the total mass is m , find the moment of inertia about an axis through the center and perpendicular to the plane of the square. use the parallel-axis theorem. express your answer in terms of the variables m and a .

Answers

The moment of inertia of the square about an axis through the center and perpendicular to the plane of the square is I = m a²/3.

Step by step explnation:

The moment of inertia about an axis through the center and perpendicular to the plane of the square can be found using the parallel-axis theorem. The moment of inertia about the center of the square is [tex]I_c_m[/tex] = (m a²)/6.

Using the parallel-axis theorem, the moment of inertia about an axis through the center and perpendicular to the plane of the square is I = [tex]I_c_m[/tex] + m a² = ma²/3.

Thus, the moment of inertia of the square about an axis through the center and perpendicular to the plane of the square is I = m a²/3.

Learn more about moment of inertia at : https://brainly.com/question/14119750

#SPJ11

how to accurately sample a waveform with a maximum frequency of 2khz, what would be the minimum sample rate

Answers

In order to accurately sample a waveform with a maximum frequency of 2kHz, the minimum sample rate would be 4kHz.

What is sampling a waveform?

A waveform is sampled by repeatedly measuring its value at regular intervals of time. The process of sampling a waveform is known as sampling. A continuous-time signal is converted to a discrete-time signal by this process. The sample rate determines the number of samples per unit time, and it is inversely related to the sampling interval.

The minimum sample rate that can be used to measure a waveform is determined by the Nyquist criterion, which states that the sample rate must be at least twice the maximum frequency present in the waveform. If the waveform has a maximum frequency of 2kHz, the Nyquist criterion indicates that the sample rate must be at least 4kHz.

Anything less than that will cause aliasing, which is when high-frequency components are mistaken for lower-frequency components because of undersampling.

Therefore, if a waveform has a maximum frequency of 2kHz, the minimum sample rate needed to accurately sample it is 4kHz, according to the Nyquist criterion.

Learn more about waveform: https://brainly.com/question/25699025

#SPJ11

A force f = bx 3 acts in the x direction, where the value of b is 3. 7 n/m3. How much work is done by this force in moving an object from x = 0. 00 m to x = 2. 7 m?

Answers

The work done by the force in moving the object from x = 0.00 m to x = 2.7 m is 69.03 J.

To calculate the work done by a force, we can use the following formula:

[tex]$$W = \int F(x) dx$$[/tex]

where F(x) is the force as a function of position, and the integral is taken over the distance the object is moved.

In this case, the force is given by [tex]$F(x) = bx^3 = 3.7x^3$[/tex] [tex]N/m^3[/tex] . The distance the object is moved is from x = 0.00 m to x = 2.7 m. Therefore, we can calculate the work done by the force as follows:

[tex]$$W = \int_{0.00}^{2.7} F(x) dx = \int_{0.00}^{2.7} (3.7x^3) dx $$[/tex]

[tex]$$W = \left[\frac{3.7x^4}{4}\right]_{0.00}^{2.7} = \left[\frac{3.7(2.7^4)}{4}\right] - \left[\frac{3.7(0.00^4)}{4}\right]$$[/tex]

[tex]$$W = 69.03 \text{ J}$$[/tex]

Therefore, the work done by the force in moving the object from x = 0.00 m to x = 2.7 m is 69.03 J.

To learn more about work done:

https://brainly.com/question/30699148

#SPJ4

Part ACharge q1 is distance r from a positive point charge Q. Charge q2=q1/3 is distance 2r from Q. What is the ratio U1/U2 of their potential energies due to their interactions with Q?Part BCharge q1 is distance s from the negative plate of a parallel-plate capacitor. Charge q2=q1/3 is distance 2s from the negative plate. What is the ratio U1/U2 of their potential energies?

Answers

The ratio of the potential energies U1/U2 of charges q1 and q2. The ratio of the potential energies U1/U2 of charges q1 and q2.

The ratio of the potential energies U1/U2 of charges q1 and q2 due to their interactions with point charge Q is equal to the ratio of the inverse squares of their respective distances from the charge Q: U1/U2 = (1/(r^2))/(1/(2r^2)) = 1/4.


The ratio of the potential energies U1/U2 of charges q1 and q2 due to their interactions with the negative plate of a parallel-plate capacitor is equal to the ratio of the inverse squares of their respective distances from the negative plate: U1/U2 = (1/(s^2))/(1/(2s^2)) = 1/4.

Learn more about ratio of potential energies: brainly.com/question/22088754

#SPJ11

Reflection, refraction, and the formation of images by mirrors and lenses has been successful described by the A) wave model of light. B) ray model of light. C) particle model of light. D) none of the given answers

Answers

The correct answer is B). Reflection, refraction, and the formation of images by mirrors and lenses has been successful described by the Ray Model of Light.

Reflection, refraction, and the formation of images by mirrors and lenses can be explained using the Ray Model of Light, which states that light travels in straight lines, called rays.

As an electromagnetic wave, light travels in straight lines along narrow beams of light, which are referred to as rays. Despite the fact that reflection or refraction can alter its path, light always moves in a straight line.

When light rays reflect off a surface or pass through a lens, the angle of reflection or refraction can be calculated using geometry and the law of reflection/refraction.

Learn more about "Reflection, refraction, and the formation" at : 'Snell's law' https://brainly.com/question/10112549

#SPJ11

what is the single most important property of a star that will determine its evolution?

Answers

The single most important property of a star that determines its evolution is its mass.

A star's mass determines its internal temperature, pressure, and nuclear reactions, which drive its energy production and ultimately its evolution. Low-mass stars, like red dwarfs, have relatively low internal temperatures and undergo a slow process of fusion that can last for trillions of years. On the other hand, high-mass stars, like blue giants, have much higher internal temperatures and undergo fusion much more quickly, leading to a shorter lifespan.

The mass of a star also determines whether it will eventually evolve into a white dwarf, neutron star, or black hole, making it the single most important factor in a star's evolution.

To learn more about mass refer to:

brainly.com/question/30337818

#SPJ4

A 1,600 kg car is moving at 22 m/s. How much work was done to accelerate it to this speed?
O 7.7 x 105 J
O 3.5 x 104 J
○ 3.9 × 105 J
O 1.5 x 106 J
!!! Urgent

Answers

The closest answer among the options given is 3.9 x 105 J. . An object can accelerate by increasing its speed, changing its direction, or both.

What is Acceleration?
Acceleration is the rate of change of velocity of an object over time. It is a vector quantity, meaning it has both magnitude and direction, and is expressed in units of meters per second squared (m/s^2) or feet per second squared (ft/s^2)

The work done to accelerate the car can be calculated using the kinetic energy formula:

K = 1/2 mv^2

Substituting the given values, we get:

K = 1/2 (1600 kg) (22 m/s)^2

K = 677,600 J

Therefore, the work done to accelerate the car to this speed is 677,600 J.

Learn more about Acceleration from given link

https://brainly.com/question/460763

#SPJ1

A block on a horizontal surface is placed in contact with a light spring with spring constant k, as shown in Figure 1. When the block is moved to the left so that the spring is compressed a distance d from its equilibrium length, the potential energy stored in the spring-block system is Em . When a second block of mass 2m is placed on the same surface and the spring is compressed a distance 2d, as shown in Figure 2, how much potential energy is stored in the spring compared to the original potential energy Em ? All frictional forces are considered to be negligible.

Answers

The required potential energy stored in the spring-block system, when the second block is placed on the surface and the spring is compressed by twice the distance, is four times the original potential energy Em.

Let's denote the original potential energy when the spring is compressed by distance d as Em. When the spring is compressed, it exerts a restoring force given by Hooke's Law:

F = -kx,

Where F is the restoring force, k is the spring constant, and x is the displacement from the equilibrium position.

When the spring is compressed by distance d, the potential energy stored in the system is given by:

[tex]E_m = \dfrac{1}{2} kd^2[/tex]

Now, let's consider the situation when the second block of mass 2m is placed on the surface, and the spring is compressed by a distance 2d. Since the spring is compressed by twice the distance, the displacement is 2d. In this case, the potential energy stored in the system can be calculated as:

[tex]E_2 = \dfrac{1}{2} k((2d)^2) \\E_2= 4\times \dfrac{1}{2}k(d^2) \\E_2= 4E_m[/tex]

Therefore, the potential energy stored is four times the original potential energy Em.

Learn more about energy in spring here:

https://brainly.com/question/29795045

#SPJ6

action potentials do not stay in one place, they are _____ throughout the entire sarcolemma like ripples in a pond.a. repolarization
b. endemic
c. point-source
d. propagated

Answers

d. propagated. Action potentials spread over the whole sarcolemma like pond ripples, never remaining in one spot. This indicates that an action potential spreads or propagates down.

the length of the membrane after being originated at a single location in the membrane. The electrical charge of the membrane fluctuates in response to the flow of ions, causing a sequence of depolarizations and repolarizations that serve as the basis for this propagation. The transmission of nerve impulses and the contraction of muscles depend on the propagation of action potentials, This indicates that an action potential spreads or propagates down. which also enables quick and efficient communication inside the body.

learn more about propagated here

https://brainly.com/question/20725306

#SPJ4

what is the relationship between the laser wavelength λ, the angle of the mth bright fringe, and the diffraction grating spacing d?

Answers

"The relationship between the laser wavelength λ, the angle of the m th bright fringe, and the diffraction grating spacing d is d sinθ = m λ."

Waves overlap as they spread out between slits. Constructive interference occurs along anti-nodal lines. Bright fringes are seen where anti-nodal lines intersect the viewing screen.

Diffraction gratings can be used to split light into its constituent wavelengths (colours). Although the output light intensity is typically much lower, it generally provides greater wavelength separation than a prism.

The bright fringes that result from constructive interference of the light waves from various slits are found at the same angles when light meets an entire array of identical, evenly spaced slits, known as a diffraction grating, as opposed to when there are only two slits. But the pattern is a lot more defined.

To know more about wavelength:

https://brainly.com/question/13034344

#SPJ4

air enters the compressor of a simple gas turbine power plant at 708f, 1 atm, is compressed adiabatically to 40 lbf/in.2, and then enters the combustion chamber where it burns completely with propane gas (c3h8) entering at 778f, 40 lbf/in.2 and a molar flow rate of 1.7 lbmol/h. the combustion products at 13408f, 40 lbf/in.2 enter the turbine and expand adiabatically to a pressure of 1 atm. the isentropic compressor efficiency is 83.3% and the isentropic turbine efficiency is 90%. determine at steady state(a) the percent of theoretical air required.(b) the net power developed, in horsepower.

Answers


In Isentropic turbine ,Net power developed = [(1/2.2) x (20,313 Btu/lbmol) x (1.7 lbmol/h)] / [(1.3558 x 10^5) x (0.903)] = 57.0 horsepower. Percent of theoretical air = 100 x [(1.7 lbmol/h)/(1.7 lbmol/h x [1/2.2])] = 77.3%

A) To determine the percent of theoretical air required, use the equation:


Percent of theoretical air = 100 x [(Actual mass of air used)/(Theoretical mass of air required)]


The theoretical mass of air required can be determined using the equation:


Theoretical mass of air = [(Mass of propane used)/(Combustion products of air-fuel ratio)]


The combustion products of air-fuel ratio can be determined by using the equation:


Air-fuel ratio = [Air/Fuel]


Using these equations, we can calculate the percent of theoretical air required:


Percent of theoretical air = 100 x [(1.7 lbmol/h)/(1.7 lbmol/h x [1/2.2])] = 77.3%


B) To determine the net power developed, in horsepower, use the equation:


Net power developed = [(Air-fuel ratio) x (Heat of combustion) x (Molar flow rate)] / [(1.3558 x 10^5) x (Thermal efficiency)]


Using these equations, we can calculate the net power developed:


Net power developed = [(1/2.2) x (20,313 Btu/lbmol) x (1.7 lbmol/h)] / [(1.3558 x 10^5) x (0.903)] = 57.0 horsepower.

For more such question on Isentropic turbine

https://brainly.com/question/14087805

#SPJ11

17. a particle moves in simple harmonic motion with a frequency of 3.00 hz and an amplitude of 5.00 cm. (a) through what total distance does the particle move during one cycle of its motion? (b) what is its maxi- mum speed? where does this maximum speed occur? (c) find the maximum acceleration of the particle. where in the

Answers

A) Through one cycle of its motion, the particle will move a total distance of 10.00 cm (2π*amplitude).

B) The maximum speed of the particle will occur at the equilibrium point (amplitude/2). This speed can be calculated by multiplying the frequency and the amplitude is 94.25 cm/s.

C) The maximum acceleration of the particle will be [tex]1732 \frac{cm}{s^2}[/tex] .The maximum acceleration will occur at the extremes of the particle's motion (amplitude).

Given:

A=5.00 cm, f=3.00 Hz

(A) The distance travelled by the particle is equivalent to double the amplitude: 2 × 5.00 cm = 10.00 cm.

(B) The formula for the frequency of a particle in simple harmonic motion is:

[tex]f=\frac{v}{\lambda}[/tex] where v = velocity and λ = wavelength.

To find the maximum speed of the particle, we'll use the following formula:

[tex]v=A\sqrt{\omega^2-t^2}[/tex]

The maximum velocity occurs at the equilibrium point (i.e. at t = 0).

ω = 2πf = 2π(3.00 Hz) = 18.85 rad/s

v = Aω = 5.00 cm × 18.85 rad/s = 94.25 cm/s

Thus, the maximum velocity of the particle is 94.25 cm/s, and it occurs at the equilibrium point.

(C) The acceleration formula is: a = −Aω²sin(ωt).

We can obtain the maximum acceleration by putting t = 0.

a = Aω² = (5.00 cm)(18.85 rad/s)² = 1732 cm/s².

The maximum acceleration of the particle is 1732 cm/s², and it occurs at the ends of the motion.

For more detail about simple harmonic motion, you can check below link:

https://brainly.com/question/30404816

#SPJ11

your cousin's eyes suddenly light up and he reaches out, executes a double-jump of your checker pieces, then smiles at you triumphantly. the brain signals for these voluntary actions originated in the of your cousin's brain.

Answers

The brain signals for these voluntary actions originated in the cerebrum of your cousin's brain.

Voluntary actions are actions that are planned or executed consciously. Involuntary actions occur naturally, without conscious control, and cannot be changed. When you see something interesting, your brain sends signals to your body that cause you to move your arms or legs, speak or even blink your eyes.

The cerebrum is the largest part of the human brain and it is located at the top and front of the brain. It is the region in the brain that is responsible for conscious thought, voluntary movement, sensation, and memory.

Learn more about signals: https://brainly.com/question/27826308

#SPJ11

Identify which of the following forces act on the bicycle + rider system, and sort them accordingly Drag the appropriate items to their respective binsgravitynormal forcestatic fractionair resistancekinetic fractionrolling friction

Answers

The forces that act on the bicycle + rider system are Gravity, normal force, static friction, kinetic friction, air resistance, and rolling friction.

The force that pulls objects toward the center of a planet or another body is called gravity. All the planets are maintained in their orbits around the sun due to the force of gravity.

The force surfaces exert to prevent solid objects from passing through one another is known as the normal force.

When there is no relative motion between the object and the surface, a body is subject to a particular form of friction force known as static friction.

The forces that oppose the motion of an object as it travels through the air are known as air resistance.

A force called rolling friction opposes a rolling object's motion on a surface. Rolling resistance is another name for rolling friction.

Hence, Gravity, normal force, static friction, kinetic friction, air resistance, and rolling friction are the forces acting on the bicycle and rider system.

To learn more about Gravity, here:

https://brainly.com/question/31321801

#SPJ12

Identify the characteristics of action potentials.
____
Multiple stimuli can create larger action potentials, and fewer stimuli can create smaller action potentials.
____
The strength of the stimulus determines the frequency of the action potentials.
____
The strength of the stimulus determines the magnitude of the action potential.
____
They are all-or-none
____
They are propagated in a non-decremental fashion

Answers

Action potentials are rapid and brief changes in the membrane potential of excitable cells. Thus, the correct statements are: "They are all-or-none" and "They are propagated in a non-decremental fashion". Thus options d and e are correct.

An action potential is an electrochemical signal that travels along the axon of a neuron, allowing the neuron to communicate with other neurons or muscle cells. The characteristics of action potentials are as,

All-or-none -  The action potential is an all-or-none response, meaning that it either occurs completely or not at all in response to a stimulus.

The strength of the stimulus does not affect the magnitude of the action potential, only its frequency.

Propagation in a non-decremental fashion -  The action potential propagates along the axon without losing amplitude or strength, so it is said to propagate in a non-decremental fashion.

This is due to the regeneration of the action potential at each point along the axon.

Therefore, the correct statements are: "They are all-or-none" and "They are propagated in a non-decremental fashion."

Learn more about Action potential here:

https://brainly.com/question/13606928

#SPJ11

in which way is the planet uranus unique?responses it has seasons. it has seasons. it has a hot interior. it has a hot interior. it lacks an atmosphere. it lacks an atmosphere. it rotates on its side.

Answers

The planet Uranus is unique in that it rotates on its side, with an axial tilt of approximately 98 degrees.

This means that Uranus essentially orbits the sun on its side, with its poles facing towards and away from the sun at different times during its orbit.

This unusual orientation results in extreme seasonal variations, with each pole experiencing over 20 years of continuous sunlight followed by over 20 years of darkness.

Additionally, Uranus has a relatively cold interior and a thick atmosphere composed primarily of hydrogen, helium, and methane.

Therefore, the response "it rotates on its side" is correct which makes planet Uranus unique.

Learn more about Urenus:

https://brainly.com/question/28248603

#SPJ11

Parts of the mixer become hot because some of the electrical energy is changed into

Answers

Parts of the mixer become hot because some of the electrical energy is converted into heat energy.

When electrical energy flows through a wire, it encounters resistance, which causes the wire to heat up. In a mixer, the electric motor converts electrical energy into mechanical energy to rotate the blades, but some of the electrical energy is lost as heat due to resistance in the motor's winding and other electrical components. This heat energy can accumulate in the mixer's parts and cause them to become hot. In many electrical devices, heat is an undesirable byproduct of energy conversion and can lead to reduced efficiency, damage, or safety hazards.

To know more about electrical energy, here

brainly.com/question/16182853

#SPJ4

--The complete Question is,  Fill in the blanks. " Parts of the mixer become hot because some of the electrical energy is changed into____"--

A truck is moving at constant velocity. Inside the storage compartment, a rock is dropped from the midpoint of the ceiling and strikes the floor below.
The rock hits the floor
A) exactly below the midpoint of the ceiling.
B) ahead of the midpoint of the ceiling.
C) behind the midpoint of the ceiling.
D) More information is needed to solve this problem.
E) none of these

Answers

When a truck is moving at constant velocity, and a rock is dropped from the midpoint of the ceiling and strikes the floor below, the rock hits the floor at exactly below the midpoint of the ceiling. The correct option is (A) exactly below the midpoint of the ceiling.

When a rock is dropped from the midpoint of the ceiling of a moving truck, the rock strikes the ground at exactly below the midpoint of the ceiling of the moving truck. This is because of the following reason:

When a truck is moving at constant velocity, everything in it is also moving at a constant velocity relative to the earth, including the rock. Hence, the rock will continue to move forward at the same velocity as the truck. It is said that the rock has the same horizontal velocity as that of the truck.

Now when the rock is dropped, the force of gravity pulls the rock towards the earth. Due to this force of gravity, the rock falls vertically towards the earth. Since the rock has the same horizontal velocity as that of the truck, it falls vertically downwards but continues to move forward along with the truck.

Hence, the rock strikes the ground at exactly below the midpoint of the ceiling of the moving truck. Therefore, the correct answer is option (A).

To learn more about "constant velocity", https://brainly.com/question/20215498

#SPJ11

A square loop of wire is carrying current in the counterclockwise direction. There is a horizontal uniform magnetic field pointing to the right.Question 1: What is the direction of the net force on the loop?(A) out of the screen(B) into the screen(C) the net force on the loop is zeroQuestion

Answers

If the magnetic field and the velocity are perpendicular, the force is maximum, and if they are parallel, the force is zero. The direction of the magnetic force can be determined using Fleming’s left-hand rule. The thumb represents the direction of the motion of the charge, the first finger represents the direction of the magnetic field, and the middle finger represents the direction of the magnetic force.

A square loop of wire carrying current in the counterclockwise direction will experience a force.

The force will be in the direction given by Fleming’s left-hand rule. The magnetic field is uniform and horizontal, and it is pointing towards the right. The question is asking for the direction of the net force on the loop. The direction of the net force on the loop can be determined using the right-hand palm rule.

The right-hand palm rule states that the thumb represents the direction of the current, and the fingers represent the direction of the magnetic field. If the fingers of the right hand are curled in the direction of the magnetic field and the thumb in the direction of the current, then the direction of the force is given by the palm.

In this case, the palm points upwards, which means that the net force on the loop is out of the screen. Therefore, the correct option is (A) out of the screen. Magnetic force The force exerted on a charged particle moving in a magnetic field is known as magnetic force. The direction of the magnetic force on the moving charge is perpendicular to the plane formed by the magnetic field and the velocity of the charge.

for such more questions on Magnetic force

https://brainly.com/question/29213676

#SPJ11

Find the fourier series of f(x)=x
for 0<=x<=2

Answers

The function f(x) = x, where 0 x 2, has the following Fourier series: Given that f(x) has an odd period of 2, we may express its Fourier series as follows: F(x) = A0 + [n=1 to] Ancos (n/x) plus bnsin (n/x).

Since f(x) is an odd function, a0 = 0. We may apply the following formulae to determine the Fourier coefficients: a = (2/1) f(x)cos(nx/1)[0 to 1] dx Bn = (2/1) f(x)sin(nx/1)[0 to 1] dx We may determine the coefficients using the following formulas: an is equal to (2/1) [0 to 1] x*cos(nx/1) dx. Bn is equal to (2/1), [0 to 1]x*sin(nx/1)dx. By integrating in pieces, we obtain: a = (2/π^2) [(1-(-1)^n)/(n^2)] bn = (2/π) [(1-(-1)^n)/(n)] The Fourier series of f(x) = x, where 0 x  its Fourier series as follows: F(x) = A0 + [n=1 to] Ancos (n/x) plus bnsin (n/x).2, is as follows: f(x) = Σ(n=1 to ∞) [(2/) (1-(-1)n)/(n))*sin(nx/1)].

learn more about Fourier series   here:

https://brainly.com/question/29672996

#SPJ4

5. (10 pts) The shedding frequency based on the analysis of Question 3 is to be determined through the use of a small-scale model to be tested in a water tunnel. For the specific bridge structure of interestD=20 cmandH=300 cm, and the wind speedVis25 m/s. Assume the air is at MSL ISA conditions. For the model, assume that D m=2 cm. (a) Determine the length of the model Hm needed for geometric scaling. (b) Determine the flow velocity Vm needed for Reynolds number scaling. (c) If the shedding frequency for the model is found to be 27 Hz, what is the corresponding frequency for the full-scale structural component of the bridge? Notes: Refer to the eBook for the properties of air. Assume the density of water rho H2O= 1000 kg/m3 and the dynamic viscosity of water μ H2O=1×10^−3 kg/m/s.

Answers

Length of the model Hm = 12 cm. The flow velocity Vm = 5 m/s. Frekuensi yang sesuai untuk skala penuh komponen struktural jembatan adalah 2,7 Hz.

To determine the length of the model, Hm, for geometric scaling, you must use the relationship Hm/H = Dm/D, where Dm is the model's diameter, D is the full scale structure's diameter, and Hm and H are the model and full-scale heights, respectively. Substituting in the given values, we have Hm/300 cm = 2 cm/20 cm, which can be solved for Hm to find that Hm = 12 cm.

To determine the flow velocity Vm for Reynolds number scaling, you must use the relationship Vm/V = sqrt(rhoH2O/rho)*(D/Dm), where rho is the air density and rhoH2O is the water density. Substituting in the given values, we have Vm/25 m/s = sqrt(1000 kg/m3/1.225 kg/m3)*(20 cm/2 cm). Solving for Vm, we find that Vm = 5 m/s.

To determine the shedding frequency for the full-scale structure of the bridge, we must use the relationship f/fmodel = (Vmodel/V)*(Dmodel/D). Substituting in the given values, we have f/27 Hz = (5 m/s/25 m/s)*(2 cm/20 cm). Solving for f, we find that the corresponding frequency for the full-scale structural component of the bridge is 2.7 Hz.

Learn more about the flow velocity: brainly.com/question/28595543

#SPJ11

Two soccer balls (ball A and ball B) are kicked down the field. Ball A is kicked farther than ball B,
but ball B reaches a higher height than ball A. Which of the balls spent more time in the air?
(Come up with your answer and then discuss among your group until there is a consensus.)

Answers

Two soccer balls were kicked down the field, Ball A and Ball B. Ball A was kicked farther than Ball B, but Ball B reached a higher height than Ball A. It can be determined that the ball that spent more time in the air was Ball B.

Why Ball B spent more time in the air than Ball A?

Ball B was kicked into the air at a higher angle, meaning it travelled upwards for a longer amount of time. The ball's horizontal velocity would have been lower than Ball A's, causing it to travel a shorter distance horizontally.

However, the additional time Ball B spent travelling upwards and falling back down would have compensated for the shorter horizontal distance travelled, allowing it to remain in the air for longer than Ball A.

Ball A's flight time would have been shorter than Ball B's flight time because of its high horizontal velocity. Because Ball B had a higher initial upward velocity, it travelled higher in the air and took longer to fall back down, resulting in a longer flight time. As a result, Ball B spent more time in the air than Ball A.

To know more about horizontal velocity:

https://brainly.com/question/18084516

#SPJ11

Other Questions
In the figure, curves A-D depict per capita rate increases (r). Which of the following best explains the difference between the shapes of these curves? Marked individuals have the same probability of being recaptured as unmarked individuals during the recapture phase. The structures used to store data Which term best describes the soil, temperature, water, plants, and animals in a desert?ecosystemcommunitypopulationbiome do employees in a large-scale bureaucracy (centralized) tend to have opportunistic behavior? agree or disagree? In the 1920s how many U.S. workers were annually replaced by machines? The author is considering adding the timeline tothe passage. Justify the addition of the timeline.XXXABCDThe timeline would evaluatethe effect of transportationon Sacramento'sdevelopment.The timeline would show thereader the importance oftransportation inSacramento's development.The timeline would compareSacramento's transportationto other California's cities'transportation.The timeline would give thereader a quick overview ofthe development oftransportation inSacramento. Use Lagrange multipliers to find the volume of the largest rectangular box in the first octant with three faces in the coordinate planes and one vertex in the given plane. x + 3y + 4z = 9_______. I opened the door quietly ............. my father.a) to not wakeb) so I dont wake upc) so as not to waked) none of the above some species of dinoflagellates produce neurotoxins that cause fish kills and red tides T/F Reinforcement theory ignores the inner state of the individual and concentrates solely on what happens when he or she takes some action. Because it does not concern itself with what initiates behavior, it is not, strictly speaking, a theory of motivation. But it does provide a powerful means of analyzing what controls behavior, and this is why we typically consider it in discussions of motivation.Operant conditioning theory argues that people learn to behave to get something they want or to avoid something they don't want. Unlike reflexive or unlearned behavior, operant behavior is influenced by the reinforcement or lack of reinforcement brought about by its consequences. Reinforcement strengthens a behavior and increases the likelihood it will be repeated. B. F. Skinner, one of the most prominent advocates of operant conditioning, argued that creating pleasing consequences to follow specific forms of behavior would increase the frequency of that behavior. He demonstrated that people will most likely engage in desired behaviors if they are positively reinforced for doing so; that rewards are most effective if they immediately follow the desired response; and that behavior that is not rewarded, or is punished, is less likely to be repeated. The Aleutian and Hawaiian Islands form from completely different processes related to Plate Tectonics. Using Plate Tectonic theory and correct technical terms, explain how they form. a calorie is the commonly used unit of chemical energy. it is also the unit of Describe some of the lawsuits that challenge Title IX What law said that anyone suspected as an enemy of the revolution could be arrested?answer choicesLaw of the EnemyLaw of the RevolutionLaw of LoyaltyLaw of RobespierreLaw of Suspects 20. Assertion(A): The sides of a triangle are 5cm, 12cm and 13cm and its area is 30 cm. Reason(R): Area of a triangle is base x height. (a) Both Assertion and Reason are correct and Reason is the correct explanation for Assertion, (b) Both Assertion and Reason are correct and Reason is not the correct explanation for Assertion. (c) Assertion is true but the Reason is false. (d) Assertion is false but the Reason is true. What is the type of smooth muscle cells are connected by few gap junctions, and they are found in piloerector muscles and in the iris of the eye? what is genetic restoration of endangered species? in experiments, people have been found to conform more when they must ___ than when they must ___. is CF3Cl a polar or non-polar molecule?