True or false: Increasing the Young’s modulus of a beam in bending will cause it to deflect less.
Answer:
false?
Explanation:
The higher the modulus, the more stress is needed to create the same amount of strain; an idealized rigid body would have an infinite Young's modulus.
Answer:
I think the answer is False.
The _______ principle encourages us to resolve a set of stimuli, such as trees across a ridgeline, into smoothly flowing patterns
A.) depth perception.
B.) perception.
C.) similarity.
D.) continuity.
Answer:
The answer is continuity ( D )
Explanation:
PLZ MARK AS BRAINLIEST
Question 4 of 5
How can the Fitness Logs help you in this class?
O A. They can't; the Fitness Logs are only useful to your teacher.
B. They show your parents how much you're learning.
C. They let you keep track of your thoughts, feelings, and progress.
D. They help you evaluate yourself for your final grade.
SUBMIT
Answer:
C is the right answer
Explanation:
fitness logs is a great way to track your progress. You can easily look back and see how you have progressed over time. In addition, it can help you plan and prepare for future workouts, as well as identify patterns of what seems to work well for you and when you have the most success
hope it was useful for you
A long, current-carrying solenoid with an air core has 1550 turns per meter of length and a radius of 0.0240 m. A coil of 200 turns is wrapped tightly around the outside of the solenoid, so it has virtually the same radius as the solenoid. What is the mutual inductance of this system
Answer:
[tex]M=7.05*10^{-4}[/tex]
Explanation:
From the question we are told that:
Coil one turns N_1=1550 Turns/m
Radius [tex]r=0.0240m[/tex]
Turns 2 [tex]N_2=200N[/tex]
Generally the equation for area is mathematically given by
[tex]A=\pi*r^2[/tex]
[tex]A=\pi*0.024^2[/tex]
[tex]A=\1.81*10^{-3} m^2[/tex]
Therefore
The mutual inductance of this system is
[tex]M=\mu*N_1*N_2*A[/tex]
[tex]M=(4 \pi*10^{-7})*1550*200*1.81*10^{-3}[/tex]
[tex]M=7.05*10^{-4}[/tex]
uniform electric field of magnitude 365 N/C pointing in the positive x-direction acts on an electron, which is initially at rest. The electron has moved 3.00 cm. (a) What is the work done by the field on the electron? 1.753e-18 J (b) What is the change in potential energy associated with the electron? J
Answer:
a) W = - 1.752 10⁻¹⁸ J, b) U = + 1.752 10⁻¹⁸ J
Explanation:
a) work is defined by
W = F . x
the bold letters indicate vectors, in this case the force is electric
F = q E
we substitute
F = q E x
the charge of the electron is
q = - e
F = - e E x
let's calculate
W = - 1.6 10⁻¹⁹ 365 3 10⁻²
W = - 1.752 10⁻¹⁸ J
b) the change in potential energy is
U = q ΔV
the potential difference is
ΔV = - E. Δs
we substitute
U = - q E Δs
the charge of the electron is
q = - e
U = e E Δs
we calculate
U = 1.6 10⁻¹⁹ 365 3 10⁻²
U = + 1.752 10⁻¹⁸ J
The distance between the two object is fixed at 5.0 m. The uncertainty distance measurement is? The percentage error in the distance is?
3. If you change the resistance of the resistor:
a. How does the current through the circuit change? (answer, explain, evidence)
b. How does the voltage of the battery change? (answer, explain, evidence)
Answer:
Explanation:
Changing the resistance of a resistor means the resistance is either increased or decreased.
a. When the resistance of the resistor is increased, the value of current flowing through the circuit decreases.
Example: given voltage of 6V, and a resistance of 30 Ohm's. The value of current flowing in the circuit is;
V = IR
6 = I x 30
I = 0.2 A
If the resistance is changed to 50 Ohm's, then:
I = 0.12 A
(ii) When the resistance of the resistor is decreased, the value of the current flowing through the circuit increases.
In the previous example, if the resistance is changed to 5 Ohm's, then:
V = IR
6 = I x 5
I = 1.2 A
(b) The voltage of the battery does not change since it is directly proportional to the current flowing through the circuit. Consider the examples stated above.
An empty parallel plate capacitor is connected between the terminals of a 18.8-V battery and charges up. The capacitor is then disconnected from the battery, and the spacing between the capacitor plates is doubled. As a result of this change, what is the new voltage between the plates of the capacitor
Answer:
[tex]p.d' = 37.6 V[/tex]
Explanation:
From the question we are told that:
Potential difference [tex]p.d=18.8V[/tex]
New Capacitor [tex]C_1=C_2/2[/tex]
Generally the equation for Capacitor capacitance is mathematically given by
[tex]C=\frac{eA}{d}[/tex]
Generally the equation for New p.d' is mathematically given by
[tex]C_2V=C_1*p.d'[/tex]
[tex]p.d' = 2V[/tex]
[tex]p.d'= 2 * 18.8[/tex]
[tex]p.d' = 37.6 V[/tex]
Nhiệt dung riêng của một chất là ?
Answer:
enchantment table language
Explanation:
The mass of a hot-air balloon and its occupants is 381 kg (excluding the hot air inside the balloon). The air outside the balloon has a pressure of 1.01 x 105 Pa and a density of 1.29 kg/m3. To lift off, the air inside the balloon is heated. The volume of the heated balloon is 480 m3. The pressure of the heated air remains the same as that of the outside air. To what temperature in kelvins must the air be heated so that the balloon just lifts off
Answer:
In order to lift off the ground, the air in the balloon must be heated to 710.26 K
Explanation:
Given the data in the question;
P = 1.01 × 10⁵ Pa
V = 480 m³
ρ = 1.29 kg/m³
M = 381 kg
we know that; R = 8.31 J/mol.K and the molecular mass of air μ = 29 × 10⁻³ kg/mol
let F represent the force acting upward.
Now in a condition where the hot air balloon is just about to take off;
F - Mg - m[tex]_g[/tex]g = 0
where M is the mass of the balloon and its occupants, m[tex]_g[/tex] is the mass of the hot gas inside the balloon.
the force acting upward F = Vρg
so
Vρg - Mg - m[tex]_g[/tex]g = 0
solve for m[tex]_g[/tex]
m[tex]_g[/tex] = ( Vρg - Mg ) / g
m[tex]_g[/tex] = Vρg/g - Mg/g
m[tex]_g[/tex] = ρV - M ------- let this be equation 1
Now, from the ideal gas law, PV = nRT
we know that number of moles n = m[tex]_g[/tex] / μ
where μ is the molecular mass of air
so
PV = (m[tex]_g[/tex]/μ)RT
solve for T
μPV = m[tex]_g[/tex]RT
T = μPV / m[tex]_g[/tex]R -------- let this be equation 2
from equation 1 and 2
T = μPV / (ρV - M)R
so we substitute in our values;
P = 1.01 × 10⁵ Pa
V = 480 m³
ρ = 1.29 kg/m³
M = 381 kg
we know that; R = 8.31 J/mol.K and the molecular mass of air μ = 29 × 10⁻³ kg/mol
T = [ (29 × 10⁻³) × (1.01 × 10⁵) × 480 ] / [ (( 1.29 × 480 ) - 381)8.31 ]
T = 1405920 / 1979.442
T = 710.26 K
Therefore, In order to lift off the ground, the air in the balloon must be heated to 710.26 K
The temperature required for the air to be heated is 710.26 K.
Given data:
The mass of a hot air-balloon is, m = 381 kg.
The pressure of air outside the balloon is, [tex]P = 1.01 \times 10^{5} \;\rm Pa[/tex].
The density of air is, [tex]\rho = 1.29 \;\rm kg/m^{3}[/tex].
The volume of heated balloon is, [tex]V = 480 \;\rm m^{3}[/tex].
The condition where the hot air balloon is just about to take off is as follows:
[tex]F-mg - m'g =0[/tex]
Here,
m' is the mass of hot gas inside the balloon and g is the gravitational acceleration and F is the force acting on the balloon in upward direction. And its value is,
[tex]F = V \times \rho \times g[/tex]
Solving as,
[tex](V \times \rho \times g)-mg - m'g =0\\\\ m'=(V \rho )-m[/tex]
Now, apply the ideal gas law as,
PV = nRT
here, R is the universal gas constant and n is the number of moles and its value is,
[tex]n=\dfrac{m'}{M}[/tex]
M is the molecular mass of gas. Solving as,
[tex]PV = \dfrac{m'}{M} \times R \times T\\\\\\T=\dfrac{P \times V\times M}{m'R}\\\\\\T=\dfrac{P \times V\times M}{(V \rho - m)R}[/tex]
Since, the standard value for the molecular mass of air is, [tex]M = 29 \times 10^{-3} \;\rm kg/mol[/tex]. Then solve for the temperature as,
[tex]T=\dfrac{(1.01 \times 10^{5}) \times 480\times 381}{(480 \times (1.29) - 381)8.31}\\\\\\T = 710.26 \;\rm K[/tex]
Thus, we can conclude that the temperature required for the air to be heated is 710.26 K.
Learn more about the ideal gas equation here:
https://brainly.com/question/18518493
When an external magnetic flux through a conducting loop decreases in magnitude, a current is induced in the loop that creates its own magnetic flux through the loop. How does that induced magnetic flux affect the total magnetic flux through the loop
Answer:
Len's law
Explanation:
We can explain this exercise using Len's law
when the magnetic flux decreases, a matic flux appears that opposes the decrease, thus maintaining the value of the initial luxury.
Put the balloon near (BUT NOT TOUCHING) the wall. Leave about as much space as the width of your pinky finger between the balloon and wall. Does the balloon move, if so which way
Answer:
Move towards the wall.
Explanation:
When the balloon is kept near to the wall not touching the wall, there is a force of electrostatic attraction so that the balloon moves towards the wall and stick to it.
As there is some charge on the balloon and the wall is uncharged so the force is there due to which the balloon moves towards the wall.
If you tethered a space station to the earth by a long cable, you could get to space in an elevator that rides up the cable much simpler and cheaper than riding to space on a rocket. There's one big problem, however: There is no way to create a cable that is long enough. The cable would need to reach 36,000 km upward, to the height where a satellite orbits at the same speed as the earth rotates; a cable this long made of ordinary materials couldn't even support its own weight. Consider a steel cable suspended from a point high above the earth. The stress in the cable is highest at the top; it must support the weight of cable below it.
What is the greatest length the cable could have without failing?
Answer:
[tex]l=12916.5m[/tex]
Explanation:
Distance [tex]d=3600km[/tex]
Since
Density of steel [tex]\rho=7900kg/m^3[/tex]
Stress of steel [tex]\mu= 1*10^9[/tex]
Generally the equation for Stress on Cable is mathematically given by
[tex]S=\frac{F}{A}[/tex]
[tex]S=\frac{\rho Alg}{A}[/tex]
Therefore
[tex]l=\frac{s}{\rhog}[/tex]
[tex]l=\frac{ 1*10^9}{7900kg/m^3*9.8}[/tex]
[tex]l=12916.5m[/tex]
A possible means for making an airplane invisible to radar is to coat the plane with an antireflective polymer. If radar waves have a wavelength of 3.00 cm and the index of refraction of the polymer is n = 1.50, how thick would you make the coating?
Answer:
[tex]t=0.50cm[/tex]
Explanation:
From the question we are told that:
Wavelength [tex]\lamda=3c[/tex]m
Refraction Index [tex]n=1.50[/tex]
Generally the equation for Destructive interference for Normal incidence is mathematically given by
[tex]2nt=m(\frac{1}{2})\lambda[/tex]
Since Minimum Thickness occurs at
At [tex]m=0[/tex]
Therefore
[tex]t=\frac{\lambda}{2}[/tex]
[tex]t=\frac{3}{4(1.50)}[/tex]
[tex]t=0.50cm[/tex]
The thermal efficiency (in %) of a system that undergoes a power cycle while receiving 1000 kJ of energy by heat transfer from a hot reservoir at 1000 K and discharging 500 kJ of energy by heat transfer to a cold reservoir at 400 K is:
Answer:
η = 0.5 = 50%
Explanation:
The efficiency of the power cycle is given by the following formula:
[tex]\eta = \frac{W}{Q_1}\\\\\eta = \frac{Q_1-Q_2}{Q_1}[/tex]
where,
where,
η = efficiency = ?
Q₁ = heat received from hot reservoir = 1000 KJ
Q₂ = heat discharged to cold reservoir = 500 KJ
Therefore,
[tex]\eta = \frac{1000\ KJ-500\ KJ}{1000\ KJ}[/tex]
η = 0.5 = 50%
Two distinct systems have the same amount of stored internal energy. 500 J are added by heat to the first system and 300 J are added by heat to the second system. What will be the change in internal energy of the first system if it does 200 J of work? How much work will the second system have to do in order to have the same internal energy?
Answer:
The change in the internal energy of the first system is 300 J
The second system will do zero work in order to have the same internal energy.
Explanation:
Given;
heat added to the first system, Q₁ = 500 J
heat added to the second system, Q₂ = 300 J
work done by the first system, W₁ = 200 J
The change in the internal energy of the system is given by the first law of thermodynamics;
ΔU = Q - W
where;
ΔU is the change in internal energy of the system
The change in the internal energy of the first system is calculated as;
ΔU₁ = Q₁ - W₁
ΔU₁ = 500 J - 200 J
ΔU₁ = = 300 J
The work done by the second system to have the same internal energy with the first.
ΔU₁ = Q₂ - W₂
W₂ = Q₂ - ΔU₁
W₂ = 300 J - 300 J
W₂ = 0
The second system will do zero work in order to have the same internal energy.
Explain how the gravitational force between the earth and the sun changes as the earth moves from position A to B as shown in the figure. Sun Earth at position B Earth at position A
Answer:
The distance between sun & Earth at position A is less than the earth at position B. The gravitational force of two bodies is inversely proportional to the square of the distance. So At position A gravitational force is more & it decreases as it rotate towards position B.
You throw a Frisbee of mass m and radius r so that it is spinning about a horizontal axis perpendicular to the plane of the Frisbee. Ignoring air resistance, the torque exerted about its center of mass by gravity is: __________
a. 0.
b. mgr
c. 2mgr
d. a function of the angular velocity.
e. small at first, then increasing as the Frisbee loses the torque given it by your hand.
Answer:
the correct answer is a
Explanation:
The torque is
τ = F x r
where the bold letters indicate vectors, in this case the vector of the center of mass is perpendicular to the weight of the body
τ = mg r
in body weight it is applied at the point of the center of mass, therefore as the distance of the force from the axis of rotation (center of amas) is zero, the die is zero
the correct answer is a
Two objects moving with a speed v travel in opposite directions in a straight line. The objects stick together when they collide, and move with a speed of v/2 after the collision.
Required:
a. What is the ratio of the final kinetic energy of the system to the initial kinetic energy?
b. What is the ratio of the mass of the more massive object to the mass of the less massive object?
Answer:
Explanation:
Let the mass of objects be m₁ and m₂ .
Total kinetic energy = 1/2 m₁ v² + 1/2 m₂ v²= 1/2 ( m₁ + m₂ ) v²
Total kinetic energy after collision= 1/2 ( m₁ + m₂ ) v² / 4 = 1/2 ( m₁ + m₂ ) v² x .25
final KE / initial KE = 1/2 ( m₁ + m₂ ) v² x .25 / 1/2 ( m₁ + m₂ ) v²
= 0.25
b )
Applying law of conservation of momentum to the system . Let m₁ > m₂
m₁ v - m₂ v = ( m₁ + m₂ ) v / 2
m₁ v - m₂ v = ( m₁ + m₂ ) v / 2
m₁ - m₂ = ( m₁ + m₂ ) / 2
2m₁ - 2 m₂ = m₁ + m₂
m₁ = 3m₂
m₁ / m₂ = 3 / 1
Answer:
(a) The ratio is 1 : 4.
(b) The ratio is 1 : 3.
Explanation:
Let the mass of each object is m and m'.
They initially move with velocity v opposite to each other.
Use conservation of momentum
m v - m' v = (m + m') v/2
2 (m - m') = (m + m')
2 m - 2 m' = m + m'
m = 3 m' .... (1)
(a) Let the initial kinetic energy is K and the final kinetic energy is K'.
[tex]K = 0.5 mv^2 + 0.5 m' v^2 \\\\K = 0.5 (m + m') v^2..... (1)[/tex]
[tex]K' = 0.5 (m + m') \frac{v^2}{4}.... (2)[/tex]
The ratio is
K' : K = 1 : 4
(b) m = 3 m'
So, m : m' = 3 : 1
Can an electron be diffracted? Can it exhibit interference?
Answer:
Yeah, it can be diffracted. Though it depends on a diffracting medium.
It must have some magnetic fields .
Forexample; X-ray diffraction where electrons are diffracted to the target filament.
b. The stream of water flowing through a hole at depth h = 10 cm in a tank holding water to height H = 40 cm. . 3 At what distance x does the stream strike the floor?
Answer:
34.64 cm
Explanation:
Given that:
The depth of the hole h = 10 cm
height of the water holding in the tank H = 40 cm
For a stream of flowing water, the distance (x) at which the stream strikes the floor can be computed by using the formula;
[tex]x = 2 \sqrt{h(H-h)}[/tex]
[tex]x = 2 \sqrt{10(40-10)}[/tex]
[tex]x = 2 \sqrt{10(30)}[/tex]
[tex]x = 2 \sqrt{300}[/tex]
[tex]x = 2 \times 17.32[/tex]
x = 34.64 cm
• Explain how sound travels
Sound is a type of energy made by vibrations. These vibrations create sound waves which move through mediums such as air, water and wood. When an object vibrates, it causes movement in the particles of the medium. This movement is called sound waves, and it keeps going until the particles run out of energy.
Sound is a type of energy made by vibrations. These vibrations create sound waves which move through mediums such as air, water and wood. When an object vibrates, it causes movement in the particles of the medium. This movement is called sound waves, and it keeps going until the particles run out of energy.
HEELLPPPPPpppppppppppppppp
Explanation:
Given:
[tex]A_1[/tex] = 4.5 cm[tex]^2[/tex]
[tex]v_1[/tex] = 40 cm/s
[tex]v_2[/tex] = 90 cm/s
[tex]A_2[/tex] = ?
a) The continuity equation is given by
[tex]A_1v_1 = A_2v_2[/tex]
Solving for [tex]A_2[/tex],
[tex]A_2 = \dfrac{v_1}{v_2}A1 = \left(\dfrac{40\:\text{cm/s}}{90\:\text{cm/s}}\right)(4.5\:\text{cm}^2)[/tex]
[tex]= 2\:\text{cm}^2[/tex]
b) If the cross-sectional area is reduced by 50%, its new area [tex]A_2'[/tex] now is only 1 cm^2, which gives us a radius of
[tex]r = \sqrt{\dfrac{A_2'}{\pi}} = 0.564\:\text{cm}[/tex]
An infinite plane lies in the yz-plane and it has a uniform surface charge density.
The electric field at a distance x from the plane
a.) decreases as 1/x^2
b.) increases linearly with x
c.) is undertermined
d.) decreases linearly with x
e.) is constant and does not depend on x
Answer:
So the correct answer is letter e)
Explanation:
The electric field of an infinite yz-plane with a uniform surface charge density (σ) is given by:
[tex]E=\frac{\sigma }{2\epsilon_{0}}[/tex]
Where ε₀ is the electric permitivity.
As we see, this electric field does not depend on distance, so the correct answer is letter e)
I hope it helps you!
The human eye can readily detect wavelengths from about 400 nm to 700 nm. Part A If white light illuminates a diffraction grating having 910 lines/mm , over what range of angles does the visible m
Answer:
The correct answer is "[tex]21.344^{\circ}[/tex]" and "[tex]39.56^{\circ}[/tex]".
Explanation:
According to the question,
Slit width,
[tex]d=\frac{1}{910 \ lines/mm}[/tex]
[tex]=\frac{1}{910\times 10^3}[/tex]
[tex]=1.099\times 10^{-6} \ m[/tex]
The condition far first order maxima will be:
⇒ [tex]d Sin \theta = 1 \lambda[/tex]
Now,
⇒ [tex]\Theta_{min} = Sin^{-1} (\frac{\lambda}{d} )[/tex]
[tex]=Sin^{-1} (\frac{400\times 10^{-9}}{1.099\times 10^{-6}} )[/tex]
[tex]=21.344^{\circ}[/tex]
⇒ [tex]\Theta_{max} = Sin^{-1} (\frac{\lambda}{d} )[/tex]
[tex]=Sin^{-1} (\frac{700\times 10^{-9}}{1.099\times 10^{-6}} )[/tex]
[tex]=39.56^{\circ}[/tex]
5. For the speaker in this circuit, the voltage across it is always proportional to the current through it. Find the maximum amount of power that the circuit can deliver to the speaker.
Answer:
speaker64
--------
34x
Explanation:
64-34
x
speaker
4
2
4
788
- circuit
voltage
100000
x.34
Sorry but you have no picture shown
Place each description under the correct theory
Gravity is an attractive force.
Universal Law of Gravitation
General Theory of Relativity
Mass and distance affect force.
Time and space are absolute,
Time and space are relative.
Gravity is due to space-time curving.
Mass affects space-time curving.
Answer:
1) Law of Universal Gravitation Gravity is an attractive force
5) General relativity Gravity is due to the curvature of spacetime
Explanation:
In this exercise you are asked to relate the correct theory and its explanation
Theory Explanation
1) Law of Universal Gravitation Gravity is an attractive force
2) Law of universal gravitation Mass and distance affect force
3) Classical mechanics time and space are absolute
4) Special relativity Time and space are relative
5) General relativity Gravity is due to the curvature of
spacetime
6) General relativity Mass affects the curvature of space - time
Answer:
Explanation:
edge2022
The mass is released from the top of the incline and slides down the incline. The maximum velocity (taken the instant before the mass reaches the bottom of the incline) is 1.06 m/s. What is the kinetic energy at that time
Answer:
0.28 J
Explanation:
Let the mass of the object is 0.5 kg
The maximum velocity of the object is 1.06 m/s.
We need to find the kinetic energy at that time. It is given by :
[tex]K=\dfrac{1}{2}mv^2\\\\=\dfrac{1}{2}\times 0.5\times (1.06)^2\\\\K=0.28\ J[/tex]
So, the required kinetic energy is equal to 0.28 J.
A 0.20 kg mass on a horizontal spring is pulled back a certain distance and released. The maximum speed of the mass is measured to be 0.30 m/s. If, instead, a 0.40 kg mass were used in this same experiment, choose the correct value for the maximum speed.
a. 0.40 m/s.
b. 0.20 m/s.
c. 0.28 m/s.
d. 0.14 m/s.
e. 0.10 m/s.
Answer:
b. 0.20 m/s.
Explanation:
Given;
initial mass, m = 0.2 kg
maximum speed, v = 0.3 m/s
The total energy of the spring at the given maximum speed is calculated as;
K.E = ¹/₂mv²
K.E = 0.5 x 0.2 x 0.3²
K.E = 0.009 J
If the mass is changed to 0.4 kg
¹/₂mv² = K.E
mv² = 2K.E
[tex]v = \sqrt{\frac{2K.E}{m} } \\\\v = \sqrt{\frac{2\times 0.009}{0.4} } \\\\v = 0.21 \ m/s\\\\v \approx 0.20 \ m/s[/tex]
Therefore, the maximum speed is 0.20 m/s
A building is being knocked down with a wrecking ball, which is a big metal sphere that swings on a 15-m-long cable. You are (unwisely!) standing directly beneath the point from which the wrecking ball is hung when you notice that the ball has just been released and is swinging directly toward you. How much time do you have to move out of the way? answer in seconds.
Answer:
Time to move out of the way = 1.74 s
Explanation:
Time to move out of the way is one fourth of period = 6.95/4 = 1.74 seconds.
Time to move out of the way = 1.74 s