Answer:
a number, r, added to 6
Step-by-step explanation:
a number, r, added to 6
Answer:
a number, r, added to 6
Step-by-step explanation:
a number, r, added to 6
Find the area of the shape shown below.
2
2
nd
2
Need help Plz hurry and answer!!!
Answer:
=6 units squared
Step-by-step explanation:
area=1/2h(a+b)
=1/2×2(4+2)
=6
Decide all proper subsets of A { 8 ,7 ,6 ,5 ,4 ,3 ,2 ,1} = A 1- { 4 ,3 ,2 ,1} 2- { } 3- { 9 ,8 ,7 } 4- { 11 ,2} 5- { 5 }
Answer:
A, E
Step-by-step explanation:
There should be 2^8-1 proper subsets of A. Its every one besides { }
. One sample has M = 18 and a second sample has M = 14. If the pooled variance for the two samples is 16, what is the value of Cohen’s d?
Answer:
Cohen's d : 1.00
Step-by-step explanation:
We know that M₁ = 18, and M₂ = 14. Given that the pooled variance for the these two samples are 16, S²Pooled = 16, and therefore S - pooled = 4.
The formula to solve for the value of Cohen's d is as follows,
d = M₁ - M₂ / S - pooled,
d = 18 - 14 / 4 = 4 / 4 = 1
Therefore the value of Cohen's d = 1
The solution system to 3y-2x=-9 and y=-2x+5
Answer:
[tex]\boxed{(3,-1)}[/tex]
Step-by-step explanation:
Hey there!
Well to find the solution the the given system,
3y - 2x = -9
y = -2x + 5
So to find x lets plug in -2x + 5 for y in 3y - 2x = -9.
3(-2x + 5) - 2x = -9
Distribute
-6x + 15 - 2x = -9
-8x + 15 = -9
-15 to both sides
-8x = -24
Divide -8 to both sides
x = 3
Now that we have x which is 3, we can plug in 3 for x in y = -2x + 5.
y = -2(3) + 5
y = -6 + 5
y = -1
So the solution is (3,-1).
Hope this helps :)
PLS HELP:Find all the missing elements:
Answer:
b = 9.5 , c = 15Step-by-step explanation:
For b
To find side b we use the sine rule
[tex] \frac{ |a| }{ \sin(A) } = \frac{ |b| }{ \sin(B) } [/tex]a = 7
A = 23°
B = 32°
b = ?
Substitute the values into the above formula
That's
[tex] \frac{7}{ \sin(23) } = \frac{ |b| }{ \sin(32) } [/tex][tex] |b| \sin(23) = 7 \sin(32) [/tex]Divide both sides by sin 23°
[tex] |b| = \frac{7 \sin(32) }{ \sin(23) } [/tex]b = 9.493573
b = 9.5 to the nearest tenthFor cTo find side c we use sine rule
[tex] \frac{ |a| }{ \sin(A) } = \frac{ |c| }{ \sin(C) } [/tex]C = 125°
So we have
[tex] \frac{7}{ \sin(23) } = \frac{ |c| }{ \sin(125) } [/tex][tex] |c| \sin(23) = 7 \sin(125) [/tex]Divide both sides by sin 23°
[tex] |c| = \frac{7 \sin(125) }{ \sin(23) } [/tex]c = 14.67521
c = 15.0 to the nearest tenthHope this helps you
The length of a rectangle is three times its width. If the perimeter of the rectangle is 160 cm, what are the dimensions of this rectangle?
Answer:
The dimensions or Area of the rectangle is 1200cm².
The scores for all the Algebra 1 students at Miller High on a test are normally distributed with a mean of 82 and a standard deviation of 7. What percent of students made scores above 89?
Answer:
15.7% of students made above an 89.
Step-by-step explanation:
If the data is normally distributed, the standard deviation is 7, and the mean is 82, then about 68.2% of students made between 75 and 89. 13.6% made between 90 and 96, and 2.1% made over 96. 13.6+2.1=15.7%
Which rule describes this transformation? (Zoom in to see it clearly)
Answer:
(x,y) -> (x+6, y-3)
Step-by-step explanation:
I followed c and it translated like the last ans choice.
Plzz help i really need help..
Answer:
D. neither.
Step-by-step explanation:
A function is when one x-value only has one corrisponding y-value.
The answer it's D. Neither
According to psychologists, IQs are normally distributed, with a mean of 100 and a standard deviation of 15 . a. What percentage of the population has IQs between 85 and 100 ?
A bike wheel. A bike wheel is 26 inches in diameter. What is the bike wheel's diameter in millimeters (1 inch = 25.4 millimeters)?
Answer:
its multiple choice
A. 26inches (1inch/25.4mm)
B. 26inches (25.4mm/1inch)
C. 25.4inches (1mm/26inch)
D. 26inches (1mm/25.4inch)
and its b
which rate can you set 7 miles over 1 hour equal to in order to find the distance traveled in 49 hours at 7 miles per hour
Answer:
Step-by-step explanation:
time = 49 hours
speed = 7 miles/hour
speed = distance / time
∴ distance = speed × time
= 7 × 49
= 343 miles
Question 1 (5 points)
The line segment AB with endpoints A(-3, 6) and B(9, 12) is dilated with a scale
factor 2/3 about the origin. Find the endpoints of the dilated line segment.
OA) (-2, 4), (6,8)
B) (2, 4). (6,8)
OC) (4, -2), (6,8)
OD) (-2,4), (8,6)
Answer: A) (-2, 4), (6,8)
Step-by-step explanation:
When a point (x,y) is dilated by a scale factor of k , then the new points is given by (kx,ky).
Given: The line segment AB with endpoints A(-3, 6) and B(9, 12) is dilated with a scale factor [tex]\dfrac23[/tex] about the origin.
Let A' and B' b the endpoints of the dilated line segment.
Then, [tex]A'(\dfrac{2}{3}(-3), \dfrac23(6))=A'(-2,4)[/tex]
[tex]B'(\dfrac{2}{3}(9), \dfrac23(12))=B'(6,8)[/tex]
Hence, the correct option is A) (-2, 4), (6,8)
A pharmacist needs 16 liters of a 4% saline solution. He has a 1% solution and a 5% solution available. How many liters of the 1% solution and how many liters of the 5% solution should he mix to make the 4% solution?
x = liters of 1% solution
y = liters of 5% solution
x + y = 16
0.01x + 0.05y = 0.04*16 = 0.64
y = 16 - x
0.01x + 0.05(16 - x) = 0.64
0.01x + 0.8 - 0.05x = 0.64
0.16 = 0.04x
x = 4
y = 12
Given a dataset with the following properties:
mean = 50
median = 40
standard deviation = 5
What is the shape of the distribution?
Answer:
The distribution is positively skewed.
Step-by-step explanation:
A measure of skewness is defined in such a way that the measure should always be zero when the distribution is symmetric and measure should be a pure number i.e independent of origin and units of measurement.
The shape of the distribution can be found by finding the coefficient of skewness.
The coefficient of skewness can be found by
Sk= 3(Mean-Median)/ Standard Deviation
Sk= 3( 50-40)5= 30/5=6
The shape will be positively skewed.
In a positively skewed distribution the mean > median > mode. It has a long right tail.
Using the skewness formula, it is found that the distribution is right-skewed.
------------------
The skewness of a data-set with mean M, median [tex]M_e[/tex] and standard deviation s is given by:[tex]S = \frac{3(M - M_e)}{s}[/tex]
If |S| < 0.5, the distribution is said to be symmetric.If S <-0.5, the distribution is left-skewed.If S > 0.5, the distribution is right-skewed.------------------
Mean of 50, thus, [tex]M = 50[/tex]Median of 40, thus [tex]M_e = 40[/tex]Standard deviation of 5, thus, [tex]s = 5[/tex]The coefficient is:
[tex]S = \frac{3(M - M_e)}{s} = \frac{3(50 - 40)}{5} = \frac{30}{5} = 6[/tex]
Thus, the distribution is right-skewed.
A similar problem is given at https://brainly.com/question/24415645
the amount of gas in sarahs car is uniformly distributed between 1 and 16 gallons. Calculate the probability that the amount of gas is exactly 7 gallons
Answer:
The probability that the amount of gas in Sarah's car is exactly 7 gallons is 0.067.
Step-by-step explanation:
Let the random variable X represent the amount of gas in Sarah's car.
It is provided that [tex]X\sim Unif(1, 16)[/tex].
The amount of gas in a car is a continuous variable.
So, the random variable X follows a continuous uniform distribution.
Then the probability density function of X is:
[tex]f_{X}(x)=\frac{1}{b-a};\ a<X<b[/tex]
For a continuous probability distribution the probability at an exact point is 0.
So, to compute the probability that the amount of gas in Sarah's car is exactly 7 gallons use continuity correction on both sides:
P (X = 7) = P (7 - 0.5 < X < 7 + 0.5)
= P (6.5 < X < 7.5)
[tex]=\int\limits^{7.5}_{6.5} {\frac{1}{16-1}} \, dx \\\\=\frac{1}{15}\times |x|^{7.5}_{6.5}\\\\=\frac{1}{15}\times (7.5-6.5)\\\\=\frac{1}{15}\\\\=0.0666667\\\\\approx 0.067[/tex]
Thus, the probability that the amount of gas in Sarah's car is exactly 7 gallons is 0.067.
A household survey of 10 families was conducted by students of 4th year MBBS. In the collected data, the ages of heads of families were: 32, 34, 35, 36, 36, 42, 44, 46, 48, and 52. The mean age of heads of families is
a. 36
b. 38.5
c. 40
d. 40.5
e. 42
Answer:
Which polynomial is prime?
7x2 – 35x + 2x – 10
9x3 + 11x2 + 3x – 33
10x3 – 15x2 + 8x – 12
12x4 + 42x2 + 4x2 + 14
Step-by-step explanation:
Which polynomial is prime?
7x2 – 35x + 2x – 10
9x3 + 11x2 + 3x – 33
10x3 – 15x2 + 8x – 12
12x4 + 42x2 + 4x2 + 14 SO IT IS RIGHT
Factor 13ab3 + 39a2b5.
[tex]13ab^3+39a^2b^5\\\\\boxed{\boxed{\boxed{13ab^3(1+3ab^2)}}}\\\\[/tex]
Brazil number one.
Answer:
there's no answer for that equation
Isreal spends the most time on social media with a total of 11.1.peru has a total of 8.3 how much more time does israel spend on social media
Answer:
2.8
Step-by-step explanation:
11.1-8.3=2.8
HOPE I HELPED
PLS MARK BRAINLIEST
DESPERATELY TRYING TO LEVEL UP
✌ -ZYLYNN JADE ARDENNE
JUST A RANDOM GIRL WANTING TO HELP PEOPLE!
PEACE!
Multiple-Choice Questions
1. In 1995, Diana read 10 English books and 7 French books. In 1996, she read twice as many French books as English books. If 60% of the books that she read during the 2 years were French, how many English and French books did she read in 1996?
(A) 16
(B) 26
(0) 32
(D) 48
Answer:
(D) 48
Step-by-step explanation:
Let English book = x
Let french book = y
In 1995 x= 10
Y= 7
In 1996
Y = 2x
Total book read in the two years
0.6(Total) = y
0.4(total) = x
We don't know the exact amount of books read in 1996.
Total = 10 + 7 +x +2x
Total = 17+3x
0.6(total) = 7+2x
0.6(17+3x) = 7+2x
10.2 +1.8x= 7+2x
10.2-7= 2x-1.8x
3.2= 0.2x
3.2/0.2= x
16= x
So she read 16 English book
And 16*2 = 32 french book Making it a total of 16+32= 48 books in 1996
Simple math! What is the issue with my work? I got it wrong.
Answer:
x = 6
Step-by-step explanation:
In the third line of the solution on right side of the equal sign, middle term should be 8x instead of 4x.
The final value of x will be 6.
[tex] PQ^2 + QO^2 = PO^2 \\
x^2 + 8^2 = (4+x)^2 \\
x^2 + 64 = 16 + 8x + x^2 \\
64 = 16 + 8x \\
64 - 16 = 8x \\
48 = 8x \\
6 = x\\[/tex]
Log 1/10 how do you convert this without a calculator
Answer:
log(1/10) = -1
Step-by-step explanation:
Use the law of exponents and the meaning of logarithm.
1/10 = 10^-1
log(10^x) = x
So, you have ...
log(1/10) = log(10^-1)
log(1/10) = -1
=
Graphing an integer function and finding its range for a given...
The function h is defined as follows for the domain given.
h(x) = 2 -2x, domain = {-3, -2, 1, 5}
Write the range of h using set notation. Then graph h.
Answer:
Step-by-step explanation:
● h(x) = 2-2x
The domain is {-3,-2,1,5}
● h(-3) = 2-2×(-3) = 2+6 = 8
● h(-2) = 2 -2×(-2) = 2+4 = 6
● h(1) = 2-2×1 = 2-2 = 0
● h(5) = 2-2×5 = 2-10 = -8
The range is {-8,0,6,8}
consider the bevariate data below about Advanced Mathematics and English results for a 2015 examination scored by 14 students in a particular school.The raw score of the examination was out of 100 marks.
Questions:
a)Draw a scatter graph
b)Draw a line of Best Fit
c)Predict the Advance Mathematics mark of a student who scores 30 of of 100 in English.
d)calculate the correlation using the Pearson's Correlation Coefficient Formula
e) Determine the strength of the correlation
Answer:
Explained below.
Step-by-step explanation:
Enter the data in an Excel sheet.
(a)
Go to Insert → Chart → Scatter.
Select the first type of Scatter chart.
The scatter plot is attached below.
(b)
The scatter plot with the line of best fit is attached below.
The line of best fit is:
[tex]y=-0.8046x+103.56[/tex]
(c)
Compute the value of x for y = 30 as follows:
[tex]y=-0.8046x+103.56[/tex]
[tex]30=-0.8046x+103.56\\\\0.8046x=103.56-30\\\\x=\frac{73.56}{0.8046}\\\\x\approx 91.42[/tex]
Thus, the Advance Mathematics mark of a student who scores 30 out of 100 in English is 91.42.
(d)
The Pearson's Correlation Coefficient is:
[tex]r=\frac{n\cdot \sum XY-\sum X\cdot \sum Y}{\sqrt{[n\cdot \sum X^{2}-(\sum X)^{2}][n\cdot \sum Y^{2}-(\sum Y)^{2}]}}[/tex]
[tex]=\frac{14\cdot 44010-835\cdot 778}{\sqrt{[14\cdot52775-(825)^{2}][14\cdot 47094-(778)^{2}]}}\\\\= -0.7062\\\\\approx -0.71[/tex]
Thus, the Pearson's Correlation Coefficient is -0.71.
(e)
A correlation coefficient between ± 0.50 and ±1.00 is considered as a strong correlation.
The correlation between Advanced Mathematics and English results is -0.71.
This implies that there is a strong negative correlation.
A population has a mean and a standard deviation . Find the mean and standard deviation of a sampling distribution of sample means with sample size n. nothing (Simplify your answer.) nothing (Type an integer or decimal rounded to three decimal places as needed.)
Complete Question
A population has a mean mu μ equals = 77 and a standard deviation σ = 14. Find the mean and standard deviation of a sampling distribution of sample means with sample size n equals = 26
Answer:
The mean of sampling distribution of the sample mean ( [tex]\= x[/tex]) is [tex]\mu_{\= x } = 77[/tex]
The standard deviation of sampling distribution of the sample mean ( [tex]\= x[/tex]) is
[tex]\sigma _{\= x} = 2.746[/tex]
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 77[/tex]
The standard deviation is [tex]\sigma = 14[/tex]
The sample size is [tex]n = 26[/tex]
Generally the standard deviation of sampling distribution of the sample mean ( [tex]\= x[/tex]) is mathematically represented as
[tex]\sigma _{\= x} = \frac{ \sigma }{ \sqrt{n} }[/tex]
substituting values
[tex]\sigma _{\= x} = \frac{ 14}{ \sqrt{26} }[/tex]
[tex]\sigma _{\= x} = 2.746[/tex]
Generally the mean of sampling distribution of the sample mean ( [tex]\= x[/tex]) is equivalent to the population mean i.e
[tex]\mu_{\= x } = \mu[/tex]
[tex]\mu_{\= x } = 77[/tex]
Volume 1 (3)3 = 367
SSCE/JME-TYPE OF
2
The area of an equilateral triangle of side 8 cm is
A. 16V3 cm? B. 32/3 cm
B.
48 cm
cm?
D.
36V3 cm
A
parallelogram
of area 425 cmhas a height o
Answer:
[tex]A.\ 16\sqrt3\ cm^2[/tex] is the correct answer.
Step-by-step explanation:
Given that:
Side of an equilateral triangle = 8 cm
To find:
Area of the triangle will be:
[tex]A.\ 16\sqrt3\ cm^2[/tex]
[tex]B.\ \dfrac{32}{3} cm^2[/tex]
[tex]C.\ 48\ cm^2[/tex]
[tex]D.\ 36\sqrt3\ cm^2[/tex]
Solution:
First of all, let us have a look at the formula for area of an equilateral triangle:
[tex]A =\dfrac{\sqrt3}{4}a^2[/tex]
Where [tex]a[/tex] is the side of equilateral triangle and an equilateral triangle is a closed 3 sided structure in 2 dimensions which has all 3 sides equal to each other.
Here, we are given that side, [tex]a=8\ cm[/tex]
Putting the value in formula:
[tex]A =\dfrac{\sqrt3}{4}\times 8^2\\\Rightarrow A =\dfrac{\sqrt3}{4}\times 64\\\Rightarrow A =\sqrt3\times 16\\OR\\\Rightarrow \bold{A =16\sqrt3\ cm^2}[/tex]
Hence, [tex]A.\ 16\sqrt3\ cm^2[/tex] is the correct answer.
Which of the following statements are true? Select all that apply.
If the equation were graphed, it would be a horizontal line.
Both functions have the same slope.
The origin is the y-intercept for the function expressed in the table.
The linear equation does not have a y-intercept.
The table and the graph express an equivalent function.
Answer:
Both functions have the same slope.The origin is the y-intercept for the function expressed in the table.The table and the graph express an equivalent function.Step-by-step explanation:
Both functions have the same slope
The slope is m in the equation; y =mx+c which is the formula for a straight line.
m = change in Y/change in x
Using 2 points: (1,3/4) and ( 4,3) from the table;
= (3 - 3/4) / ( 4 - 1)
= 2.25/3
= 0.75 which is 3/4 which is the same as the slope of the function in the equation.
The origin is the y-intercept for the function expressed in the table.
Slope of function in table is known to be 0.75. Find c to complete equation.
3 = 0.75 ( 4) + c
3 = 3 + c
c = 0
c is the y-intercept. The origin of a line is 0 so if c is 0 then the origin is the y intercept.
The table and the graph express an equivalent function.
The function for the table as calculated is;
y = 0.75x + 0
y = 0.75x
This is the same as the function for the equation for the graph which is y = 3/4x.
Answer:Both functions have the same slope.
The origin is the y-intercept for the function expressed in the table.
The table and the graph express an equivalent function.
Step-by-step explanation:
Compare the linear functions expressed below by data in a table and by an equation.
A 2-column table with 4 rows. Column 1 is labeled x with entries negative 6, negative four-thirds, 1, 4. Column 2 is labeled y with entries negative StartFraction 9 Over 2 EndFraction, negative 1, three-fourths, 3. y = three-fourths x.
Which of the following statements are true? Select all that apply.
If the equation were graphed, it would be a horizontal line.
Both functions have the same slope.
The origin is the y-intercept for the function expressed in the table.
The linear equation does not have a y-intercept.
The table and the graph express an equivalent function.
If the sum of the daily unpaid balances is $7,812 over a 31-day billing cycle, what is the average daily balance?
Answer:
252
Step-by-step explanation:
Divide 7812 by 31 and we get the average daily answer... Hope this helps!!
how do you figure out ratios? the problem is 12 quarters to 34 dollars. thanks
Step-by-step explanation:
When you have a ratio, you put one number as the numerator and than one number as the denominator.
so it would be (12/34)=(x/68)
In this example I made the ratio you are comparing it to have 68 dollars, so when you solve for the amount of quarters you need it should be 24, since all of the numbers in this example are just being doubled.
To solve for x, you multiply 68 on both sides of the equation, 68×(12/34)=x
24=x
So this proves that this is how ratios, are used. It also does not matter what number you place on the numerator or denominator.
Two friends are standing at opposite corners of a rectangular courtyard. The dimensions of the courtyard are 12 ft. by 25 ft. How far apart are the friends?
Answer:
27.73 feet
Step-by-step explanation:
Use the Pythagorean theorem. It easiest to think of the distance between the two friends as a triangle in the rectangle. One side is 12ft and the other is 25ft.
12^2+25ft^2=769
The square root of 769 is 27.73
Answer:
27.73 Ft
Step-by-step explanation:I took the test