Answer:
$14.40 is the discount price.
Step-by-step explanation:
0.2 x 18 = 3.6
18 - 3.6 = 14.4
What is the equation of the line in slope-intercept form?
Write your answer using integers, proper fractions, and improper fractions in simplest form.
Answer:
[tex]y=-\frac{1}{4}x\\[/tex]
Step-by-step explanation:
The slope is calculated by "up ÷ across".
= -1 ÷ 4
= [tex]-\frac{1}{4}[/tex]
The y-intercept is just 0 (because the line meets at the y axis at 0).
So, using [tex]y=mx+b[/tex] (where m = slope and b = y-intercept),
[tex]y=-\frac{1}{4}x+0[/tex]
but the '+0' is unnecessary so we just say [tex]y=-\frac{1}{4}x[/tex]
Please help. ASAP. Work out, giving your answer in its simplest form:
3 1/2 divided by 2 3/5
Answer:
26/35
Step-by-step explanation:
1. First to divide the 3 1/2 by 2 3/5 you have to turn them both into improper fractions
First take 3 1/2. You have to multiply the whole number (3) by the denominator (2) and you would get 6. Then you would add then you add the product (6) to the numerator (1) and get 7.
You keep the denominator the same so the improper fraction is 7/2
Do the same thing to 2 3/5 and the improper fraction is 13/5
2. Now we can divide 13/5 by 7/2 using "keep, change, flip"
Keep: 13/5
Change: division to multiplcation
Flip: 7/2 to make 2/7
Your new equation is 13/5 × 2/7. Multiplcation is easy so you just have to multiply staight across: 13 × 2 and 5 × 7 giving you 26/35
If you divide 35 by 26 you will get 1.34 and a bunch of other numbers but I usually stop at two decimal places
hope this helps :)
Write a linear inequality for each graph (back page)
Answer:
I can't read that...........
(27/8)^1/3×[243/32)^1/5÷(2/3)^2]
Simplify this question sir pleasehelpme
Step-by-step explanation:
[tex] = {( \frac{27}{8} )}^{ \frac{1}{3} } \times ( \frac{243}{32} )^{ \frac{1}{5} } \div {( \frac{2}{3} )}^{2} [/tex]
[tex] = { ({ (\frac{3}{2} )}^{3}) }^{ \frac{1}{3} } \times {( {( \frac{3}{2}) }^{5} )}^{ \frac{1}{5} } \div {( \frac{2}{3} )}^{2} [/tex]
[tex] = {( \frac{3}{2} )}^{3 \times \frac{1}{3} } \times {( \frac{3}{2} )}^{5 \times \frac{1}{5} } \times {( \frac{3}{2} )}^{2} [/tex]
[tex] = \frac{3}{2} \times \frac{3}{2} \times {( \frac{3}{2} )}^{2} [/tex]
[tex] = {( \frac{3}{2} )}^{1 + 1 + 2} [/tex]
[tex] = {( \frac{3}{2} )}^{4} \: or \: \frac{81}{16} [/tex]
[tex]\large\underline{\sf{Solution-}}[/tex]
[tex]\sf{\longmapsto{\bigg( \dfrac{27}{8} \bigg)^{\frac{1}{3}} \times \Bigg[\bigg( \dfrac{243}{32} \bigg)^{\frac{1}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\[/tex]
We can write as :
27 = 3 × 3 × 3 = 3³
8 = 2 × 2 × 2 = 2³
243 = 3 × 3 × 3 × 3 × 3 = 3⁵
32 = 2 × 2 × 2 ×2 × 2 = 2⁵
[tex]\sf{\longmapsto{\bigg( \dfrac{3 \times 3 \times 3}{2 \times 2 \times 2} \bigg)^{\frac{1}{3}} \times \Bigg[\bigg( \dfrac{3 \times 3 \times 3 \times 3 \times 3}{2 \times 2 \times 2 \times 2 \times 2} \bigg)^{\frac{1}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg( \dfrac{{(3)}^{3}}{{(2)}^{3}} \bigg)^{\frac{1}{3}} \times \Bigg[\bigg( \dfrac{({3}^{5})}{{(2)}^{5}} \bigg)^{\frac{1}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\[/tex]
Now, we can write as :
(3³/2³) = (3/2)³
(3⁵/2⁵) = (3/2)⁵
[tex]\sf{\longmapsto{\left\{\bigg(\frac{3}{2} \bigg)^{3} \right\}^{\frac{1}{3}} \times \Bigg[\left\{\bigg(\frac{3}{2} \bigg)^{5} \right\}^{\frac{1}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\[/tex]
Now using law of exponent :
[tex]{\sf{({a}^{m})^{n} = {a}^{mn}}}[/tex]
[tex]\sf{\longmapsto{\bigg( \frac{3}{2} \bigg)^{3 \times \frac{1}{3}} \times \Bigg[\bigg(\frac{3}{2} \bigg)^{5 \times \frac{1}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\[/tex]
[tex] \sf{\longmapsto{\bigg( \frac{3}{2} \bigg)^{\frac{3}{3}} \times \Bigg[\bigg(\frac{3}{2} \bigg)^{\frac{5}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg( \frac{3}{2} \bigg)^{1} \times\Bigg[\bigg(\frac{3}{2} \bigg)^{1} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg( \frac{3}{2} \bigg)^{1} \times \Bigg[\bigg(\frac{3}{2} \bigg)^{1} \times \bigg(\dfrac{3}{2} \bigg)^{2}\Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg( \frac{3}{2} \bigg)^{1} \times \Bigg[\bigg(\frac{3}{2} \bigg)^{1} \times \bigg(\dfrac{3}{2} \times \dfrac{3}{2} \bigg)\Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg( \dfrac{3}{2} \bigg)^{1} \times \Bigg[\bigg(\dfrac{3}{2} \bigg)^{1} \times \bigg(\dfrac{3 \times 3}{2 \times 2}\bigg)\Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg( \dfrac{3}{2} \bigg)^{1} \times \Bigg[\bigg(\dfrac{3}{2} \bigg)^{1} \times \bigg(\dfrac{9}{4}\bigg)\Bigg]}} \\[/tex]
[tex] \sf{\longmapsto{\bigg( \frac{3}{2} \bigg)\times \Bigg[\bigg(\frac{3}{2} \bigg)\times \bigg(\dfrac{9}{4}\bigg)\Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg( \dfrac{3}{2} \bigg)\times \Bigg[ \: \: \dfrac{3}{2} \times \dfrac{9}{4} \: \: \Bigg]}}\\[/tex]
[tex]\sf{\longmapsto{\bigg( \dfrac{3}{2} \bigg)\times \Bigg[ \: \: \dfrac{3 \times 9}{2 \times 4} \: \: \Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg(\dfrac{3}{2} \bigg)\times \Bigg[ \: \: \dfrac{27}{8} \: \: \Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\dfrac{3}{2} \times \dfrac{27}{8}}} \\[/tex]
[tex]\sf{\longmapsto{\dfrac{3 \times 27}{2 \times 8}}} \\[/tex]
[tex] \sf{\longmapsto{\dfrac{81}{16}}\: ≈ \:5.0625\:\red{Ans.}} \\[/tex]
help me please !!!!
Answer:
graph X only
Step-by-step explanation:
because with the rate of change it makes a straight line
How many 2 digit numbers have unit digit 6 but are not perfect squares
9514 1404 393
Answer:
7
Step-by-step explanation:
Of the 9 2-digit numbers ending in 6, only 2 are perfect squares: 16 and 36. The other 7 are not perfect squares.
FInd the value of T - triangle measerments
JK=JH
[tex]\\ \sf\longmapsto 10t=7t+15[/tex]
[tex]\\ \sf\longmapsto 10t-7t=15[/tex]
[tex]\\ \sf\longmapsto 3t=15[/tex]
[tex]\\ \sf\longmapsto t=15/3=5[/tex]
170 students or 85% of the students went to attend college what are the total number of students?
Answer:
200
Step-by-step explanation:
I think sorry if I am wrong
How many solutions can be found for the system of linear equations represented on the graph?
A) no solution
B) one solution
C) two solutions
D) infinitely many solutions
Answer:
A) No solution
Step-by-step explanation:
Given the systems of linear equations, y = 2x + 1 and y = 2x - 1:
Both equations in the system have the same slope, m = 2, thus forming parallel lines. Since their lines are parallel from each other, then it means that their lines will never intersect.
Therefore, the given systems of linear equation is an inconsistent system that has no solution.