Answer:
B. the mean
Step-by-step explanation:
According to the Bar Chart shown, the number of DVDs sold at a local music store during one week are displayed.
Therefore, the measure(s) of central tendency that can be used to determine the average number of DVDs sold each day is the mean.
This is because the mean is the sum total of the number of DVDs sold, divided by the number, which gives the average.
Answer:
The Mean
Step-by-step explanation:
I took the test
Find the gradient of the tangent line to the curve y=-x² + 3x at the point (2, 2).
Answer:
Y' = - 1
Step-by-step explanation:
Y' = - 2x +3
So y' (2,2) =-2*2 +3= - 1
1. Which of the following is equivalent to 7a4 + 3a"?
O (7+3)a4+4
O (7-3)a+
O (743)a+
O (7.3)a4+4
Both the question and options given doesn't seem to be properly formatted. A well formatted form of the question is written in the comment section below.
Answer:
10a^4
Step-by-step explanation:
Given the expression :
7a^4+3a^4
The sum of the expression given above could be taken directly Since the power of each individual value is the same.
7a^4+3a^4
Adding the coefficients
(7+3)a^4
10a^4
a cat measures 76 cm from its nose to its tail the length of a lion is 3 times as long as a car how long is a lion? Give your answer in meters
Answer:
ok so if the lion is 3 times bigger we have to multiply the length of the cat by
3
3*76=228
so the lion is 228 cm long
now we divide by 100 for meters
228 divided by 100=2.28 meters
Hope This Helps!!!
Answer:
2.28 Meters
Step-by-step explanation:
If the lion is 3 times as long as the cat and the cat is 76cm long you just multiply 76*3=228 convert that to meters and it gives you 2.28 meters in length for the lion
A map was created using the scale 1 inch :25
miles. If the river is 5.5 inches long on the map, then it is actually how many miles long?
In a pool of water filled to a depth of 10 ft, calculate the fluid force on one side of a 3 ft by 4 ft rectangular plate if it rests vertically on its 4 ft edge at the bottom of the pool. Remember that water weighs 62.4 lb/ft3
9514 1404 393
Answer:
6,364.8 lb
Step-by-step explanation:
The centroid of the plate is its center, so is 1.5 ft above the bottom of the pool, or 8.5 ft below the surface. The area of the plate is (3 ft)(4 ft) = 12 ft². Then the fluid force is ...
(62.4 lb/ft³)(8.5 ft)(12 ft²) = 6,364.8 lb
Suppose y varies inversely with x, and y = 18 when x = 12. What is the value of x when y = 24? NO LINKS OR ANSWERING YOU DON'T KNOW?
a. 24
b. 9
c. 12
d. 18
Answer:
B. 9
Step-by-step explanation:
We are given that y varies inversely with x. Recall that inverse variation has the form:
[tex]\displaystyle y=\frac{k}{x}[/tex]
Where k is the constant of variation.
We are given that y = 18 when x = 12. Hence:
[tex]\displaystyle (18)=\frac{k}{(12)}[/tex]
Solve for k. Multiply both sides by 12:
[tex]k=12(18)=216[/tex]
Thus, our equation is:
[tex]\displaystyle y=\frac{216}{x}[/tex]
We want to find x when y = 24. Substitute:
[tex]\displaystyle \frac{24}{1}=\frac{216}{x}[/tex]
Cross-multiply:
[tex]24x=216[/tex]
Divide both sides by 24. Hence:
[tex]x=9[/tex]
Our answer is B.
Answer:
B
Step-by-step explanation:
Given that y varies inversely with x then the equation relating them is
y = [tex]\frac{k}{x}[/tex] ← k is the constant of variation
To find k use the condition y = 18 when x = 12 , then
18 = [tex]\frac{k}{12}[/tex] ( multiply both sides by 12 )
216 = k
y = [tex]\frac{216}{x}[/tex] ← equation of variation
When y = 24 , then
24 = [tex]\frac{216}{x}[/tex] ( multiply both sides by x )
24x = 216 ( divide both sides by 24 )
x = 9
CANE SOMEONE HELP ME ON GEOMETRY
[tex]option(c) \: cylinder[/tex]
Step-by-step explanation:
You can see that in the figure, this is rectangle. Here, ABCD is rotated around the vertical line through A and D. So, you will get Cylinder shape as you rotate it.
what is the probability of the two numbers being the same if two regular dice are thrown?
Answer:
1/6
Step-by-step explanation:
1 and 1
2 and 2
3 and 3
4 and 4
5 and 5
6 and 6
6/36 = 1/6
Answer:
1/6.
Step-by-step explanation:
The favourable outcomes are 1,1 2,2 3,3 4,4 5,5 and 6,6 = 6 outcomes.
All the possible outcomes for 2 regular dice = 36.
Therefore the required probability = 6/36
= 1/6.
If electricity power failures occur according to a Poisson distribution with an average of 3 failures every twenty weeks, calculate the probability that there will not be more than one failure during a particular week.
Answer:
0.9898 = 98.98% probability that there will not be more than one failure during a particular week.
Step-by-step explanation:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
In which
x is the number of sucesses
e = 2.71828 is the Euler number
[tex]\mu[/tex] is the mean in the given interval.
3 failures every twenty weeks
This means that for 1 week, [tex]\mu = \frac{3}{20} = 0.15[/tex]
Calculate the probability that there will not be more than one failure during a particular week.
Probability of at most one failure, so:
[tex]P(X \leq 1) = P(X = 0) + P(X = 1)[/tex]
Then
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
[tex]P(X = 0) = \frac{e^{-0.15}*0.15^{0}}{(0)!} = 0.8607[/tex]
[tex]P(X = 1) = \frac{e^{-0.15}*0.15^{1}}{(1)!} = 0.1291[/tex]
Then
[tex]P(X \leq 1) = P(X = 0) + P(X = 1) = 0.8607 + 0.1291 = 0.9898[/tex]
0.9898 = 98.98% probability that there will not be more than one failure during a particular week.
A survey found that women's heights are normally distributed with mean 62.3 in. and standard deviation 2.3 in. The survey also found that men's heights are normally distributed with a mean 67.6 in. and standard deviation 2.9. Complete parts a through c below. a. Most of the live characters at an amusement park have height requirements with a minimum of 4 ft 9 in. and a maximum of 6 ft 4 in. Find the percentage of women meeting the height requirement The percentage of women who meet the height requirement is %. (Round to two decimal places as needed.)
Answer:
98.93
Step-by-step explanation:
we're looking for
4 ft 9 <x<6 ft 4
Let's convert this into inches
4 ft 9 = 57 in
6 ft 4= 76
so we're looking for
57<x<76
which is equal to
p(76)-p(57)
let's start by p(76)
(76-62.3)/2.3= 5.946521 which on a ztable is equal to 1
p(57)=
(57-62.3)/2.3= -2.3
which is equal to 1-.9893= .0107
Finally,
1-.0107= .9893 = 98.93%
The dress store is having a sale where all merchandise is 1/4 off. A woman buys $48 of merchandise at a sale price.
Answer:$36 depending on what question is i just assuming how much she has to pay
Step-by-step explanation:
48 divded by 4 is 12. $48-$12 is $36. The $12 is the 1/4 discount.
What complex number is represented by the expression 7i^5+9i^8
Answer:
[tex]9 + 7i[/tex]
Step-by-step explanation:
[tex]7i^5+9i^8[/tex]
[tex]i^5 = i\\ i^8 = 1[/tex]
Which number is located to the right of on the horizontal number line?
A. -1 1/3
B. -2 1/3
C. -2 2/3
D. -3 1/3
Please help me
Answer:
A
Step-by-step explanation:
since it's negative so it will get smaller
In the Cash Now lottery game there are 20 finalists who submitted entry tickets on time. From these 20 tickets, three grand prize winners will be drawn. The first prize is one million dollars, the second prize is one hundred thousand dollars, and the third prize is ten thousand dollars. Determine the total number of different ways in which the winners can be drawn. (Assume that the tickets are not replaced after they are drawn.)
100
During a basketball practice, Steph Curry made 234 three point shots in 45 minutes.
In the same practice, his teammate Klay Thompson made 168 three point shots in 34 minutes.
1) Find the unit rates of both players of shots made per each minute.
2) Which player was making more shots at a higher rate?
Answer:
it was very nice step so they wine so anther bed boys decided to take his legs and round and round to good boys
Find an expression for the general term of each of the series below. Use n as your index, and pick your general term so that the sum giving the series starts with n=0.
A. x^3cosx^2=x^3-(x^7)/2!+(x^11)/4!-(x^15)/6!+...
general term =
B. x^3sinx^2=x^5-(x^9)/3!+(x^13)/5!-(x^17)/7!+...
general term =
Answer:
[tex]x^{3}cos(x^{2})=\sum _{n=0} ^{\infty} \frac{(-1)^{n}x^{4n+3}}{(2n)!}[/tex]
[tex]x^{3}sin(x^{2})=\sum _{n=0} ^{\infty} \frac{(-1)^{n}x^{4n+5}}{(2n+1)!}[/tex]
Step-by-step explanation:
A
Let's start with the first function:
[tex]x^{3}cos(x^{2})=x^{3}-\frac{x^{7}}{2!}+\frac{x^{11}}{4!}-\frac{x^{15}}{6!}+...[/tex]
In order to find the expression for the general term, we will need to analyze each part of the sum. First, notice that the sign of the terms of the sum will change with every new term, this tells us that the expression must contain a
[tex](-1)^{n}[/tex].
This will guarantee us that the terms will always change their signs so that will be the first part of our expression.
next, the power of the x. Notice the given sequence: 3, 7, 11, 15...
we can see this is an arithmetic sequence since the distance between each term is the same. There is a distance of 4 between each consecutive power, so this sequence can be found by adding a 4n to the original number, the 3. So the power is given by 4n+3.
so let's put the two things together:
[tex](-1)^{n}x^{4n+3}[/tex]
Finally the denominator, there is also a sequence there: 0!, 2!, 4!, 6!
This is also an arithmetic sequence, where we are multiplying each consecutive value of n by a 2, so in this case the sequence can be written as: (2n)!
So let's put it all together so we get:
[tex]\frac{(-1)^{n}x^{4n+3}}{(2n)!}[/tex]
So now we can build the whole series:
[tex]x^{3}cos(x^{2})=\sum _{n=0} ^{\infty} \frac{(-1)^{n}x^{4n+3}}{(2n)!}[/tex]
B
Now, let's continue with the next function:
[tex]x^{3}sin(x^{2})=x^{5}-\frac{x^{9}}{3!}+\frac{x^{13}}{5!}-\frac{x^{17}}{7!}+...[/tex]
In order to find the expression for the general term, we will need to analyze each part of the sum. First, notice that the sign of the terms of the sum will change with every new term, this tells us that the expression must contain a
[tex](-1)^{n}[/tex].
This will guarantee us that the terms will always change their signs so that will be the first part of our expression.
next, the power of the x. Notice the given sequence: 5, 9, 13, 17...
we can see this is an arithmetic sequence since the distance between each term is the same. There is a distance of 4 between each consecutive power, so this sequence can be found by adding a 4n to the original number, the 5. So the power is given by 4n+5.
so let's put the two things together:
[tex](-1)^{n}x^{4n+5}[/tex]
Finally the denominator, there is also a sequence there: 1!, 3!, 5!, 7!
This is also an arithmetic sequence, where we are multiplying each consecutive value of n by a 2 starting from a 1, so in this case the sequence can be written as: (2n+1)!
So let's put it all together so we get:
[tex]\frac{(-1)^{n}x^{4n+5}}{(2n+1)!}[/tex]
So now we can build the whole series:
[tex]x^{3}sin(x^{2})=\sum _{n=0} ^{\infty} \frac{(-1)^{n}x^{4n+5}}{(2n+1)!}[/tex]
Angela’s average for six math tests is 87. on her first four tests she had scores of 93, 87, 82, and 86. on her last tests she scored 4 points lower than she did on her fifth test what scores did Angela receive on her firth and sixth tests?
Answer:
the scores on her last test is x (x > 0)
because on her last tests she scored 4 points lower than she did on her fifth test
=> the scores in the 5th test is x + 4
because Angela’s average for six math tests is 87, we have:
[tex] \frac{93 + 87 + 82 + 86 + x + x + 4}{6} = 87 \\ \\ < = > \frac{352 + 2x}{6} = 87 \\ \\ < = > 352 + 2x = 522 \\ \\ < = > 2x = 170 \\ \\ < = > x = 85[/tex]
=> on her last test, she had 85
=> on her 5th test, she had 85 + 4 = 89
the value of P where P= (1)2 + (3)2 + (5)2 +......... + (25)?
Answer:
338
Step-by-step explanation:
1×2=2 2+6+10+14+18+22+26+30
3×2=6 +34+36+38+42+46+50=338
5×2=10
7×2=14
9×2=18
11×2=22
13×2=26
15×2=30
17×2=34
19×2=38
21×2=42
23×2=46
25×2=50
Could you help me and answer a couple questions for me?
Answer:
I think no. D is the answer
The PDF of the maximum
Let X and Y be independent random variables, each uniformly distributed on the interval (0, 1).
Let Z = max{X, Y}. Find the PDF of Z.
For 0 < z < 1
Let Z = max{2X, Y}. Find the PDF of Z.
For 0 < z < 1
For 1 < z < 2
Answer:
distinctly over here I think so
What is the missing term in the factorization?
12x2 – 75 = 3 (2x+?)(2x – 5)
Answer:
12x2 – 75 = 3 (2x+5)(2x – 5)
Step-by-step explanation:
x = log e square root e
x=
Answer:
[tex]x=\frac{1}{2}[/tex]
Step-by-step explanation:
By definition, we have [tex]\log_a b=c\implies c^a=b[/tex].
Therefore, given [tex]\log_e \sqrt{e}=x[/tex], we have:
[tex]e^x=\sqrt{x}[/tex]
Solving, we have:
[tex]x=\boxed{\frac{1}{2}}[/tex]
(Recall that [tex]a^{(\frac{b}{c})}=\sqrt[c]{a^b}[/tex]).
Answer:
1/2
Step-by-step explanation:
Given :-
log e √e log e e ^½ 1/2 log e e 1/2 * 11/2Tamir wants to buy a snowboard. The original price is $760. How much will Tamir pay if he buys it during the sale?
8. Calculate the Perimeter AND Area of
the RIGHT Triangle below.
17 m
10 m
21 m
Answer:
[tex]\text{Perimeter: }48\:\mathrm{m},\\\text{Area: }84\:\mathrm{m^2}[/tex]
Step-by-step explanation:
The area of a triangle with side lengths [tex]a[/tex], [tex]b[/tex], and [tex]c[/tex] is given by:
[tex]A=\sqrt{s(s-a)(s-b)(s-c)}[/tex], where [tex]s=\frac{a+b+c}{2}[/tex]
Substituting [tex]a=21, b=17, c=10[/tex], we have:
[tex]A=\sqrt{24(24-21)(24-17)(24-10)},\\A=\sqrt{24(3)(7)(14)},\\A=\sqrt{7,084},\\A=\boxed{84\:\mathrm{m^2}}[/tex]
The perimeter of a polygon is given by the sum of its sides. Since the triangle has sides 10, 17, and 21, its perimeter is [tex]10+17+21=\boxed{48\:\mathrm{m}}[/tex].
What is each of the four sections created by the intersecting lines called?
Answer:
Quadrants
Step-by-step explanation:
When two lines intersect such that they are perpendicular to each other, then quadrants are said to be formed. So that a given space would be divided into four quadrants when two perpendicular lines are drawn on it.
Each section which is called quadrant is at right angle to one another. So that the addition of their angles at the meeting point is the sum of four right angles i.e [tex]360^{o}[/tex]. Thus each of the four sections created by the intersecting lines is called a quadrant.
The surface area of a roof with dimensions of 40 feet long by 28 feet wide is how many times the surface area of a floor where the dimensions are 16 feet long by 7 feet wide?
Answer:
10 times
Step-by-step explanation:
Multiply 40 by 28
1120
Multiply 16 by 7
112
Divide the two numbers
You get 10
Hope this helps!
The quadratic function y = -10x2 + 160x - 430 models a store's daily profit (y), in dollars, for selling T-shirts priced at x dollars.
Answer:
shall I have to answer for x pls tell
Answer:
D, B, C, A
Step-by-step explanation:
The temperature of a certain deserted, unheated house is in degrees Fahrenheit at time in hours. If the outside temperature is (about the average autumn temperature in the Boston area), and it takes 24 hours for the temperature of the house to drop from to use Newton's law of cooling to write down a differential equation for the temperature of the house.
Answer: Hello attached below is the well written complete question
answer:
T = 40 + 30e^-0.0288t
Step-by-step explanation:
To( outside temperature ) = 40°F
T = ?
k( thermal conductivity ) = constant
A( area of heat transfer) = constant
Hence Differential equation for the temperature of the house
T = 40 + 30e^-0.0288t
Attached below is the detailed solution of the problem
tor given terms. Find how much the account needs to hold to make this possible. Round your answer to the nearest dollar. Regular withdrawal:2
3200 Interest rate:4.5 Frequency Time: daily for 16 years Account balance: $
Answer:
https://www.omnicalculator.com/finance/compound-interest
Step-by-step explanation:
this is a link to a compound interest calculator and it helped me with similar problems hope it helps you
The graph below is the graph of a function.
10
- 10
10
- 10
True
B. False
Answer:
hgfyjtdjtrxgfyfguktfkgh
Step-by-step explanation:
hgfytrdutrc