Complete Question
The complete question is shown on the first uploaded image
Answer:
Yes the test suggest that the true average percentage of organic matter in such soil is something other than 3%
Step-by-step explanation:
From the question we are told that
The sample mean is [tex]\= x = 2.482\%[/tex]
The standard deviation is [tex]\sigma = 1.614[/tex]
The standard error is [tex]SE = 0.295[/tex]
The sample size is [tex]n = 30[/tex]
The level of significance is [tex]\alpha = 0.05[/tex]
The null hypothesis is [tex]H_o : \mu = 3\%[/tex]
The alternative hypothesis is [tex]H_a : \mu \ne 3\%[/tex]
Now the degree of freedom is evaluated as
[tex]df = n - 1[/tex]
[tex]df = 30 - 1[/tex]
[tex]df = 29[/tex]
The test statistics is mathematically evaluated as
[tex]t = \frac{ 2.482 - 3}{ 0.295}[/tex]
[tex]t = -1.756[/tex]
The p-value is obtained from the the student t -distribution table , the value is
[tex]p-value = P( T \le t)= 2 * t_{ t, df } = t_{ -1.756 , 29 } = 2 *0.0448= 0.0896[/tex]
The reason for the 2 in the equation is because the test is a two -tailed test i.e -1.756 and 1.756
Given that the [tex]p-value > \alpha[/tex] then we fail to reject the null hypothesis
Hence the test the suggest that the true average percentage of organic matter in such soil is something other than 3%
Determine if the matrix is symmetric.
(-1 -5 -9 8)
The transpose of the given matrix is nothing. Because this is_____to the given matrix, the given matrix_____symmetric.
Answer:
because this is equal to the given matrix, the given matrix is symmetric.
Step-by-step explanation:
A symmetric matrix is a square matrix which has same number of rows and columns. Square matrix is equal to transpose. Equal matrices have equal dimensions. The given matrix is symmetric because the rows and columns are equally distributed.
!2,19,26 what comes nxt
Answer:
12 , 19 , 26 , 33
Explaination:Here, n+7
12+7=19
19+7=26
So,
26+7=33
Hope you understand ❣
Step-by-step explanation:
12 , 19 , 26 , ?
Given
___________
a1= 12
a2= 19
a3 = 26
d= ?
a4 = ?
––——————
we can solve this by using formula from Ap .
But for this we have to find d
As we know that
common difference(d) = a2-a1 = 19 -12
= 7
so difference after every no is 7 so
a4 = a3 + d
= 26 +7
= 33
So 33 is ur answer mate
Hope it helps
Can someone help me, please?
Answer:
16
Step-by-step explanation:
7x+20+2x-5=159
9x+15=159
9x=159-15
9x=144
x=16
Answer Both Questions
Answer:is the first answer 15.875 and the second answer 17 x 28 ÷5
Step-by-step explanation:
A survey of 1,565 households estimated that 72% of the households in a given state owned a television. What is the population? all the households in given state 1565 households surveyed 1127 households that owned televisions
Answer:
all the houses in given state
Step-by-step explanation:
edge 2021
Using sampling concepts, it is found that the population is given by:
All the households in given state.
What is a sampling?In a sampling, data is taken from a sample to be estimated for the entire population.
For example, if you want to find the proportion of New York State residents that are Buffalo Bills fans, surveying a sample of 1000 residents, the population is all New York State residents.
Hence, in this problem, the population is given by all the households in given state.
More can be learned about sampling concepts at https://brainly.com/question/25122507
1) Dada a função, em reais, definida por f(x)=3.x-5. calcule :
a) f(2)=
b) f(-1)=
Answer:
f(x)= 3x-5
f(2) = 3(2)-5 = 6-5= 1
f(-1)= 3(-1)-5= -3-5= -8
Hope this helps
if u have question let me know in comments ^°^
find the unknown angles
Answer:
y=135
x=45
Step-by-step explanation:
x= 45
It is an isosceles so
180-90=90
90/2= 45
y=135
angles on a straight line add up to 180 so
180-45=135
Hope this helps!
Please help. I’ll mark you as brainliest if correct!
Answer:
(DNE,DNE)
Step-by-step explanation:
-24x-12y = -16. Equation one
6x +3y = 4. Equation two
Multiplying equation two with +4 gives
4(6x +3y = 4)
24x +12y = 16...result of equation two
-24x -12y= -16...
A careful observation to the following equation will help us notice that the both equation are same thing.
Multiplying minus to equation one gives
-(-24x-12y=-16)
24x+12y = 16.
Since the both equation are same, there is no solution to it.
What is the approximate value of x in –2 ln (x + 1) − 3 = 7?
Answer:
x = 1/e^-5 - 1
Step-by-step explanation:
–2 ln (x + 1) − 3 = 7
–2 ln (x + 1) = 10
ln (x + 1) = –5
x + 1 = e^-5
x = e^-5 - 1
x = 1/e^-5 - 1
the approximate value of x in the equation -2 ln(x + 1) - 3 = 7 is x ≈ -0.9933.
To solve the equation -2 ln(x + 1) - 3 = 7 for the approximate value of x, we will follow these steps:
1. Begin with the given equation: -2 ln(x + 1) - 3 = 7.
2. Move the constant term to the other side of the equation: -2 ln(x + 1) = 7 + 3.
3. Simplify: -2 ln(x + 1) = 10.
4. Divide both sides of the equation by -2 to isolate the natural logarithm term: ln(x + 1) = -5.
5. Rewrite the equation using the exponential form of natural logarithm: e⁻⁵ = x + 1.
6. Calculate the value of e⁻⁵: e⁻⁵ ≈ 0.0067.
7. Subtract 1 from both sides of the equation: x = 0.0067 - 1.
8. Simplify: x ≈ -0.9933.
Therefore, the approximate value of x in the equation -2 ln(x + 1) - 3 = 7 is x ≈ -0.9933.
Learn more about equation here
https://brainly.com/question/32549431
#SPJ2
Please help . I’ll mark you as brainliest if correct!
Answer:
Stocks = $15,500
Bonds = $107,250
CD's = $47,250
Step-by-step explanation:
S + B + C = 170000
.0325S + .038B .067C = 7745
60,000 + C = b
S = $15,500
B = $107,250
C = $47,250
About 25% of young Americans have delayed starting a family due to the continued economic slump. Determine if the following statements are true or false, and explain your reasoning.a. The distribution of sample proportions of young Americans who have delayed starting a family due to the continued economic slump in random samples of size 12 is right skewed.b. In order for the distribution of sample proportions of young Americans who have delayed starting a family due to the continued economic slump to be approximatly normal, we need random samples where the sample size is at least 40.c. A random sample of 50 young Americans where 20% have delayed starting a family due to the continued economic slump would be considered unusual.d. A random sample of 150 young Americans where 20% have delayed starting a family due to the continued economic slump would be considered unusual.e. Tripling the sample size will reduce the standard error of the sample proportion by one-third.
Answer:
a. True
b. true
c. false
d. false
e. false
Step-by-step explanation:
a. true
polutation = 25% = 0.25
sample = n= 12
n x p
= 12 x o. 25 = 3 and 3 is less than 10
12(1 - p)
= 12 x 0.75
= 9 and is less than 10
b. True
the sample distribution of the population is normal when
sample size x population > or equal to 10
40 x 0.75
= 30 and 30 is greater than 10
c. false
50 x 0.25 = 12.5
50 x 0.20 = 10
z = 10 - 12.5/sqrt(12.5)
= -2.5/3.54
= -0.70
H0: Young american family who delayed
H1: young american family who did not delay
p(z = -0.70)
0.2420>0.005
therefore we accept the null hypothesis
d. false
150 x 0.20 = 30
150 x 0.75 = 37.5
z = 30 - 37.5/sqrt(37.5) = -7.5/6.12 = -1.22
p(z = -1.22) = 0.1112 > 0.05
therefore we do not reject the null hypothesis
e. false
se1 = sqrt(p(1-p)/n
se2 = sqrt(p(1-p)/3n
se2 = 1/sqrt(3)se2
A baking scale measures mass to the tenth of a gram, up to 650 grams. Which of the following measurements is possible using this scale? a.3.8 grams b.120.01 grams c.800.0 grams d.54 milligrams
Answer:
Step-by-step explanation:
The answer is b
120.01 grams
Help me solve this!!!
Answer:
54°
Step-by-step explanation:
Let ∠CYX=x
AB║CD
∠AXE=∠CYX (corresponding angles)
∠AXE=3∠CYX-108
x=3x-108
3x-x=108
2x=108
x=108/2=54°
∠AXE=∠CYX=x=54°
∠BXY=∠AXE=54° (Vertically opposite angles)
Find the mean of the data summarized in the given frequency distribution. Compare the computed mean to the actual mean of 51.1 degrees. Low Temperature (◦F) 40−44 45−49 50−54 55−59 60−64 Frequency 3 6 13 7
Answer:
[tex]Mean = 53.25[/tex]
Step-by-step explanation:
Given
Low Temperature : 40−44 || 45−49 || 50−54 || 55−59 || 60−64
Frequency: --------------- 3 -----------6----------- 1-----------3--- -----7
Required
Determine the mean
The first step is to determine the midpoints of the given temperatures
40 - 44:
[tex]Midpoint = \frac{40+44}{2}[/tex]
[tex]Midpoint = \frac{84}{2}[/tex]
[tex]Midpoint = 42[/tex]
45 - 49
[tex]Midpoint = \frac{45+49}{2}[/tex]
[tex]Midpoint = \frac{94}{2}[/tex]
[tex]Midpoint = 47[/tex]
50 - 54:
[tex]Midpoint = \frac{50+54}{2}[/tex]
[tex]Midpoint = \frac{104}{2}[/tex]
[tex]Midpoint = 52[/tex]
55- 59
[tex]Midpoint = \frac{55+59}{2}[/tex]
[tex]Midpoint = \frac{114}{2}[/tex]
[tex]Midpoint = 57[/tex]
60 - 64:
[tex]Midpoint = \frac{60+64}{2}[/tex]
[tex]Midpoint = \frac{124}{2}[/tex]
[tex]Midpoint = 62[/tex]
So, the new frequency table is as thus:
Low Temperature : 42 || 47 || 52 || 57 || 62
Frequency: ----------- 3 --||- -6-||- 1-||- --3- ||--7
Next, is to calculate mean by
[tex]Mean = \frac{\sum fx}{\sum x}[/tex]
[tex]Mean = \frac{42 * 3 + 47 * 6 + 52 * 1 + 57 * 3 + 62 * 7}{3+6+1+3+7}[/tex]
[tex]Mean = \frac{1065}{20}[/tex]
[tex]Mean = 53.25[/tex]
The computed mean is greater than the actual mean
are:
4. Suppose that the distance of fly balls hit to the outfield (in baseball) is normally
distributed. We randomly sample 27 fly balls. Their recorded distances in feet
234, 310, 285, 249, 210, 311, 265, 290, 308,
254, 295, 287, 231, 302, 325, 308, 221, 237,
312, 277, 259, 223, 340, 204, 214, 303, 309
Let X be the distance of a fly ball.
Use Excel to calculate the following:
a. (1 pt) mean of the sample, x =
b. (1 pt) standard deviation of the sample, s =
C. (2 pts) Calculate the t-score at a 96% confidence level:
d. (2 pts) Calculate the Error Bound (EBM), using the formula, EBM =
(t)(s//n)
e. (1 pt) At 96% confidence level, provide the confidence interval (CI) for the
mean distance in feet of a fly ball.
hantor 92
D
Step-by-step explanation:
a. The mean can be found using the AVERAGE() function.
x = 272.7
b. The standard deviation can be found with the STDEV() function.
s = 39.9
c. The t-score can be found with the T.INV.2T() function. The confidence level is 0.04, and the degrees of freedom is 26.
t = 2.162
d. Find the lower and upper ends of the confidence interval.
Lower = 272.7 − 2.162 × 39.9 = 186.5
Upper = 272.7 + 2.162 × 39.9 = 358.9
A line passes through (-5, -3) and is parallel to -3x - 7y = 10. The equation of the line in slope-intercept form is _____
Answer:
-3x - 7y = 36
Step-by-step explanation:
The given line -3x - 7y = 10 has an infinite number of parallel lines, all of the form -3x - 7y = C.
If we want the equation of a line parallel to -3x - 7y = 10 that passes through (-5, -3), we substitute -5 for x in -3x - 7y = 10 and substitute -3 for y in -3x - 7y = 10:
-3(-5) - 7(-3) = C, or
15 + 21 = C, or C = 36
Then the desired equation is -3x - 7y = 36.
Shyla's research shows that 8 empty cans make 1/4 pound of aluminum. Shyla wants to know how many cans does it take to make 5 pounds of aluminum. How many cans are there per pound of aluminum?
Answer:
They will need 160 cans to make 5 lbs
32 cans for 1 lbs
Step-by-step explanation:
We can use ratios to solve
8 cans x cans
--------------- = ---------------
1/4 lbs 5 lbs
Using cross products
8 * 5 = 1/4x
40 = 1/4 x
Multiply each side by 4
4 * 40 = 1/4 x * 4
160 =x
They will need 160 cans to make 5 lbs
8 cans x cans
--------------- = ---------------
1/4 lbs 1 lbs
Using cross products
8 * 1 = 1/4x
Multiply each side by 4
8*4 = x
32 cans for 1 lbs
Answer:
32 cans per pound of aluminum
160 cans per 5 pounds of aluminum
Step-by-step explanation:
will make it short and simple.
8 empty cans can make 1/4 pound of aluminum.
therefore... 8 x 4 = 32 cans per pound of aluminum.
Number of cans to make 5 pounds of aluminum = 32 x 5
= 160 cans per 5 pounds of aluminum
There are 47 contestants at a national dog show. How many different ways can contestants fill the first place, second place, and third place positions?
Answer:
97290
Step-by-step explanation:
47 different people can win first
47
Now there are only 46 people left
46 different people can win second
46
45 different people can win third
47*46*45
97290
Find an equation of the tangent to the curve at the given point by both eliminating the parameter and without eliminating the parameter. x = 5 + ln(t), y = t2 + 2, (5, 3)
Answer:
Step-by-step explanation:
Given that:
[tex]x = 5 + In (t)[/tex]
[tex]y = t^2+2[/tex]
At point (5,3)
To find an equation of the tangent to the curve at the given point,
By without eliminating the parameter
[tex]\dfrac{dx}{dt}= \dfrac{1}{t}[/tex]
[tex]\dfrac{dy}{dt}= 2t[/tex]
[tex]\dfrac{dy}{dx}= \dfrac{ \dfrac{dy}{dt} }{\dfrac{dx}{dt} }[/tex]
[tex]\dfrac{dy}{dx}= \dfrac{ 2t }{\dfrac{1}{t} }[/tex]
[tex]\dfrac{dy}{dx}= 2t^2[/tex]
[tex]\dfrac{dy}{dx}_{ (5,3)}= 2t^2_{ (5,3)}[/tex]
t² + 5 = 4
t² = 4 - 5
t² = - 1
Then;
[tex]\dfrac{dy}{dx}_{ (5,3)}= -2[/tex]
The equation of the tangent is:
[tex]y -y_1 = m(x-x_1)[/tex]
[tex](y-3 )= -2(x - 5)[/tex]
y - 3 = -2x +10
y = -2x + 7
y = 2x - 7
By eliminating the parameter
x = 5 + In(t)
In(t) = 5 - x
[tex]t =e^{x-5}[/tex]
[tex]y = (e^{x-5})^2+5[/tex][tex]y = (e^{2x-10})+5[/tex]
[tex]\dfrac{dy}{dx} = 2e^{2x-10}[/tex]
[tex]\dfrac{dy}{dx}_{(5,3)} = 2e^{10-10}[/tex]
[tex]\dfrac{dy}{dx}_{(5,3)} = 2[/tex]
The equation of the tangent is:
[tex]y -y_1 = m(x-x_1)[/tex]
[tex](y-3 )= -2(x - 5)[/tex]
y - 3 = -2x +10
y = -2x + 7
y = 2x - 7
HELP ME ILL GIV ROBUX Identify the property shown by the equation. 14 × 6 = 6 × 14 A. Commutative Property B. Associative Property C. Identity Property D. Distributive Property PLEASE HELP ME
Answer:
Its commutative property..
Step-by-step explanation:
Commutative property says A×B=B×A
Explanation is attached below.
given that f(x)=x^2-4x -3 and g(x)=x+3/4 solve for f(g(x)) when x=9
Answer:
f(g(9)) = 945/16
Step-by-step explanation:
To find f(g(x)), you have to substitute g(x) wherever there is an x in f(x).
g(x) = x + 3/4
f(x) = x² - 4x - 3
f(g(x)) = (x + 3/4)² - 4(x + 3/4) - 3
f(g(x)) = x² + 3/2x + 9/16 - 4x + 3 - 3
f(g(x)) = x² - 5/2x + 9/16 + 3 - 3
f(g(x)) = x² - 5/2x + 9/16
Now, put a 9 wherever there is an x in f(g(x)).
f(g(9)) = (9)² - 5/2(9) + 9/16
f(g(9)) = 81 - 5/2(9) + 9/16
f(g(9)) = 81 - 45/2 + 9/16
f(g(9)) = 117/2 + 9/16
f(g(9)) = 945/16
I’m struggling to understand this problem somebody please explain it to me thanks!!
ax-5d=3cx-2+7
Answer:
x = (5 +5d)/(a -3c)
Step-by-step explanation:
Maybe you're to solve for x.
__
This is a typical "3-step" linear equation.
First, you collect terms with the variable x on one side of the equation. You do that by subtracting from both sides the x-term you don't want where it is.
We choose to remove the 3cx term from the right side, so we subtract it from both sides.
ax -3cx -5d = 3cx -3cx +5 . . . . . . we have combined the constants, too
x(a -3c) -5d = 5 . . . . . . simplify and factor out x
Second, you remove any terms not containing x from the side of the equation with the x-terms. You do that by adding their opposite to both sides of the equation.
We need to remove the -5d term, so we add 5d to both sides.
x(a -3c) -5d +5d = 5 +5d
x(a -3c) = 5 +5d . . . . . . . . . . simplify
Third, we divide by the coefficient of x. We do that to both sides of the equation. We had to put parentheses around the terms on the right, because we're dividing the whole right side of the equation by (a-3c).
x(a -3c)/(a -3c) = (5 +5d)/(a -3c)
x = (5 +5d)/(a -3c)
GIVING OUT BRAINLIEST TO THE FIRST PERSON TO ANSWER!!
One circle has a diameter of 6 inches. A second, larger circle has a diameter that is four times the diameter of the first circle. What is the ratio of the area of the smaller circle to the larger circle?
A. 2:3
B. 1:6:4
C. 1:16
D. 1:64
Please include ALL work! <3
Answer:
The answer is option CStep-by-step explanation:
To find the ratio first find the diameter of the larger circle
Diameter of first circle = 6 inches
Diameter of second circle = 4 × diameter of the first circle
Which is
Diameter of second circle
= 4 × 6 = 24 inches
Area of a circle = πr²
r is the radius
Area of smaller circle
Diameter = 6 inches
Radius = 6 / 2 = 3 inches
Area = (3)² π = 9π in²
Area of larger circle
Diameter = 24 inches
Radius = 24 / 2 = 12 inches
Area = (12)²π = 144π in²
The ratio of the smaller circle to the larger circle is
[tex] \frac{9\pi}{144\pi} [/tex]
Reduce the fraction by 9π
That's
[tex] \frac{1}{16} [/tex]
We have the final answer as
1 : 16Hope this helps you
Answer:
C. 1:16
Step-by-step explanation:
Area of a circle is:
[tex]\pi \times {r}^{2} [/tex]
Small circle Area:
radius = diameter/2
radius = 6/2 = 3
[tex]area \: of \: a \: circle \: = \pi {3}^{2} [/tex]
a = 28.27
Large circle 4 times larger diameter
6*4 = 24
diameter = 24
r = 24/2
r = 12
[tex]a \: = \pi {12}^{2} [/tex]
a = 452.39
area of large circle/ area of small circle
452.39/28.27 = 16.00
ratio is 1:16
(16 points) Find the radius of convergence and the interval of convergence of the power series. g
Answer:
The equation to be solved is missing in the question.
I will explain power series and ways to find the radius and interval of convergence of a powers series in the attached image.
Step-by-step explanation:
Understand the power seriesFind radius of convergenceDetermine interval of convergenceWhat is the approximate area of the unshaded region under the standard normal curve below? Use the portion of the standard normal table given to help answer the question.
A normal curve with a peak at 0 is shown. The area under the curve shaded is 1 to 2.
z
Probability
0.00
0.5000
1.00
0.8413
2.00
0.9772
3.00
0.9987
0.14
0.16
0.86
0.98
Answer:
0.14
Step-by-step explanation:
The z score is a score used in statistics to determine by how many standard deviations ti the raw score above or below the mean. If the raw score is above the mean then the z score is positive while If the raw score is below the mean then the z score is negative, It is given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
From the normal distribution table, The area under the curve shaded is 1 to 2 = P(1 < z < 2) = P(z < 2) - P(z < 1) = 0.9772 - 0.8413 = 0.1359 ≈ 0.14
The area under the curve shaded is 1 to 2 is 0.14
What are probabilities?Probabilities are used to determine the chances of an event
The shaded region represents the probability of the z-scores
The shaded region 1 to 2 is represented as:
P(1 < z < 2) =
Using the probability of z-score, we have the formula
P(1 < z < 2) = P(z < 2) - P(z < 1)
From the given standard normal table:
P(z < 2) = 0.9772
P(z < 1) = 0.8413
So, we have:
P(1 < z < 2) = 0.9772 - 0.8413
P(1 < z < 2) = 0.1359
Approximate
P(1 < z < 2) = 0.14
Hence, the area under the curve shaded is 1 to 2 is 0.14
Read more about normal distribution at:
https://brainly.com/question/4079902
find x, if sq.root(x) +2y^2 = 15 and sq.root(4x) - 4y^2=6
Answer:
Example: solve √(2x−5) − √(x−1) = 1
isolate one of the square roots:√(2x−5) = 1 + √(x−1) square both sides:2x−5 = (1 + √(x−1))2 ...
expand right hand side:2x−5 = 1 + 2√(x−1) + (x−1) ...
isolate the square root:√(x−1) = (x−5)/2. ...
Expand right hand side:x−1 = (x2 − 10x + 25)/4. ...
Multiply by 4 to remove division:4x−4 = x2 − 10x + 25.
Answer:
Step-by-step explanation:
ewrerewrwrwerrwer
Identify the sample space of the probability experiment and determine the number of outcomes in the sample space. Playing the game of roulette, where the wheel consists of slots numbered 00, 0, 1, 2, ..., To play the game, a metal ball is spun around the wheel and is allowed to fall into one of the numbered slots.a. The sample space is (00, 0}. b. The sample space is (00, 0, 1,2,., 33). c. The sample space is (00). d. The sample space is (1, 2,..., 33).
Answer:
The correct option is (B).
Step-by-step explanation:
It is provided that, in a game of roulette the wheel consists of slots numbered 00, 0, 1, 2, ..., 33.
The sample space of an experiment, is the set of all the possible outcomes of the random trials.
There are a total of 35 slots on the roulette wheel where the ball can land.
So, there are a total of 35 outcomes for one rotation of the wheel.
Then the sample space consists of all the 35 outcomes, i.e.
S = {00, 0, 1, 2, 3, ..., 33}
Thus, the correct option is (B).
The red blood cell counts (in millions of cells per microliter) for a population of adult males can be approximated by a normal distribution, with a mean of million cells per microliter and a standard deviation of million cells per microliter. (a) What is the minimum red blood cell count that can be in the top % of counts? (b) What is the maximum red blood cell count that can be in the bottom % of counts?
Answer:
(a) Minimum red blood cells 5.744 million cells per micro liter
(b) Maximum red blood cells 5.068 million cells per micro liter.
Step-by-step explanation:
Z-score formula is = [tex]\frac{x-u}{Standard deviation}[/tex]
Z-score = [tex]\frac{x-5.5}{0.4}[/tex]
The value of z-score is 0.61 so then x will be;
x = 5.744
The minimum red blood cells count that can in top is 27% of count which is 5.744 million cells per micro liter.
Z-score = [tex]\frac{x-5.5}{0.4}[/tex]
The value of z-score is 0.14 so then x will be;
x = 5.068
The maximum red blood cells count that can be in top is 14% of count which is 5.068 million cells per micro liter.
If 6x +3= 2x+ 19, then x =
Answer:
x = 4
Step-by-step explanation:
6x + 3 = 2x + 19 ------ subtract 3 both sides
6x + 3 - 3 = 2x + 19 - 3 simplify
6x = 2x + 16 ------ subtract 2x both sides
6x - 2x = 2x + 16 - 2x simplify
4x = 16
x = 16 / 4
x = 4
Answer: x = 4
Step-by-step explanation: If the variable appears on both sides of the equation, we put the variables together on one side of the equation and the numbers together on the other side of the equation.
So let's put our variables on the left side by first subtracting
2x from both sides of the equation to get 4x + 3 = 19.
Next, we subtract 3 from both sides to get 4x = 16.
Finally, we divide both sides by 4 to get x = 4.
CALC 1: Spud's mom is going to make him a round birthday cake, and has asked for your help. Spud is a bit weird, and has already
announced that when he slices the cake, your slice will have a perimeter of 16 inches, because you're his favorite friend, and
that's his favorite number. Since you're helping his mom with the baking, what diameter cake will you recommend she makes
so that you end up with the most possible cake at weird Spud's party? (Hint: you can ignore the thickness df the cake, since
this will be the same, regardless of its diameter.)
10.1
in
Answer:
15.7 in
Step-by-step explanation:
A slice of a round pie is a sector of a circle.
The perimeter of a slice is the arc length s plus twice the radius r.
P = s + 2r
s = rθ = r(16/360) = r/22.5. So,
16 = (r/22.5) + 2r = (r + 45r)/22.5 = 46r/22.5
16 × 22.5 = 46r
360 = 46r
r = 7.826
D = 2r = 2 × 7.826 = 15.7 in
The diameter of the cake should be 15.7 in.
Check:
[tex]\begin{array}{rcl}P & = & s + 2r\\& = & \dfrac{r}{22.5} + 2r\\\\16 & = & \dfrac{7.826}{22.5} + 2 \times 7.826\\\\16 & = & 0.35 + 15.65\\16 & = & 16.00\\\end{array}[/tex]
It checks.