The two metallic strips that constitute some thermostats must differ in:_______
A. length
B. thickness
C. mass
D. rate at which they conduct heat
E. coefficient of linear expansion

Answers

Answer 1

Answer:

E. Coefficient of linear expansion


Related Questions

A 58 g firecracker is at rest at the origin when it explodes into three pieces. The first, with mass 12 g , moves along the x axis at 37 m/s in the positive direction. The second, with mass 22 g , moves along the y axis at 34 m/s in the positive direction. Find the velocity of third piece.

Answers

Answer:

Explanation:

We shall apply conservation of momentum law in vector form to solve the problem .

Initial momentum = 0

momentum of 12 g piece

= .012 x 37 i since it moves along x axis .

= .444 i

momentum of 22 g

= .022 x 34 j

= .748 j

Let momentum of third piece = p

total momentum

= p + .444 i + .748 j

so

applying conservation law of momentum

p + .444 i + .748 j  = 0

p = - .444 i -  .748 j  

magnitude of p

= √ ( .444² + .748² )

= .87 kg m /s

mass of third piece = 58 - ( 12 + 22 )

= 24 g = .024 kg

if v be its velocity

.024 v = .87

v = 36.25 m / s .

Consider a series RLC circuit where R=25.0 Ω, C=35.5 μF, and L=0.0940 H, that is driven at a frequency of 70.0 Hz. Determine the phase angle ϕ of the circuit in degrees.

Answers

Answer:

137.69°

Explanation:

The phase angle of an RLC circuit  ϕ is expressed as shoen below;

ϕ = [tex]tan^{-1} \dfrac{X_l-X_c}{R}[/tex]

Xc is the capacitive reactance = 1/2πfC

Xl is the inductive reactance = 2πfL

R is the resistance = 25.0Ω

Given C = 35.5 μF, L = 0.0940 H, and frequency f = 70.0Hz

Xl = 2π * 70*0.0940

Xl = 41.32Ω

For the capacitive reactance;

Xc = 1/2π * 70*35.5*10⁻⁶

Xc = 1/0.0156058

Xc = 64.08Ω

Phase angle ϕ = [tex]tan^{-1} \frac{41.32-64.08}{25} \\\\[/tex]

ϕ = [tex]tan^{-1} \frac{-22.76}{25} \\\\\\\\[/tex]

[tex]\phi = tan^{-1} -0.9104\\\\\phi = -42.31^0[/tex]

Since tan is negative in the 2nd quadrant;

[tex]\phi = 180-42.31^0\\\\\phi = 137.69^0[/tex]

Hence the phase angle ϕ of the circuit in degrees is 137.69°

The phase angle ϕ of the series RLC circuit that is driven at a frequency of 70.0 Hz is ϕ = 137.69°

Phase angle:

Given that:

capacitance C = 35.5 μF,

Inductance L = 0.0940 H,

The resistance R = 25.0Ω

and frequency f = 70.0Hz

The capacitive reactance is given by:

Xc = 1/2πfC

Xc = 1/2π × 70 × 35.5× 10⁻⁶

Xc = 1/0.0156058

Xc = 64.08Ω

The inductive reactance is given by:

Xl = 2πfL

Xl = 2π × 70 × 0.0940

Xl = 41.32Ω

The phase angle of an RLC circuit ϕ  is given by:

[tex]\phi=tan^{-1}\frac{X_l-X_c}{R}\\\\\phi=tan^{-1}\frac{41.32-64.08}{25}[/tex]

Ф = -42.31°

Since tan is negative in the 2nd quadrant, thus:

ϕ = 180° - 42.31°

ϕ = 137.69°

Learn more about RLC circuit:

https://brainly.com/question/372577?referrer=searchResults

An electric heater draws 13 amperes of current when connected to 120 volts. If the price of electricity is $0.10/kWh, what would be the approximate cost of running the heater for 8 hours?
(A) $0.19
(B) $0.29
(C) $0.75
(D) $1.25
(E) $1.55

Answers

Answer:

C $0.75 my friend I wish it is right answer

2. The nuclear model of the atom held that
a. electrons were randomly spread through "a sphere of uniform positive
electrification."
b. matter was made of tiny electrically charged particles that were smaller than the
atom
C. matter was made of tiny, indivisible particles.
d. the atom had a dense, positively charged nucleus.​

Answers

Answer:

the atom had a dense, positively charged nucleus.​

Explanation:

Ernest Rutherford, based on the experiment carried out by two of his graduate students, established the authenticity of the nuclear model of the atom.

According to the nuclear model, an atom is made up of a dense positive core called the nucleus. Electrons are found to move round this nucleus in orbits. This is akin to the movement of the planets round the sun in the solar system.

A 137 kg horizontal platform is a uniform disk of radius 1.53 m and can rotate about the vertical axis through its center. A 68.7 kg person stands on the platform at a distance of 1.19 m from the center, and a 25.9 kg dog sits on the platform near the person 1.45 m from the center. Find the moment of inertia of this system, consisting of the platform and its population, with respect to the axis.

Answers

Answer:

The moment of inertia is  [tex]I= 312.09 \ kg \cdot m^2[/tex]

Explanation:

From the question we are told that

    The  mass of the platform is   m =  137 kg

     The radius is  r  =  1.53 m

    The mass of the person is  [tex]m_p = 68.7 \ kg[/tex]

    The distance of the person from the center is  [tex]d_c =1.19 \ m[/tex]

    The mass of the dog is  [tex]m_d = 25.9 \ kg[/tex]

     The distance of the dog from the person [tex]d_d = 1.45 \ m[/tex]

Generally the moment of inertia of the system is mathematically represented as

      [tex]I = I_1 + I_2 + I_3[/tex]

Where [tex]I_1[/tex] is the moment of inertia of the platform which mathematically represented as

          [tex]I_1 = \frac{m * r^2}{2}[/tex]

substituting values

           [tex]I_1 = \frac{ 137 * (1.53)^2}{2}[/tex]

           [tex]I_1 = 160.35 \ kg\cdot m^2[/tex]

Also  [tex]I_2[/tex]  is the moment of inertia of the person about the axis which is mathematically represented as

          [tex]I_2 = m_p * d_c^2[/tex]

substituting values

          [tex]I_2 = 68.7 * 1.19^2[/tex]

          [tex]I_2 = 97.29 \ kg \cdot m^2[/tex]

Also  [tex]I_3[/tex]  is the moment of inertia of the dog about the axis which is mathematically represented as

          [tex]I_3 = m_d * d_d^2[/tex]

substituting values

          [tex]I_3 = 25.9 * 1.45^2[/tex]

          [tex]I_3 = 54.45 \ kg \cdot m^2[/tex]

Thus  

        [tex]I= 160.35 + 97.29 + 54.45[/tex]

        [tex]I= 312.09 \ kg \cdot m^2[/tex]

Rod cells in the retina of the eye detect light using a photopigment called rhodopsin. 1.8 eV is the lowest photon energy that can trigger a response in rhodopsin. Part A What is the maximum wavelength of electromagnetic radiation that can cause a transition

Answers

Answer:

The maximum wavelength of the e-m wave is 6.9 x 10^-7 m

Explanation:

Energy required to trigger a response = 1.8 eV

we convert to energy in Joules.

1 eV = 1.602 x 10^-19 J

1.8 eV = [tex]x[/tex] J

[tex]x[/tex] = 1.8 x 1.602 x 10^-19 = 2.88 x 10^-19 J

The energy of an electromagnetic wave is gotten as

E = hf

where

h is the Planck's constant = 6.63 x 10^-34 J-s

and f is the frequency of the wave.

substituting values, we have

2.88 x 10^-19 = 6.63 x 10^-34 x f

f = (2.88 x 10^-19)/(6.63 x 10^-34)

f = 4.34 x 10^14 Hz

We know that the frequency of an e-m wave is given as

f = c/λ

where

c is the speed of light = 3 x 10^8 m/s

λ is the wavelength of the e-m wave

From this we can say that

λ = c/f

λ = (3 x 10^8)/(4.34 x 10^14)

λ = 6.9 x 10^-7 m

A person with a near point of 85 cm, but excellent distance vision normally wears corrective glasses. But he loses them while travelling. Fortunately he has his old pair as a spare. (a) If the lenses of the old pair have a power of 2.25 diopters, what is his near point (measured from the eye) when wearing the old glasses, if they rest 2.0 cm in front of the eye

Answers

Answer:

30.93 cm

Explanation:

Given that:

A person with a near point of 85 cm, but excellent distance vision normally wears corrective glasses

The power of the old pair of lens p = 2.25 diopters

The focal point length = 1/p

The focal point length =  1/2.25

The focal point length = 0.444 m

The focal point length = 44.4 cm

The near point of the person from the glass = (85 -2)cm , This is because the glasses are usually 2 cm from the lens

The near point of the person from the glass = 83 cm

Let consider s' to be the image on the same sides of the lens,

∴ s' = -83 cm

We known that:

the focal length of a mirror image 1/f =1/u +1/v

Assume the near point is at an excellent distance s from the glass where the person wears the corrective glasses.

Then:

1/f = 1/s + 1/s'

1/s = 1/f - 1/s'

1/s = (s' -f)/fs'

s = fs'/(s'-f)

s =( 44.4× -83)/(-83 - 44.4)

s = - 3685.2 / - 127.4

s = 28.93 cm

Thus , the near distance point measured from the eye wearing the old glasses, if they rest 2.0 cm in front of the eye = (28.93 +2.0)cm

= 30.93 cm

Terms to describe the opposition by a material.to being magnetised is

Answers

Answer:

Repulsion

Explanation:

Determine the next possible thickness of the film (in nm) that will provide the proper destructive interference. The index of refraction of the glass is 1.58 and the index of refraction of the film material is 1.48.

Answers

Answer:

I know the answer

Explanation:

We want to choose the film thickness such that destructive interference occurs between the light reflected from the air-film interface (call it wave 1) and from the film-lens interface (call it wave 2). For destructive interference to occur, the phase difference between the two waves must be an odd multiple of half-wavelengths.

You can think of the phases of the two waves as second hands on a clock; as the light travels, the hands tick-tock around the clock. Consider the clocks on the two waves in question. As both waves travel to the air-film interface, their clocks both tick-tock the same time-no phase difference. When wave 1 is reflected from the air-film boundary, its clock is set forward 30 seconds; i.e., if the hand was pointing toward 12, it's now pointing toward 6. It's set forward because the index of refraction of air is smaller than that of the film.

Now wave 1 pauses while wave two goes into and out of the film. The clock on wave 2 continues to tick as it travels in the film-tick, tock, tick, tock.... Clock 2 is set forward 30 seconds when it hits the film-lens interface because the index of refraction of the film is smaller than that of the lens. Then as it travels back through the film, its clock still continues ticking. When wave 2 gets back to the air-film interface, the two waves continue side by side, both their clocks ticking; there is no change in phase as they continue on their merry way.

So, to recap, since both clocks were shifted forward at the two different interfaces, there was no net phase shift due to reflection. There was also no phase shift as the waves travelled into and out from the air-film interface. The only phase shift occured as clock 2 ticked inside the film.

Call the thickness of the film t. Then the total distance travelled by wave 2 inside the film is 2t, if we assume the light entered pretty much normal to the interface. This total distance should equal to half the wavelength of the light in the film (for the minimum condition; it could also be 3/2, 5/2, etc., but that wouldn't be the minimum thickness) since the hand of the clock makes one revolution for each distance of one wavelength the wave travels (right?).

Intelligent beings in a distant galaxy send a signal to earth in the form of an electromagnetic wave. The frequency of the signal observed on earth is 2.2% greater than the frequency emitted by the source in the distant galaxy. What is the speed vrel of the galaxy relative to the earth

Answers

Answer:

Vrel= 0.75c

Explanation:

See attached file

"A satellite requires 88.5 min to orbit Earth once. Assume a circular orbit. 1) What is the circumference of the satellites orbit

Answers

Answer:

 circumference of the satellite orbit  = 4.13 × 10⁷ m

Explanation:

Given that:

the time period T = 88.5 min = 88.5 × 60  = 5310 sec

The mass of the earth [tex]M_e[/tex] = 5.98 × 10²⁴ kg

if  the radius of orbit is r,

Then,

[tex]\dfrac{V^2}{r} = \dfrac{GM_e}{r^2}[/tex]

[tex]{V^2} = \dfrac{GM_e r}{r^2}[/tex]

[tex]{V^2} = \dfrac{GM_e }{r}[/tex]

[tex]{V} =\sqrt{ \dfrac{GM_e }{r}}[/tex]

Similarly :

[tex]T = \sqrt{\dfrac{ 2 \pi r} {V} }[/tex]

where; [tex]{V} =\sqrt{ \dfrac{GM_e }{r}}[/tex]

Then:

[tex]T = {\dfrac{ 2 \pi r^{3/2}} {\sqrt{ {GM_e }} }[/tex]

[tex]5310= {\dfrac{ 2 \pi r^{3/2}} {\sqrt{ {6.674\times 10^{-11} \times 5.98 \times 10^{24} }} }[/tex]

[tex]5310= {\dfrac{ 2 \pi r^{3/2}} {\sqrt{ 3.991052 \times 10^{14} }}[/tex]

[tex]5310= {\dfrac{ 2 \pi r^{3/2}} {19977617.48}[/tex]

[tex]5310 \times 19977617.48= 2 \pi r^{3/2}}[/tex]

[tex]1.06081149 \times 10^{11}= 2 \pi r^{3/2}}[/tex]

[tex]\dfrac{1.06081149 \times 10^{11}}{2 \pi}= r^{3/2}}[/tex]

[tex]r^{3/2}} = \dfrac{1.06081149 \times 10^{11}}{2 \pi}[/tex]

[tex]r^{3/2}} = 1.68833392 \times 10^{10}[/tex]

[tex]r= (1.68833392 \times 10^{10})^{2/3}}[/tex]

[tex]r= 2565.38^2[/tex]

r = 6579225 m

The  circumference of the satellites  orbit can now be determined by using the formula:

 circumference = 2π r

 circumference = 2π  × 6579225 m

 circumference = 41338489.85 m

 circumference of the satellite orbit  = 4.13 × 10⁷ m

Which of the following explains why a “control” is important in a case-control study of a disease? The researchers need to control the bias that those who contracted the disease may create when they talk to others. The researchers need to compare those who contracted the disease to those who did not. The researchers need to compare those who contracted the disease to those who contracted previous diseases. The researchers need to control the disease so that it is not spread further.

Answers

The researchers need to compare those who contracted the disease to those who did not.

A) Hooke's law is described mathematically using the formula Fsp = -ku. Which statement is correct about the spring force, Fsp?
A.It is a vector quantity
B.It is the force doing the push or pull,
C.It is always a positive force.
D.It is larger than the applied force.

Answers

1. Which example best describes a restoring force?

B) the force applied to restore a spring to its original length

2. A spring is compressed, resulting in its displacement to the right. What happens to the spring when it is released?

C) The spring exerts a restoring force to the left and returns to its equilibrium position.

3. A 2-N force is applied to a spring, and there is displacement of 0.4 m. How much would the spring be displaced if a 5-N force was applied?

D) 1 m

4. Hooke’s law is described mathematically using the formula Fsp=−kx. Which statement is correct about the spring force, Fsp?

D)It is a vector quantity.

5. What happens to the displacement vector when the spring constant has a higher value and the applied force remains constant?

A) It decreases in magnatude.

Hope this Helps!! Sorry its late

The power lines are at a high potential relative to the ground, so there is an electric field between the power lines and the ground. To maximize the potential difference between one end of the fluorescent tube and the other, how should the tube be held?a. The tube should be held horizontally, parallel to the ground b. The potential difference between the ends of the tube does not depend on the tube's orientation. c. The tube should be held vertically perpendicular to the ground

Answers

Answer:

b) True. potencial diferencie does not depend on orientation

Explanation:

In this exercise we are asked to show which statements are true.

The expression the potential with respect to earth or the electric field with respect to earth refers to the potential or electric charge of the planet that is assumed to be very large and does not change in value during work.

It does not refer to the height of the system.

We can now review the claims

a) False. Potential not to be refers to height

b) True. Does not depend on orientation

c) False The potential does not refer to the altitude but to the Earth's charge

A radiation worker is subject to a dose of 200 mrad/h of maximum QF neutrons for one 40 h work week. How many times the yearly allowable effective dose did she receive?

Answers

Answer:

16 times.

Explanation:

The rate of the radiation dose is , R = 200 ×10^{-3} rad/hr

Time consumed, t = 40 hr

The magnitude of Q.F for the neutrons, Q.F = 2

Thus the effective radiation dose is:

[tex]R_{Eff} = Rt(Q.F) \\= 200 \times 10^{-3} \frac{rad}{hr} (40hr)(2) \\= 16 \ rad[/tex]

Thus, the effective dose allowable yearly = 16 times

6. What is the bulk modulus of oxygen if 32.0 g of oxygen occupies 22.4 L and the speed of sound in the oxygen is 317 m/s?

Answers

Answer:

[tex] \boxed{\sf Bulk \ modulus \ of \ oxygen \approx 143.5 \ kPa} [/tex]

Given:

Mass of oxygen (m) = 32.0 g = 0.032 kg

Volume occupied by oxygen (V) = 22.4 L = 0.0224 m³

Speed of sound in oxygen (v) = 317 m/s

To Find:

Bulk modulus of oxygen

Explanation:

[tex]\sf Density \ of \ oxygen \ (\rho) = \frac{m}{V}[/tex]

[tex]\sf \implies Bulk \ modulus \ of \ oxygen \ (B) = v^{2} \rho[/tex]

[tex]\sf \implies B = v^{2} \times\frac{m}{V}[/tex]

[tex]\sf \implies B = {(317)}^{2} \times \frac{0.032}{0.0224} [/tex]

[tex]\sf \implies B = {(317)}^{2} \times 1.428[/tex]

[tex]\sf \implies B = 100489 \times 1.428[/tex]

[tex]\sf \implies B = 143498.292 \: Pa[/tex]

[tex]\sf \implies B \approx 143.5 \: kPa[/tex]

Two protons moving with same speed in same direction repel each other but what about two protons moving with different speed in the same direction?

Answers

Answer:In the case of two proton beams the protons repel one another because they have the same sign of electrical charge. There is also an attractive magnetic force between the protons, but in the proton frame of reference this force must be zero! Clearly then the attractive magnetic force that reduces the net force between protons in the two beams as seen in our frame of reference is relativistic. In particular the apparent magnetic forces or fields are relativistic modifications of the electrical forces or fields. As such modifications, they cannot be stronger than the electrical forces and fields that produce them. This follows from the fact that switching frames of reference can reduce forces, but it can’t turn what is attractive in one frame into a repulsive force in another frame.

In the case of wires the net charges in two wires are zero everywhere along the wires. That makes the net electrical forces between the wires very nearly zero. Yet the relativistic magnetic forces and fields will be of the same sort as in the case of two beams of charges of a single sign. This is true even in the frame of reference of what we think as the moving charges, that is, the electrons. In the frame of reference moving at the drift velocity of these current-carrying electrons, it is the protons or positively charged ions that are moving in the other direction. Consequently in any frame of reference for current-carrying wires in parallel, the net electrical force will be essentially zero, and there will be a net attractive magnetic force

Explanation:                                                                              

Explanation:

Particles with similar charges (both positive or both negative) will always repel each other, regardless of their speed or direction.

A red card is illuminated by red light. Part A What color will the card appear? What color will the card appear? a. Red b. Black c. White d. Green

Answers

Red light reflects off the card into your eyes and you see the red card as red. The light will just make the card brighter. So A

The color that is reflected when a red card is illuminated by red light is white.

The color an object is perceived to have, depends on the frequency of light it reflects.

If white light incidents on a red filter, red is transmitted while blue and green are absorbed.

Consequently, when a red card is illuminated by red light, the red card will  reflect back almost all the incident light on it, causing it to appear brighter which creates an  illusion of white color to the eyes.

Thus, we can conclude the color that is reflected when a red card is illuminated by red light is white.

Learn more here:https://brainly.com/question/3495999

Astronomers think planets formed from interstellar dust and gases that clumped together in a process called? A. stellar evolution B. nebular aggregation C. planetary accretion D. nuclear fusion

Answers

Answer:

C. planetary accretion

Explanation:

Astronomers think planets formed from interstellar dust gases that clumped together in a process called planetary accretion.

Answer:

[tex]\boxed{\sf C. \ planetary \ accretion }[/tex]

Explanation:

Astronomers think planets formed from interstellar dust and gases that clumped together in a process called planetary accretion.

Planetary accretion is a process in which huge masses of solid rock or metal clump together to produce planets.


I MIND TRICK PLZ HELP LOL
Troy and Abed are running in a race. Troy finishes the race in 12 minutes. Abed finishes the race in 7 minutes and 30 seconds. If Troy is running at an average speed of 3 miles per hour and speed varies inversely with time, what is Abed’s average speed for the race?

Answers

Answer:

Explanation:

Let the race be of a fixed distance x

[tex]Average Speed = \frac{Total Distance}{Total Time}[/tex]

Troy's Average speed = 3 miles/hr = x / 0.2 hr

x = 0.6 miles

Abed's Average speed = 0.6 / 0.125 = 4.8 miles/hr

Which is one criterion that materials of a technological design should meet? They must be imported. They must be affordable. They must be naturally made. They must be locally produced.

Answers

Answer:

they must be affordable because they have to pay for it or they wont get the stuff they are bying.

Explanation:

need a brainliest please.

Answer: B, they must be affordable.

Explanation:

an electron travels at 0.3037 times the speed of light through a magnetic field and feels a force of 1.2498 pN. What is the magnetic field in teslas

Answers

Answer:

Explanation:

Charge on an electron (q) = 1.6 * 10 ^ -19 C

Velocity of electron (v) = 0.3037 * 300,000,000 = 91,110,000 m/sec

We know that, Force exerted on moving particle moving through a magnetic field :

[tex]F= q * v * B ( q,v\ and\ B\ are\ mutually\ perpendicular)[/tex]

1.2498 * 10 ^ -12 = 1.6 * 10^ -19 * 91110000 * B

B =  0.08573 T

In the lab , you have an electric field with a strength of 1,860 N/C. If the force on a particle with an unknown charge is 0.02796 N, what is the value of the charge on this particle.

Answers

Answer:

The charge is  [tex]q = 1.50 *10^{-5} \ C[/tex]

Explanation:

From the question we are told that

   The electric field strength is  [tex]E = 1860 \ N/C[/tex]

    The force is  [tex]F = 0.02796 \ N[/tex]

Generally the charge on this particle is mathematically represented as

     [tex]q = \frac{F}{E}[/tex]

=>   [tex]q = \frac{0.02796}{ 1860}[/tex]

=>   [tex]q = 1.50 *10^{-5} \ C[/tex]

A circular conducting loop of radius 31.0 cm is located in a region of homogeneous magnetic field of magnitude 0.700 T pointing perpendicular to the plane of the loop. the loop is connected in series with a resistor of 265 ohms. The magnetic field is now increased at a constant rate by a factor of 2.30 in 29.0 s.

Calculate the magnitude of induced emf in the loop while the magnetic field is increasing.

With the magnetic field held constant a ts its new value of 1.61 T, calculate the magnitude of its induced voltage in the loop while it is pulled horizontally out of the magnetic field region during a time interval of 3.90s.

Answers

Answer:

(a) The magnitude of induced emf in the loop while the magnetic field is increasing is 9.5 mV

(b) The magnitude of the induced voltage at a constant magnetic field is 124.7 mV

Explanation:

Given;

radius of the circular loop, r = 31.0 cm = 0.31 m

initial magnetic field, B₁ = 0.7 T

final magnetic field, B₂ = 2.3B₁ = 2.3 X 0.7 T = 1.61 T

duration of change in the field, t = 29

(a) The magnitude of induced emf in the loop while the magnetic field is increasing.

[tex]E = A*\frac{\delta B}{\delta t} \\\\[/tex]

[tex]E = A*\frac{B_2 -B_1}{\delta t}[/tex]

Where;

A is the area of the circular loop

A = πr²

A = π(0.31)² = 0.302 m²

[tex]E = A*\frac{B_2 -B_1}{\delta t} \\\\E = 0.302*\frac{1.61-0.7}{29} \\\\E = 0.0095 \ V\\\\E = 9.5 \ mV[/tex]

(b) the magnitude of the induced voltage at a constant magnetic field

E = A x B/t

E = (0.302 x 1.61) / 3.9

E = 0.1247 V

E = 124.7 mV

Therefore, the magnitude of the induced voltage at a constant magnetic field is 124.7 mV

Two 1.0 nF capacitors are connected in series to a 1.5 V battery. Calculate the total energy stored by the capacitors.

Answers

Answer:

1.125×10⁻⁹ J

Explanation:

Applying,

E = 1/2CV²................... Equation 1

Where E = Energy stored in the capacitor, C = capacitance of the capacitor, V = Voltage of the battery.

Given; C = 1.0 nF,  = 1.0×10⁻⁹ F, V = 1.5 V

Substitute into equation 1

E = 1/2(1.0×10⁻⁹×1.5²)

E = 1.125×10⁻⁹ J

Hence the energy stored by the capacitor is 1.125×10⁻⁹ J

A 2.0 m × 4.0 m flat carpet acquires a uniformly distributed charge of −10 μC after you and your friends walk across it several times. A 5.0 μg dust particle is suspended in midair just above the center of the carpet.

Required:
What is the charge on the dust particle?

Answers

Answer:

The  charge on the dust particle is  [tex]q_d = 6.94 *10^{-13} \ C[/tex]

Explanation:

From the question we are told that

    The length is  [tex]l = 2.0 \ m[/tex]

    The width is  [tex]w = 4.0 \ m[/tex]

   The charge is  [tex]q = -10\mu C= -10*10^{-6} \ C[/tex]

    The mass suspended in mid-air is [tex]m_a = 5.0 \mu g = 5.0 *10^{-6} \ g = 5.0 *10^{-9} \ kg[/tex]

   

Generally the electric field on the carpet is mathematically represented as

           [tex]E = \frac{q}{ 2 * A * \epsilon _o}[/tex]

Where [tex]\epsilon _o[/tex] is the permittivity of free space with value [tex]\epsilon_o = 8.85*10^{-12} \ \ m^{-3} \cdot kg^{-1}\cdot s^4 \cdot A^2[/tex]

substituting values

           [tex]E = \frac{-10*10^{-6}}{ 2 * (2 * 4 ) * 8.85*10^{-12}}[/tex]

           [tex]E = -70621.5 \ N/C[/tex]

Generally the electric force keeping the dust particle on the air  equal to the force of gravity acting on the particles

        [tex]F__{E}} = F__{G}}[/tex]

=>     [tex]q_d * E = m * g[/tex]

=>      [tex]q_d = \frac{m * g}{E}[/tex]

=>      [tex]q_d = \frac{5.0 *10^{-9} * 9.8}{70621.5}[/tex]

=>     [tex]q_d = 6.94 *10^{-13} \ C[/tex]

If you wish to observe features that are around the size of atoms, say 5.5 × 10^-10 m, with electromagnetic radiation, the radiation must have a wavelength of about the size of the atom itself.


Required:

a. What is its frequency?

b. What type of electromagnetic radiation might this be?

Answers

Answer:

a) 5.5×10^17 Hz

b) visible light

Explanation:

Since the wavelength of the electromagnetic radiation must be about the size of the about itself, this implies that;

λ= 5.5 × 10^-10 m

Since;

c= λ f and c= 3×10^8 ms-1

f= c/λ

f= 3×10^8/5.5 × 10^-10

f= 5.5×10^17 Hz

The electromagnetic wave is visible light

Without actually calculating any logarithms, determine which of the following intervals the sound intensity level of a sound with intensity 3.66×10^−4W/m^2 falls within?

a. 30 and 40
b. 40 and 50
c. 50 and 60
d. 60 and 70
e. 70 and 80
f. 80 and 90
g. 90 and 100

Answers

Answer:

f. 80 and 90

Explanation:

1 x 10⁻¹² W/m² sound intensity falls within 0 sound level

1 x 10⁻¹¹ W/m² sound intensity falls within 10 sound level

1 x 10⁻¹⁰ W/m² sound intensity falls within 20 sound level

1 x 10⁻⁹ W/m² sound intensity falls within 30 sound level

1 x 10⁻⁸ W/m² sound intensity falls within 40 sound level

1 x 10⁻⁷ W/m² sound intensity falls within 50 sound level

1 x 10⁻⁶ W/m² sound intensity falls within 60 sound level

1 x 10⁻⁵ W/m² sound intensity falls within 70 sound level

1 x 10⁻⁴ W/m² sound intensity falls within 80 sound level

1 x 10⁻³ W/m² sound intensity falls within 90 sound level

Given sound intensity (3.66 x 10⁻⁴ W/m²) falls with 1 x 10⁻⁴ W/m² of intensity which is within 80 and 90 sound level.

f. 80 and 90

The mass (M) of a piece of metal is directly proportional to its volume (V), where the proportionality constant is the density (D) of the metal. (1) Write an equation that represents this direct proportion, in which D is the proportionality constant. The density of lead metal is 11.3 g/cm3. (2) What is the mass of a piece of lead metal that has a volume of 17.3 cm3

Answers

Answer:

1) M = 11.3V2) 195.49 grams

Explanation:

1) If the mass (M) of a piece of metal is directly proportional to its volume (V), where the proportionality constant is the density (D) of the metal, this is expressed mathematically as shown;

M ∝ V

M = kV

For every proportionality sign, there will always be a proportionality constant 'k'

Since the proportionality constant is the density (D) of the metal, the equation will become;

M = DV

Given the density to be 11.3 g/cm3, the equation will become;

M = 11.3V

Hence, the equation that represents this direct proportion, in which D is the proportionality constant with metal density of 11.3g/cm³ is M = 11.3V

2) If the volume of the metal is 17.3cm³, on substituting this values into the equation in (1) to get the mass of the metal, we will have;

M = 11.3V

M = 11.3 * 17.3

M = 195.49 grams

Hence, the mass of a piece of lead metal that has a volume of 17.3 cm³ is 195.49 grams.

NASA is doing research on the concept of solar sailing. A solar sailing craft uses a large, low-mass sail and the energy and momentum of sunlight for propulsion.
A) Should the sail be absorptive or reflective? Why?
B)The total power output of the sun is 3.90 × 1026 W . How large a sail is necessary to propel a 1.06 × 104 kg spacecraft against the gravitational force of the sun?

Answers

Answer:

A = 6.8 km²

Explanation:

A) The sail should be reflective. This is so that, it can produce the maximum radiation pressure.

B) let's begin with the formula used to calculate the average solar sail in orbit around the sun. Thus;

F_rad = 2IA/c

I is given by the formula;

I = P/(4πr²)

Thus;

F_rad = (2A/c) × (P/(4πr²)) = PA/2cπr²

Where;

A is the area of the sail

r is the distance of the sail from the sun

c is the speed of light = 3 × 10^(8) m/s

P is total power output of the sun = 3.90 × 10^(26) W

Now,F_rad = F_g

Where F_g is gravitational force.

Thus;

PA/2cπr² = G•m•M_sun/r²

r² will cancel out to givw;

PA/2cπ = G•m•M_sun

Making A the subject, we have;

A = (2•c•π•G•m•M_sun)/P

Now, m = 1.06 × 10⁴ kg and M_sun has a standard value of 1.99 × 10^(30) kg

G is gravitational constant and has a value of 6.67 × 10^(-11) Nm²/kg²

Thus;

A = (2 × 3 × 10^(8) × π × 6.67 × 10^(-11) × 1.06 × 10^(4) × 1.99 × 10^(30))/(3.90 × 10^(26))

A = 6.8 × 10^(6) m² = 6.8 km²

Other Questions
The formula for the area (A) of a circle is A = r2, where r is the radius of the circle. Ronisha wants to find the area of a sector of a circle that has a central angle of 6 radians. Enter the number that Ronisha should multiply by to find the area of the sector of the circle. Round your answer to the nearest hundredth. On May 1, 2010, Ziek Corp. declared and issued a 10% common stock dividend. Prior to this dividend, Ziek had 100,000 shares of $1 par value common stock issued and outstanding. The fair value of Ziek 's common stock was $20 per share on May 1, 2010. As a result of this stock dividend, Ziek's total stockholders' equity:_________ Please help me I don't know which one. A car enters a turnpike 22 miles north of a town. The car teavels north at an average speed of 64 miles per hour. How far is the car from the town after 4 hours? Explain how you can use linear function to solve this problem. Then, solve the problem. Sylvia burns 6 calories per minute when she runs, How many calories does she burn whenshe runs for 15 minutes? Solve. 1/2(-4 2n) = -17 Please explain it to me if you can I dont really understand how to do these types of problems so it would be much appreciated! if 2x-y=2, what is the value of 9^x/3^y?1) 3 2) 9 3) 27 4) 81 Consider two parallel plate capacitors. The plates on Capacitor B have half the area as the plates on Capacitor A, and the plates in Capacitor B are separated by twice the separation of the plates of Capacitor A. If Capacitor A has a capacitance of CA-17.8nF, what is the capacitance of Capacitor? . The Extra Surplus Company's Balance Sheet for December 31, 2017 and the Income Statement for 2018 are shown below.Extra Surplus Company Balance Sheet December 31, 2017 Assets Cash $14,000Accounts Receivable 7,000Inventory 16,800Property and Equipment, Net 28,000$65,800Liabilities and Stockholders' Equity Accounts Payable $14,000Notes Payable, Long-Term 7,000Common Stock 28,000Retained Earnings 16,800$65,800Extra Surplus Company Income Statement For the Year Ended December 31, 2018 Sales $23,400Cost of Goods Sold 5,400Salaries and Wage Expense 5,400Interest Expense 1,800Other Expenses 900Net Income $9,900Additional data:A- Sales were $23,400; $14,400 in cash was received from customers.B- Bought new land for cash, $18,000.C- Sold other land for its book value of $9,000.D- Paid $1,800 principal on the long-term note payable and $1,800 in interest.E- Issued new shares of stock for $18,000 cash.F- Cash dividends of $3,800 were declared and paid to stockholders.G- Paid $10,300 on accounts payable.H- No inventory purchases were made: other expenses were incurred on account.I- All wages were paid in cash.J- Other expenses were on account.Required:a. Prepare a balance sheet as of December 31, 2020.b. Prepare the statement of cash flows using the direct method. Which state of matter does this image represent? Image of water Solid Liquid Gas Plasma Describe the direction of DNA replication. Why is that important? Which best explains a desirable outcome for energy efficiency? A) a low second law efficiency due to use of a low efficiency furnace B) a high second law efficiency due to use of a low efficiency furnace C) a high second law efficiency due to use of solar panels on the house D) a low second law efficiency due to use of solar panels on the house Given TS and TU are midsegments, PR=18.2, TS=6.5. Find QU . A. 9.1 B. 3.25 C. 13 D. 6.5 how can i solve this factorial? A 6,2- P6- A 5,3 + P5 Which is the most widely used calendar in the world today? Chinese Gregorian Islamic Roman Write a conclusion paragraph for the following essay topic: Some people think one should stay all their life in the same job, whereas others advocate changing jobs from time to time. What is your opinion? 12. Write 0.8 as a fraction,Pls explain in full detail. How did Great Britain justify levying hefty taxes on the colonies? In 2019, Dan transferred 5-year property to Fleck Corp. in a tax-deferred Section 351 transaction. Fleck took Dan's adjusted basis in the property. Dan originally placed the depreciable property in service in 2017. What year of the depreciation schedule will Fleck use to depreciate the property Proposed Exercises: Strength and Acceleration in Circular Movement In the situation illustrated below, a 7kg sphere is connected to a rope so that it can rotate in a vertical plane around an O axis perpendicular to the plane of the figure. When the sphere is in position A, it has a speed of 3m/s. Determine for this position the modulus of tension on the string and the rate at which the tangential velocity is increased.