No they aren't
___________
Solve x2+y3 = 1 for x.
Answer:
x = 3 + 2y
Step-by-step explanation:
x - 2y = 3 ( Isolate x on the left side by adding 2y to both sides )
x = 3 + 2y
Step-by-step explanation:
Step 1: Add -y^3 to both sides.
y3+x2+−y3=1+−y3
x2=−y3+1
Step 2: Take square root.
x=√−y3+1 or x=−√−y3+1
Answer:
x=√−y3+1 or x=−√−y3+1
(I think this is right) (tell me if im right plz and thx)
can someone answer this please
Answer:
x = 14
Step-by-step explanation:
Please note, the word trapezium is a synonym for the word trapezoid.
This problem gives one the area of the trapezoid, a well as one of the measurements of a base and the height of the figure. One is asked to find the length of the other base. This can be done by using the formula to find the area of a trapezoid. This formula is the following,
[tex]A=(h)(\frac{b_1+b_2}{2})[/tex]
Where (A) represents the area of a trapezoid, ([tex]b_1[/tex]) and ([tex]b_2[/tex]) represents the bases and (h) represents the height. Substitute in the given values and solve for the unknown base.
[tex]b_1=7\\h=6\\A=84[/tex]
[tex]A=(h)(\frac{b_1+b_2}{2})\\[/tex]
Substitute,
[tex]84=6(\frac{7+b_2}{2})\\[/tex]
Inverse operations,
[tex]84=6(\frac{7+b_2}{2})[/tex]
[tex]14=\frac{7+b_2}{2}[/tex]
[tex]28=7+b_2[/tex]
[tex]14=b_2[/tex]
A rectangular prism has a base area of 2 square feet and a height of 5 feet. What
is the volume of the prism in cubic feet?
10
15
12
11
Submit
What is the equivalent recursive definition for an = 12+ (n - 1)3?
A. a1 = 3, An = An-1 + 12
B. a1 = 12, An = 30n-1
C. a1 = 12, Un = On-1 +3
D. a1 = n, an= 1201-1+3
Answer:
[tex]A_1 = 12[/tex]
[tex]A_n = A_{n-1} + 3[/tex]
Step-by-step explanation:
Given
[tex]A_n =12+(n-1)3[/tex]
Required
Write as recursive
We have:
[tex]A_n =12+(n-1)3[/tex]
Open bracket
[tex]A_n =12+3n-3[/tex]
[tex]A_n =12-3+3n[/tex]
[tex]A_n =9+3n[/tex]
Calculate few terms
[tex]A_1 =9+3*1 = 9 + 3 = 12[/tex]
[tex]A_2 =9+3*2 = 9 + 6 = 15[/tex]
[tex]A_3 =9+3*3 = 9 + 9 = 18[/tex]
The above shows that the rule is to add 3.
So, we have:
[tex]A_1 = 12[/tex]
[tex]A_n = A_{n-1} + 3[/tex]
Solve the solution as an ordered pair
X + 9 = y
X = 4y - 6
Answer:
-10, -1
Step-by-step explanation:
See Image below:)
3p(2p - 9) - 2p(-9 + p)
Answer:
4p² - 9p
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightDistributive Property
Algebra I
Terms/CoefficientsStep-by-step explanation:
Step 1: Define
Identify
3p(2p - 9) - 2p(-9 + p)
Step 2: Simplify
[Distributive Property] Distribute 3p: 6p² - 27p - 2p(-9 + p)[Distributive Property] Distribute -2p: 6p² - 27p + 18p - 2p²[Subtraction] Combine like terms (p²): 4p² - 27p + 18p[Addition] Combine like terms (p): 4p² - 9pWhat is m∠CDE? pls help
Answer:
68
Step-by-step explanation:
∠ACB = ∠DCE
= 180-92/2
=44
∠CDE = 180 - 44 / 2
68
If g(x)=x2 - 5 and 1(x)=7x-11, then what is the value of h(g(3)) ?
Answer:
The value of h(g(3)) is 17.
Step-by-step explanation:
We are given these following functions:
[tex]g(x) = x^2 - 5[/tex]
[tex]h(x) = 7x - 11[/tex]
h(g(3)) ?
[tex]h(g(x)) = h(x^2-5) = 7(x^2-5) - 11 = 7x^2 - 35 - 11 = 7x^2 - 46[/tex]
At x = 3
[tex]h(g(3)) = 7(3)^2 - 46 = 63 - 46 = 17[/tex].
The value of h(g(3)) is 17.
1 squared + 1= 2 sqaured - 2
2 sqaured + 2 = 3 squared - 3
3 squared + 3= 4 squared - 4
a) make a conjecture about this pattern. write your conjecture in words
b) generalise your conjecture for this pattern
c) prove that your conjecture is true
Answer:
It would be the letter B :)
3. The simple interest on $6,000 for 4 years is $1,680. *
Alice has a total of 12 dimes and nickels.She h as 2 more nickels than dimes. Write an equation
Answer:
Step-by-step explanation: She has 2 more nickels then dimes not 2 times more therefore answers B and D are incorrect. C is incorrect because it has that there are 2 more dimes than nickels. A is correct because it says that there are c dimes, and then c +2 nickels.
Find the area of the sector in
terms of pi.
90°
24
Area = [?]
Enter
Step-by-step explanation:
area of a circle is r x r x pi
so one quarter of it us r x r x pi /4
How would write 0.5, 0.65, 2.35, and 1.06 in expanded forms
Answer:
0 + 0.5, 0 + 0.6 + 0.05, 2 + 0.3 + 0.05, 1 + 0.06
Step-by-step explanation:
expanded form is just taking the number apart from ones to tenths to hundreds and so on, or from ones to tens to hundreds and then so on. then you just split it and put the numbers in added form.
If the length of EG is 22, find the length of a EQ
Answer:
A. 11
Step-by-step explanation:
EQ is half of EG
so 22/2 = 11
NO LINKS!!!
What is the volume of this solid?
220 cubic units.
Answer:
Solution given:
for small cylinder
r=1
and for large cylinder
R=5+1=6
height for both [h]=2
Now
Volume of solid=πR²h-πr²h=πh(R²-r²)
=3.14*2(6²-1²)=219.8 =220 units ³.
Small cylinder is r=1
Large cylinder is R= 5+1 =6
Height (h) =2
Volume of solid,
→ πR²h-πr²h
→ πh(R²-r²)
→ 3.14 × 2(6²-1²)
→ 219.8
→ 220 cubic units
what is the mean mark of 847 ÷ 30?
Answer:
Step-by-step explanation:
Use Hooke's Law to determine the work done by the variable force in the spring problem. A force of 450 newtons stretches a spring 30 centimeters. How much work is done in stretching the spring from 30 centimeters to 60 centimeters?
Answer:
The work done is 202.50Nm
Step-by-step explanation:
Given
[tex]F =450N[/tex]
[tex]x_1 = 30cm[/tex]
[tex]x_2 = 60cm[/tex]
Required
The work done
First, we calculate the spring constant (k)
[tex]F = kx_1[/tex]
[tex]450N = k *30cm[/tex]
[tex]k = \frac{450N}{30cm}[/tex]
[tex]k =15N/cm[/tex]
So:
[tex]F = kx_1[/tex]
[tex]F(x) = 15x[/tex]
The work done using Hooke's law is:
[tex]W =\int\limits^a_b {F(x)} \, dx[/tex]
This gives:
[tex]W =\int\limits^{60}_{30} {15x} \, dx[/tex]
Rewrite as:
[tex]W =15\int\limits^{60}_{30} {x} \, dx[/tex]
Integrate
[tex]W =15 \frac{x^2}{2}|\limits^{60}_{30}[/tex]
This gives:
[tex]W =15 *\frac{60^2 - 30^2}{2}[/tex]
[tex]W =15 *\frac{2700}{2}[/tex]
[tex]W =15 *1350[/tex]
[tex]W =20250N-cm[/tex]
Convert to Nm
[tex]W =\frac{20250Nm}{100}[/tex]
[tex]W =202.50Nm[/tex]
Suppose a quadratic equation is given as follows:
(k – 1)x² + x + 1 = 0
Select all values of k for which the above equation has two real and unequal roots
0
.25
0.5
0.75
1
1.25
1.5
1.75
Answer:
k>1.25
Step-by-step explanation:
The given quadratic equation is :
(k – 1)x² + x + 1 = 0
We need to find all values of k for which the above equation has two real and unequal roots.
For a quadratic equation ax²+bx+c=0, for real and unequal roots,
b²-4ac>0
Here, a = (k-1), b = 1 and c = 1
Put all the values,
1²-4×(k-1)1>0
1-4k+4>0
5-4k>0
k>1.25
S, k can take values more than 1.25. Hence, it can take values 1.5, 1.75.
the sumof 8pq and -17 pq is
Answer:
= -9pq
Step-by-step explanation:
=8pq + (-17pq)
=8pq-17pq
= -9pq
find the derivative
f (x ) = (x-5)^2 (3-x)^2
Given:
The function is
[tex]f(x)=(x-5)^2(3-x)^2[/tex]
To find:
The derivative of the given function.
Solution:
Chain rule of differentiation:
[tex][f(g(x))]'=f'(g(x))g'(x)[/tex]
Product rule of differentiation:
[tex][f(x)g(x)]'=f(x)g'(x)+g(x)f'(x)[/tex]
We have,
[tex]f(x)=(x-5)^2(3-x)^2[/tex]
Differentiate with respect to x.
[tex]f'(x)=(x-5)^2\dfrac{d}{dx}(3-x)^2+(3-x)^2\dfrac{d}{dx}(x-5)^2[/tex]
[tex]f'(x)=(x-5)^2[2(3-x)(0-1)]+(3-x)^2[2(x-5)(1-0)][/tex]
[tex]f'(x)=(x^2-10x+25)(-6+2x)+(9-6x+x^2)(2x-10)[/tex]
[tex]f'(x)=(x^2)(-6)+(-10x)(-6)+(25)(-6)+(x^2)(2x)-10x(2x)+25(2x)+(9)(2x)+(-6x)(2x)+x^2(2x)+9(-10)+(-6x)(-10)+x^2(-10)[/tex]
On further simplification, we get
[tex]f'(x)=-6x^2+60x-150+2x^3-20x^2+50x+18x-12x^2+2x^3-90+60x-10x^2[/tex]
[tex]f'(x)=(2x^3+2x^3)+(-6x^2-20x^2-12x^2-10x^2)+(60x+50x+18x+60x)+(-90-150)[/tex]
[tex]f'(x)=4x^3-48x^2+188x-240[/tex]
Therefore, the derivative of the given function is [tex]f'(x)=4x^3-48x^2+188x-240[/tex].
An item was marked down 64% from its original price, x. The amount discounted was $30. Which equation can be
used to find the original price?
0.64(x) = 30
0.64(30) = x
30 +0.64 = x
x + 0.064 = 30
Answer:
0.64(x) = 30
Step-by-step explanation:
Hope that's correct.
Without using mathematical table or calculator simplify 3 4/9 ÷(5 1/3 _ 2 3/4) + 5 9/10
Answer:
[tex]{ \tt{3 \frac{4}{9} \div (5 \frac{1}{3} - 2 \frac{3}{4}) + 5 \frac{9}{10} }} \\ \\ = { \tt{ \frac{31}{9} \div ( \frac{16}{3} - \frac{11}{4} ) + \frac{59}{10} }} \\ \\ = { \tt{ \frac{31}{9} \div ( \frac{31}{12} ) + \frac{59}{10} }} \\ \\ { \tt{ = \frac{4}{3} + \frac{59}{10} }} \\ \\ { \bf{ = \frac{217}{30} }} \\ \\ { \boxed{ \tt{answer : 7 \frac{7}{30} }}} \\ \\ { \underline{ \blue{ \tt{becker ⚜jnr}}}}[/tex]
Answer:
[tex]7 \frac{7}{30}[/tex]
Step-by-step explanation:
[tex]3 \frac{4}{9} \div ( 5\frac{1}{3} - 2 \frac{3}{4}) + 5 \frac{9}{10}\\\\\frac{31}{9} \div (\frac{16}{3} - \frac{11}{4} ) + \frac{59}{10} \\\\\\Solving \ using \ BODMAS\\\\First \ Solve \ expression \ inside \ Bracket \\\\\frac{31}{9} \div (\frac{(16 \times 4) - ( 11 \times 3)}{12}) + \frac{59}{10} \\\\\frac{31}{9} \div (\frac{64- 33)}{12}) + \frac{59}{10} \\\\\frac{31}{9} \div \frac{31}{12} + \frac{59}{10} \\\\\\ \\\\\\Next \ solve \ Dvision \\\\\frac{\frac{31}{9}}{\frac{31}{12}} + \frac{59}{10}\\\\[/tex]
[tex](\frac{31}{9}} \times {\frac{12}{31}) + \frac{59}{10}[/tex]
[tex]\frac{4}{3} + \frac{59}{10}\\\\ Now \ solve \ final \ expression \\\\\\\frac{(4 \times 10) + ( 59 \times 3)}{30}\\\\\frac{40 + 177}{30}\\\\\frac{217}{30}\\\\7 \frac{7}{30}[/tex]
A stamp gets more expensive each year. It increases in value by 60 % each year. Wha
is the growth FACTOR?
9514 1404 393
Answer:
1.60
Step-by-step explanation:
The growth factor is 1 more than the growth rate:
1 + 60% = 1 + 0.60 = 1.60 = growth factor
please help. no links!
Answer:
I think B
Step-by-step explanation:
121.346° is more close to 121.3°, than 121.4°
if i'm wrong, the i'm sorry
I’ll give brainliest
Answer:
y = 1.19x
Step-by-step explanation:
y is the dependent variable (total cost)
x is the independent variable (number of pounds)
wich one is the answer
I need help with this pls help and write the Correct answer
Choose which two numbers the following will fall between: *
V156 PLEASE HELP ME FASTTTTT
[tex]\sf\purple{A.\:Between \:12\:and\:13.}[/tex] ✅
[tex]\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\orange{:}}}}}[/tex]
[tex] \sqrt{156} \\ = 12.4899 \\ = 12.49[/tex]
Therefore, [tex] \sqrt{156} [/tex] will fall in between 12 and 13.
[tex]\large\mathfrak{{\pmb{\underline{\orange{Happy\:learning }}{\orange{!}}}}}[/tex]
A privately owned lake contains two types of game fish, bass and trout. The owner provides two types of food, A and B, for these fish. Bass require 2 units of food A and 4 units of food B,
and trout require 5 units of food A and 2 units of food B. If the owner has 400 units of each food, find the maximum number of fish the lake can support.
fish
Need Help?
Read
Watch it
Answer:
133 fishes
Step-by-step explanation:
Units of food A = 400 units
Units of food B = 400 units
Fish Bass required 2 units of A and 4 units of B.
Fish Trout requires 5 units of A and 2 units of B.
i. For food A,
total units of food A required = 2 + 5
= 7 units
number of bass and trout that would consume food A = 2 x [tex]\frac{400}{7}[/tex]
= 114.3
number of bass and trout that would consume food A = 114
ii. For food B,
total units of food B required = 4 + 2
= 6 units
number of bass and trout that would consume food B = 2 x [tex]\frac{400}{6}[/tex]
= 133.3
number of bass and trout that would consume food B = 133
Thus, the maximum number of fish that the lake can support is 133.
What is the probability that a randomly selected day in the summer will be rainy if it’s cloudy?
Answer:
0.872
Step-by-step explanation:
Given that :
P(cloudy) = P(C) = 0.94
P(cloudy and rainy) = P(C n R) = 0.82
Probability that a given day will be rainy if it is cloudy ; this is a conditional probability problem:
Recall ; P(A|B) = P(AnB) / P(B)
P(R|C) = P(C n R) / P(C) = 0.82 / 0.94 = 0.872