Answer:
see below
Step-by-step explanation:
Part A
The slope is found by
m = ( y2-y1)/(x2-x1)
= ( 1200-1500)/(4-0)
= -300/4
=-75
Part B
point slope y-y1 = m(x-x1) where m is the slope and (x1,y1) is a point on the line
y-1200 = -75(x-4)
slope intercept y = mx+b where m is the slope and b is the y intercept
y = -75x + 1500
standard form Ax+By =C
75x + y = 1500
Part C
Change y to g(x) in the slope intercept form
g(x) = -75x + 1500
Part D
Let x = 5
g(5) = -75(5) + 1500
=-375+1500
=1125
Simplify: x^d • x ^18
Answer:
x^(d+18)
Step-by-step explanation:
using the law of indices
you must add the powers
Answer:
[tex] {x}^{d + 18} [/tex]
Step-by-step explanation:
[tex]\sf{x^d.x^{18} }[/tex] [tex]\sf{ x^{d+18} }[/tex]In a completely randomized experimental design involving five treatments, 13 observations were recorded for each of the five treatments. The following information is provided.
SSTR = 200 (Sum Square Between Treatments)
SST = 800 (Total Sum Square)
The mean square within treatments (MSE) is _____.
a. 10
b. 600
c. 50
d. 200
Answer:
[tex]MSE = 10[/tex]
Step-by-step explanation:
Given
[tex]SSTR = 200[/tex]
[tex]SST = 800[/tex]
Required
Determine MSE
This is calculated as:
[tex]MSE = \frac{1}{ddf} * SSE[/tex]
Where:
[tex]SSE = SST - SSTR[/tex]
[tex]ddf \to[/tex] denominator df
So, we have:
[tex]SSE = 800 - 200[/tex]
[tex]SSE = 600[/tex]
To calculate the df, we have:
[tex]r = 13[/tex] --- observations
[tex]n = 5[/tex] treatments
So:
[tex]ddf = Total\ df - Numerator\ df[/tex]
[tex]Total = n*r-1 = 5*13 -1 = 64[/tex]
[tex]Numerator =n - 1 = 5 - 1 =4[/tex]
[tex]ddf =64-4=60[/tex]
So, we have:
[tex]MSE = \frac{1}{ddf} * SSE[/tex]
[tex]MSE = \frac{1}{60} * 600[/tex]
[tex]MSE = 10[/tex]
Write an equation of the line that passes through the pair of points (5, 8) and
(9, 16).
Answer:
D: y = 2x - 2
Step-by-step explanation:
1. [tex]\frac{16-8}{9-5}[/tex] = 2
2. y = 2x + b
3. Insert the points into the equation: 8 = 10 + b
4. b = -2
5. y = 2x - 2
=======================================================
Explanation:
Apply the slope formula
m = (y2-y1)/(x2-x1)
m = (16-8)/(9-5)
m = 8/4
m = 2
Then use this slope, along with another point such as (x,y) = (5,8) to find b
y = mx+b
8 = 2*5+b
8 = 10+b
8-10 = b
-2 = b
b = -2
Or you could use the other point (x,y) = (9,16)
y = mx+b
16 = 2*9+b
16 = 18+b
16-18 = b
-2 = b
b = -2
Either way, we get the same y intercept.
So because m = 2 is the slope and b = -2 is the y intercept, we go from y = mx+b to y = 2x-2
-------------------
To help verify the answer, note how plugging x = 5 leads us to...
y = 2x-2
y = 2*5 - 2
y = 10-2
y = 8
So x = 5 and y = 8 pair up together. This verifies (5,8) is on the line.
Through similar steps, you should find that the input x = 9 leads to the output y = 16. So that would confirm (9,16) is also on the line, and fully confirm the answer.
If someone earns $10 every 15 minutes, how much do they earn in an hour?
Answer: 40
Step-by-step explanation:
You multiple 15X4=60
And now multiple 10x4=40
Answer:
40$
Step-by-step explanation:
There are 60 minutes in an hour so if we break it down:
$10 = 15 minutes
$10 = 15 minutes
$10 = 15 minutes
$10 = 15 minutes
-------------------------
Add them together and we get:
$40 = 60 minutes or 1 hour
Meaning they would make 40$ in 1 hour.
How many gallons each of 15% alcohol and 10% alcohol should be mixed to obtain 5 gal of 13% alcohol?
9514 1404 393
Answer:
3 gallons 15%2 gallons 10%Step-by-step explanation:
Let x represent the quantity of 15% alcohol required. Then (5-x) is the amount of 10% alcohol needed. The amount of alcohol in the mix is ...
0.15x +0.10(5-x) = 0.13(5)
0.05x +0.5 = 0.65 . . . . . . . simplify
0.05x = 0.15 . . . . . . . . . subtract 0.5
x = 3 . . . . . . . . . . . . . divide by 0.05
3 gallons of 15% alcohol and 2 gallons of 10% alcohol should be mixed.
You are dividing a rectangular garden into 2 equal sections by
placing a wooden plank diagonally across it, from one corner to
the opposite comer. The garden measures 4 feet by 6 feet. What
length diagonal plank should you buy, and why?
Diagonal planks are available in 1-foot increments (you can
buy a 1-foot board, or a 2-foot board, or a 3-foot board, and
so on...)
• You can cut the plank down from the size you buy to the
exact size, but you want to waste as little wood as possible.
Answer:
You can cut the plank down from the size you buy to the
exact size, but you want to waste as little wood as possible.
does anyone know the answer
Answer:
For some reason I cannot open the photo you have provided.
Step-by-step explanation:
Please try to re-upload?
Answer:
upper left...
there are zeros at (x)(x+3) (x-2)
Step-by-step explanation:
please help me i need the answers help me please
Answer:
scientists
Step-by-step explanation:
Which proportion correctly shows the equivalence of two fractions?
A)
19∕95 = 57∕76
B)
32∕116 = 9∕29
C)
18∕36 = 72∕144
D)
18∕36 = 144∕72
Answer:
32/166=9/29 if two ratio are equivalent to other
find x
thank you thank you thank you!!
Answer:
Step-by-step explanation:
x=120°
If one root of the quadratic equation is 2x2 +kx -6= 0 is 2
find the value of k
This is ur answer plz mark brainliest
Write the equation of a line in the slope-intercept form that has a slope of 4
and contains the point (4, 12).
Answer:
The equation of the point (4, 12) is y=4x+12
Nick nas cup of syrup. He uses cup of syrup to make a bont of granota
PartA: How many bow's or granola can Nick make with cup of syrup? (4 points)
Part 8: on your own paper, draw a fraction model that shows the total number of bouts of granola that Nick can make with cup of syrup. Make sure to label the model seks
explain your model in detail to descnbe how this model visually shows the solution for Part A. (6 points). I’ll make u brainless if u help
Answer:
Step-by-step explanation:
its easyk
Find the missing side length, and enter your answer in the box below. If
necessary, round your answer to 2 decimal places.
6
8
The missing side length is 10 unit.
What is Pythagoras theorem?The relationship between the three sides of a right-angled triangle is explained by the Pythagoras theorem, commonly known as the Pythagorean theorem. The Pythagorean theorem states that the square of a triangle's hypotenuse is equal to the sum of its other two sides' squares.
We have,
Perpendicular = 6
Base = 8
Using Pythagoras theorem
c² = P² + B²
c² = 6² + 8²
c²= 36 + 64
c² = 100
c= 10 unit.
Thus, the missing length is 10 unit.
Learn more about Pythagoras theorem here:
https://brainly.com/question/343682
#SPJ7
find the missing side length in the image below
Let missing side be x
Using basic proportionality theorem
[tex]\\ \sf\longmapsto \dfrac{45}{35}=\dfrac{x}{56}[/tex]
[tex]\\ \sf\longmapsto \dfrac{9}{7}=\dfrac{x}{56}[/tex]
[tex]\\ \sf\longmapsto 7x=9(56)[/tex]
[tex]\\ \sf\longmapsto x=\dfrac{9(56)}{7}[/tex]
[tex]\\ \sf\longmapsto x=72[/tex]
What system of equations is shown on the graph below
Answer:
A.
Step-by-step explanation:
x-2y=4 has a x-intercept of 4, a slope of 1/2, and a y-intercept of -2. 2x+y=4 has a x-intercept of -2, a slope of 2, and a y-intercept of -4.
Find the number of distinguishable arrangements of the letters of the word SEPTILLION
Answer:
10!
Step-by-step explanation:
Septillion-10 letters
1-s-10 places to be in
2-e-9
3-p-8
4-t-7
5-i-6
6-l-5
7-l-4
8-i-3
9-o-2
10-n-1
So, then
10×9×8×7×6×5×4×3×2×1=10!
or 3628800
The arrangement of the number will be equal to 3628800.
What are permutation and combination?A permutation is an orderly arrangement of things or numbers. Combinations are a way to choose items or numbers from a collection or group of items without worrying about the items' chronological order.
A combination in mathematics is a choice made from a group of separate elements where the order of the selection is irrelevant.
The given word is SEPTILLION. The word has 10 characters. The different ways of the arrangement will be calculated as,
Arrangement = 10!
Arrangement = 10×9×8×7×6×5×4×3×2×1
Arrangement = 3628800
Therefore, the arrangement of the number will be equal to 3628800.
To know more about permutation and combination follow
https://brainly.com/question/4658834
#SPJ2
Which statement is true about the parts of this expression?
StartFraction 5 over 6 EndFraction + one-fourth x minus y
The constant is StartFraction 5 over 6 EndFraction.
The only coefficient is One-fourth.
The only variable is y.
The terms StartFraction 5 over 6 EndFraction and One-fourth x are like terms.
Answer:
The constant is StartFraction 5 over 6 EndFraction
Step-by-step explanation:
StartFraction 5 over 6 EndFraction + one-fourth x minus y
5/6 + 1/4x - y
A. The constant is StartFraction 5 over 6 EndFraction.
True
B. The only coefficient is One-fourth.
False
There are two coefficients: the coefficient of x which is 1/4 and the coefficient of y which is 1
C. The only variable is y
False
There are 2 variables: variable x and variable y
D. The terms StartFraction 5 over 6 EndFraction and One-fourth x are like terms.
False
5/6 and 1/4x are not like terms
The only true statement is: The constant is StartFraction 5 over 6 EndFraction
Answer:
It's A if you don't want to read. A). The constant is 5/6
Step-by-step explanation:
The cost of an apple has decreased from $0.50 to $0.40. Work out the decrease cost of an apple as a percentage.
Answer:
Decreased by 20%
Step-by-step explanation:
0.5 x ? = 0.4
? = 0.4/0.5
? = 0.8
1 - 0.8 = 0.2
0.2 = 20%
To check, 20% of 0.5 is 0.1. 0.5 - 0.1 is 0.4. So the answer is correct.
What is the range of the data set shown below?
A. 36
B. 34
C. 32
D. 30
Answer:
b 34 the higest is 40 an the lowest 6 the diferens is 34
Step-by-step explanation:
Mark me brainlest pliz
Answer:
i would but this not my question this is theres he right A.
Step-by-step explanation:
!!!HELPPP PLEASEEE!!! For this problem I thought it meant to subtract 0.1492 - 0.1515 = -0.0023 however my answer was incorrect. How do I solve this problem then? Help Please!
Answer:
0.1492-0.1515= -0.0023
The measure of ∠1 is 39°. What is the measure of ∠2?
Answer:
141
Step-by-step explanation:
if the sum of the two angles equals 180 subtract 39 from 180 to get the remainder of 141 which is angle 2
Solve the following system of equations by using the inverse of a matrix.
Give your answer as an ordered triple (x , y , z)
Answer:
(x, y, z) = (-8,4,-2)
Step-by-step explanation:
.......................................
find csc theta and sin theta if tan theta = 7/4 and sin theta less than 0
9514 1404 393
Answer:
sin(θ) = (-7√65)/65
csc(θ) = (-√65)/7
Step-by-step explanation:
The angle will have the given characteristics if its terminal ray passes through the 3rd-quadrant point (-4, -7). The distance from the origin to that point is ...
d = √((-4)² +(-7)²) = √65
The sine of the angle is the ratio of the y-coordinate to this value:
sin(θ) = -7/√65
sin(θ) = (-7√65)/65
The cosecant is the inverse of the sine
csc(θ) = (-√65)/7
Find the total surface area of this square based pyramid. 10ft 10ft (in the image)
Scores on the SAT are approximately normally distributed. One year, the average score on the Math SAT was 500 and the standard deviation was 120. What was the score of a person who did better than 85% of all the test-takers
Answer:
The score of a person who did better than 85% of all the test-takers was of 624.44.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
One year, the average score on the Math SAT was 500 and the standard deviation was 120.
This means that [tex]\mu = 500, \sigma = 120[/tex]
What was the score of a person who did better than 85% of all the test-takers?
The 85th percentile, which is X when Z has a p-value of 0.85, so X when Z = 1.037.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]1.037 = \frac{X - 500}{120}[/tex]
[tex]X - 500 = 1.037*120[/tex]
[tex]X = 624.44[/tex]
The score of a person who did better than 85% of all the test-takers was of 624.44.
Random samples of size 81 are taken from a population whose mean is 45 and standard deviation is 9. Calculate the probability that a sample mean is less than 42. (round to 4 decimal places)
HINT: When you randomly select a group (n > 1) then you need to re-calculate the standard deviation using the formula:
σ n
Answer:
Using z table
= 0.0013
The probability = 0.0013
Step-by-step explanation:
Given that,
mean = μ = 45
standard deviation = σ = 9
n=81
μT = μ =45
[tex]\sigma T = \sigma / \sqrt n = 9 / \sqrt81 =1[/tex]
[tex]P(T <42 )\\= P[(T - \mu T ) / \sigma T < (42-45) /1 ]\\\\= P(z <-3 )[/tex]
Using z table
= 0.0013
probability= 0.0013
(4-21)(1 + 71) help plz
the answer would be -1,224 because the parentheses is your multiplication and the it is a negative
factor 9-x^2 completely
Answer:
-(x + 3)(x - 3)
Step-by-step explanation:
Using the difference of squares we can factor this expression.
[tex](9 - x^2)\\= (3^2 - x^2)\\= (3 + x)(3 - x)\\= -(3 + x)(-3 + x)\\= -(x + 3)(x - 3)[/tex]
Based on a poll, among adults who regret getting tattoos, 24% say that they were too young when they got their tattoos. Assume that six adults who regret getting tattoos are randomly selected, and find the indicated probability.
a. Find the probability that none of the selected adults say that they were too young to get tattoos.
b. Find the probability that exactly one of the selected adults says that he or she was too young to get tattoos.
c. Find the probability that the number of selected adults saying they were too young is 0 or 1.
Answer:
a) 0.1927 = 19.27% probability that none of the selected adults say that they were too young to get tattoos.
b) 0.3651 = 36.51% probability that exactly one of the selected adults says that he or she was too young to get tattoos.
c) 0.5578 = 55.78% probability that the number of selected adults saying they were too young is 0 or 1.
Step-by-step explanation:
For each person, there are only two possible outcomes. Either they say they were too young to get tattoos, or they do not say this. The probability of a person saying this is independent of any other person, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
24% say that they were too young when they got their tattoos.
This means that [tex]p = 0.24[/tex]
Six adults
This means that [tex]n = 6[/tex]
a. Find the probability that none of the selected adults say that they were too young to get tattoos.
This is P(X = 0). So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{6,0}.(0.24)^{0}.(0.76)^{6} = 0.1927[/tex]
0.1927 = 19.27% probability that none of the selected adults say that they were too young to get tattoos.
b. Find the probability that exactly one of the selected adults says that he or she was too young to get tattoos.
This is P(X = 1). So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 1) = C_{6,1}.(0.24)^{1}.(0.76)^{5} = 0.3651[/tex]
0.3651 = 36.51% probability that exactly one of the selected adults says that he or she was too young to get tattoos.
c. Find the probability that the number of selected adults saying they were too young is 0 or 1.
This is:
[tex]p = P(X = 0) + P(X = 1) = 0.1927 + 0.3651 = 0.5578[/tex]
0.5578 = 55.78% probability that the number of selected adults saying they were too young is 0 or 1.