Answer:
(-2,-1)
Step-by-step explanation:
let the number=x
its reciprocal=1/x
x+2(1/x)=-3
x+2/x=-3
x²+2=-3x
x²+3x+2=0
(x+2)(x+1)=0
x=-2,-1
A cylinder with a base diameter of x units has a volume of excubic units.
Which statements about the cylinder are true,Select
two options.
1)The radius of the cylinder is 2x units.
2)The area of the cylinder's base is 1/4 piex^2square units.
3)The area of the cylinder's base is 1/2 piex^2 square units.
4)The height of the cylinder is 2x units.
5)The height of the cylinder is 4x units.
Answer:3 and 4
Step-by-step explanation:
Help plz last question
Answer:
224π in^2
Step-by-step explanation:
Just plug in the values,
Surface area=2πr(h+r) [Factoring]
r=7in
h=9in
2πr(h+r)=2π*7(9+7)=14π(16)=224π in^2
Find the absolute extrema of the function over the region R. (In each case, R contains the boundaries.) Use a computer algebra system to confirm your results. (Order your answers from smallest to largest x, then from smallest to largest y.)
f(x, y) = x2 − 4xy + 5
R = {(x, y): 1 ≤ x ≤ 4, 0 ≤ y ≤ 2}
f(x, y) = x ² - 4xy + 5
has critical points where both partial derivatives vanish:
∂f/∂x = 2x - 4y = 0 ==> x = 2y
∂f/∂y = -4x = 0 ==> x = 0 ==> y = 0
The origin does not lie in the region R, so we can ignore this point.
Now check the boundaries:
• x = 1 ==> f (1, y) = 6 - 4y
Then
max{f (1, y) | 0 ≤ y ≤ 2} = 6 when y = 0
max{f (1, y) | 0 ≤ y ≤ 2} = -2 when y = 2
• x = 4 ==> f (4, y) = 12 - 16y
Then
max{f (4, y) | 0 ≤ y ≤ 2} = 12 when y = 0
max{f (4, y) | 0 ≤ y ≤ 2} = -4 when y = 2
• y = 0 ==> f (x, 0) = x ² + 5
Then
max{f (x, 0) | 1 ≤ x ≤ 4} = 21 when x = 4
min{f (x, 0) | 1 ≤ x ≤ 4} = 6 when x = 1
• y = 2 ==> f (x, 2) = x ² - 8x + 5 = (x - 4)² - 11
Then
max{f (x, 2) | 1 ≤ x ≤ 4} = -2 when x = 1
min{f (x, 2) | 1 ≤ x ≤ 4} = -11 when x = 4
So to summarize, we found
max{f(x, y) | 1 ≤ x ≤ 4, 0 ≤ y ≤ 2} = 21 at (x, y) = (4, 0)
min{f(x, y) | 1 ≤ x ≤ 4, 0 ≤ y ≤ 2} = -11 at (x, y) = (4, 2)
Tickets to a local movie were sold at $6.00 for adults and $4.50 for students. If 390 tickets were sold for a total of $2190.00, how many student tickets were sold
Answer: Therefore 100 student tickets were sold
Step-by-step explanation:
Let the number of student tickets be x
So adult tickets = 390 - x
ATQ
4.5(x) + 6(390-x) = 2190
4.5x + 2340 - 6x = 2190
-1.5x + 2340 = 2190
-1.5x = 2190-2340
-1.5x = -150
x = -150/-1.5
x = 100
Therefore 100 student tickets were sold
please click thanks and mark brainliest if you like :)
please help me with geometry
Answer:
x = 7
Explaination:
ABC = 40°
and BD bisects the angle so ABD = 20°
so 3x-1=20
solving for x gets us
x = 7
PLEASE gelp me with this, gelp me please oh please gelp me!
Answer:
V = 2143.57 cm^3
Step-by-step explanation:
The volume of a sphere is
V = 4/3 pi r^3
The diameter is 16 so the radius is 1/2 of the diameter or 8
V = 4/3 ( 3.14) (8)^3
V =2143.57333
Rounding to the nearest hundredth
V = 2143.57 cm^3
Answer:
2143.57 cm^3
Step-by-step explanation:
V = 4/3 * 3.14 * r^3
r = 1/2 * 16 = 8
So V = 4/3 * 3.14 * 8^3
= 2143.57 cm^3.
There are10 members on a board of directors. If they must elect a chairperson, a secretary, and a treasurer, howmany different slates of candidates are possible
Answer:
The answer is "720"
Step-by-step explanation:
The amount of different slates candidates:
[tex]n=\frac{N!}{(N-k)!}\\\\[/tex]
[tex]=\frac{10!}{(10-3)!}\\\\=\frac{10!}{7!}\\\\=\frac{10\times 9 \times 8 \times 7! }{7!}\\\\=10\times 9 \times 8\\\\=90\times 8\\\\=720[/tex]
A line passes through the point (-4, -6) and has a slop of 5. Write an equation for this line.
In the diagram below, circle O has a radius of 10. If the measure of arc AB is 72°, find the area of shaded sector AOB, in terms of π. Show all your work that leads to the final answer.
Answer:
62.8
Step-by-step explanation:
Area of sector=(pi*r^2)*(theta/360)
Area of sector=(pi*100)*(72/360)=62.8
The area of the shaded sector AOB in terms of π is 20π units squared.
How to find area of a sector?
The area of a sector can be described as follows;
area of sector = ∅ / 360 × πr²
where
r = radius of the circleTherefore,
r = 10 units
∅ = 72°
Hence,
area of the sector = 72° / 360° × π10²
area of the sector = 7200 / 360 π
area of the sector = 20π units²
learn more on sector here: https://brainly.com/question/24351015
#SPJ2
a number has 7 at the tens place .there is zero in the thousand place. the number 5 is at the hundreds place .there is number 1at the ten thousand place..what is the number?
what are the factor of pair of number?
a.45 and 60
b.45 and 70
c.40 and 80
d.30 and 50
Let U be a matrix where u_ij = 0 if i > j, and L be a matrix where l_ij = 0 if i < j.
(a) U is called an upper triangular matrix and L is a lower tri-angular matrix. Explain why.
(b) Prove or disprove: The sum of two upper triangular matrices is an upper triangular matrix.
(c) Prove or disprove: The product of two upper triangular matrices is an upper triangular matrix.
Answer:
A) U is called an upper triangular matrix because all entries below the principal diagonal element are zeros ( 0 ) since Uij = 0 if i >j also
L is a lower triangular matrix because all entries above the principal diagonal element are zero ( 0 )
B) sum of two upper triangular matrices = upper triangular matrix.
C) product of two upper triangular matrices = upper triangular matrix
Step-by-step explanation:
A) U is called an upper triangular matrix because all entries below the principal diagonal element are zeros ( 0 ) since Uij = 0 if i >j also
L is a lower triangular matrix because all entries above the principal diagonal element are zero ( 0 ) since Lij = 0 if i < j
B) To prove that sum of two upper triangular matrices
attached below
C) Prove or disprove that product of two upper triangular matrices is an upper triangular matrix
attached below
If a ∥ b and b ⊥ y, then _____
Answer:
a ⊥ y
Step-by-step explanation:
since b is parallel to a & perpendicular to y , line y will eventually cut across line a at a 90 degree angle as well
Answer:
a ⊥ y
Step-by-step explanation:
Look at the image given below.
how many ways can this be done. if a committee of 5 people from 7 men and 8 women?
Answer:
3003 ways
Step-by-step explanation:
(7+8)C5
= 15C5
= 15!/(5!10!)
= 3003
Find the missing segment in the image below
Answer:
x = 42
Step-by-step explanation:
24+8 = 32
[tex]\frac{x}{24}[/tex] = [tex]\frac{x+14}{32}[/tex]
32x = 24(x+14)
32x = 24x+336
8x = 336
x = 42
[tex]2i+3x=4-ix[/tex]
Show work.
No wrong answers or you will be reported. I will mark Brainliest! Thank you!
Answer:
Step-by-step explanation:
I am assuming i is the imaginary number:
Factor:
(3 + i)x - (4-2i) = 0.
In order for this to equal 0, x must be equal to 1-i.
I don't want to be reported to so take my word for it.
Also I plugged it into wolfram alpha so if it is wrong, blame the most powerful math equation solver available on the internet.
Using BTS he properties, find the unit's digit of the cube of each of the following numbers
if x and y are linear pair of angel then x +y=
Answer: x + y = 180²
Step-by-step explanation:
A linear pair is a pair of adjacent, supplementary angles.
Adjacent means next to each other.
Supplementary means that the measures of the two angles add up to equal 180 degrees.
Therefore, by definition, if x and y are linear pairs of angles, then x + y = 180.
Find the distance traveled by a particle with position (x, y) as t varies in the given time interval.
x = 3 sin^2(t), y = 3 cos^2(t), 0< t<3pi
What is the length of the curve?
The length of the curve (and thus the total distance traveled by the particle along the curve) is
[tex]\displaystyle\int_0^{3\pi}\sqrt{x'(t)^2+y'(t)^2}\,\mathrm dt[/tex]
We have
x(t) = 3 sin²(t ) ==> x'(t) = 6 sin(t ) cos(t ) = 3 sin(2t )
y(t) = 3 cos²(t ) ==> y'(t) = -6 cos(t ) sin(t ) = -3 sin(2t )
Then
√(x'(t) ² + y'(t) ²) = √(18 sin²(2t )) = 18 |sin(2t )|
and the arc length is
[tex]\displaystyle 18 \int_0^{3\pi} |\sin(2t)| \,\mathrm dt[/tex]
Recall the definition of absolute value: |x| = x if x ≥ 0, and |x| = -x if x < 0.
Now,
• sin(2t ) ≥ 0 for t ∈ (0, π/2) U (π, 3π/2) U (2π, 5π/2)
• sin(2t ) < 0 for t ∈ (π/2, π) U (3π/2, 2π) U (5π/2, 3π)
so we split up the integral as
[tex]\displaystyle 18 \left(\int_0^{\pi/2} \sin(2t) \,\mathrm dt - \int_{\pi/2}^\pi \sin(2t) \,\mathrm dt + \cdots - \int_{5\pi/2}^{3\pi} \sin(2t) \,\mathrm dt\right)[/tex]
which evaluates to 18 × (1 - (-1) + 1 - (-1) + 1 - (-1)) = 18 × 6 = 108.
What's the next number in the sequence 16, 4, 1,
Answer:
0.25
Step-by-step explanation:
16/4 = 4
4/4 = 1
1/4 = 0.25
0.25/4 = 0.0625
0.0625/4 = 0.015625
give me brainliest please:)
Which of the following best describes the line that divides a design so that
every point on one side of the line coincides with a point on the other side of
the line?
A. Line of Symmetry
B. Point of Translation
C. Angle of Symmetry
D. Point of congruency
Answer:
Line of Symmetry i think
Line of symmetry best describes the line that divides a design so that every point on one side of the line coincides with a point on the other side of the line.
What is Coordinate Geometry?Coordinate Geometry (or the analytic geometry) describes the link between geometry and algebra through graphs involving curves and lines.
A line of symmetry is a line that divides a figure into two congruent parts such that if one part is folded over the line of symmetry, it will coincide with the other part.
In other words, each point on one side of the line of symmetry is equidistant from the line as the corresponding point on the other side of the line.
The line that divides a design so that every point on one side of the line coincides with a point on the other side of the line is called the Line of Symmetry.
Hence, line of symmetry best describes the line that divides a design so that every point on one side of the line coincides with a point on the other side of the line.
To learn more on Coordinate Geometry click:
https://brainly.com/question/18269861
#SPJ7
what is the equationof the line that passes through (0,3) and (7,0)
Write the point-slope form of an equation of the line through the points (-1, 4) and (-2, 2).
Answer:
Point-slope form: y-4=2(x+1)
Slope intercept form: y=2x+6
I hope this helps!
Answer:
[tex]y-4=2(x+1)[/tex]
Step-by-step explanation:
Point-slope form is equal to
[tex]y-y_1=m(x-x_1)[/tex]
where y and y1 are the known y coordinates of two points on the line, and x and x1 are the known x coordinates of two points on the line. All we need now is m, which is the slope:
[tex]4-2=m(-1-(-2))[/tex]
We can simplify negative one minus negative two as positive 1.
[tex]4-2=m(1)[/tex]
4 minus 2 is 2, so m times 1 is 2. That means m is 2.
Now, we have the slope, so we can convert to point-slope form using one of the two points. Let's use (-1, 4). We can plug those values in for x1 and y1:
[tex]y-4=2(x+1)[/tex]
Quadrilateral ABCD has vertices A(–1, –2), B(–1, 3), C(4, 3) and D(4, –2). It’s dilated by a factor of 2 with the center of dilation at the origin. What are the coordinates of the resulting quadrilateral A’B’C’D
9514 1404 393
Answer:
A'(-2, -4)B'(-2, 6)C'(8, 6)D'(8, -4)Step-by-step explanation:
Dilation about the origin multiplies each coordinate value by the dilation factor.
A' = 2A = 2(-1, -2) = (-2, -4)
B' = 2B = 2(-1, 3) = (-2, 6)
C' = 2C = 2(4, 3) = (8, 6)
D' = 2D = 2(4, -2) = (8, -4)
11 10 Find the area of the shaded region. Round your answer to the nearest tenth.
HELP WILL GIVE BRAINLYIST
Answer:
The parent cubic function has been vertically stretched by a factor of 4.
Equation:G(x)= 4[tex]\sqrt[3]{x}[/tex]
Answer: Option B
OAmalOHopeO
5. Given a test in which there is overlap of the test results for diseased and non-diseased individuals (e.g., normal individuals are found who have test results ranging in value from 8 to 15, and diseased individuals are found who have test results ranging in value from 12 to 25, so that in the range of values 12 to 15 there are both normal and diseased individuals), if the current cutoff value lies in the range of this overlap and you move the cutoff value toward the normal population (lower numbers in this example), the true negative numbers will _____________________ . (5 points)
Answer:
True negative numbers are considered as diseased individual. So, the true negative numbers will increase
Step-by-step explanation:
True negative numbers are considered as diseased individual. So, the true negative numbers will increase.
The measurements of a circular object are given in the ratio table.
a. Find the missing dimensions of other circular objects by completing the ratio table.
b. Graph the pairs of values.
Answer:
answer hajandtb Tj.yfs5bsyb
The length L of the base of a rectangle is 5 less than twice its height H. Write the algebraic expression to model the area of the rectangle.
Answer:
Area of rectangle = 2H² - 5H
Step-by-step explanation:
Let the length be L.Let the height be H.Translating the word problem into an algebraic expression, we have;
Length =2H - 5
To write the algebraic expression to model the area of the rectangle;
Mathematically, the area of a rectangle is given by the formula;
Area of rectangle = L * H
Where;
L is the Length.H is the Height.Substituting the values into the formula, we have;
Area of rectangle = (2H - 5)*H
Area of rectangle = 2H² - 5H
Trisha bought a carton of orange juice. She drank 1/3 of the carton on Monday and 5/12 of the carton on Tuesday. What fraction of the carton did Trisha drink?
Answer:
9/12 or 2/3
Step-by-step explanation:
Make both fractions have the same denominator by finding their least common multiple
1x12 = 12 1x3 = 3
2x6 = 12 3x1 = 3
3x4 = 12
4x3 = 12
6x2 = 12
12x1 = 12
In which case it would be 12.
1/3 would be 4/12
5/12 + 4/12 = 9/12
which is also 2/3 if your teacher wants the simplest answer
Mr. E bought 3 drinks and 5 sandwiches for $25.05 and Mr. E bought 4 drinks and 2 sandwiches $13.80. how much does each drink cost?
9514 1404 393
Answer:
drink: $1.35sandwich: $4.20Step-by-step explanation:
Let d and s represent the cost of a drink and a sandwich, respectively. The two purchases give rise to the equations ...
3d +5s = 25.05
4d +2s = 13.80
Dividing the second equation by 2 gives ...
2d + s = 6.90
Subtracting the first equation from 5 times this, we get ...
5(2d +s) -(3d +5s) = 5(6.90) -25.05
7d = 34.50 -25.05 = 9.45
d = 1.35
The cost of each drink is $1.35.
__
Additional comment
Using the simplified 2nd equation, we can find the cost of a sandwich.
s = 6.90 -2d = 6.90 -2.70 = 4.20
The cost of each sandwich is $4.20.