Answer:
The correct order to draw 65 agle would be:
C
A
B
D
Given that a=14 and b=25, work out the height of the triangle
The height of the triangle is 1.12 units (rounded to two decimal places).
The height of a triangle is the perpendicular distance from the base of the triangle to the opposite vertex. In other words, it is the length of the line segment that is perpendicular to the base and passes through the opposite vertex.
We can use the formula for the area of a triangle:
Area = (1/2) * base * height
And since we know the values of the base (b) and the area (a), we can rearrange the formula to solve for the height (h):
h = (2a) / b
Plugging in the values of a and b:
h = (2 * 14) / 25
h = 28 / 25
Therefore, the height of the triangle is 1.12 units (rounded to two decimal places).
Learn more about Triangle:
https://brainly.com/question/17335144
#SPJ4
Fatima 56 roses, 48 irises and 16 freesia. she wants to create bouquets using all the flowers. calculate the highest number of similar bouquets she can make without having any flowers left over
Answer:
We see that each fraction is in simplest form, and they add up to 1, so this confirms that 168 is the highest number of similar bouquets that Fatima can make without having any flowers left over.
Step-by-step explanation:
Yeah, I guess what that person said ^^ ??
#Brainlist! Help! Will! Make! You! Brainlist!
Show all steps and how you got the answer
Answer:
x = 8500
y = 15000
Step-by-step explanation:
small vans: x
large vans: y
A: 5x + 2y = 72500
B: 2x + 6y = 107000
5x + 2y = 72500 => y = (72500 - 5x)/2
2x + 6(72500 - 5x)/2 = 107000
2x + 217500 - 15x = 107000
15x - 2x = 217500 - 107000
13x = 110500
x = 110500/13 = 8500
y = (72500 - 5x)/2 = y = (72500 - 5x8500)/2 = 15000
Maria purchased 1,000 shares of stock for $35. 50 per share in 2014. She sold them in 2016 for $55. 10 per share. Express her capital gain as a percent, rounded to the nearest tenth of a percent
Maria's capital gain is 55.21%. Rounded to the nearest tenth of a percent, this is 55.2%.
To determine Maria's capital gain as a percent, we need to calculate the difference between the selling price and the purchase price, and then express this difference as a percentage of the purchase price.
The purchase price for 1,000 shares of stock was:
$35.50 x 1,000 = $35,500
The selling price for 1,000 shares of stock was:
$55.10 x 1,000 = $55,100
The capital gain is the difference between the selling price and the purchase price:
$55,100 - $35,500 = $19,600
To express this gain as a percentage of the purchase price, we divide the capital gain by the purchase price and multiply by 100:
($19,600 / $35,500) x 100 = 55.21%
In summary, to calculate the percent capital gain from the purchase and selling price of a stock, we simply divide the difference between the two prices by the purchase price and multiply by 100.
To learn more about capital gain click on,
https://brainly.com/question/28628208
#SPJ4
What is the value of (sine 30 + cos 30 ) - (sin 60 + cos 60 )
The value of ( sin 30° + cos 30° ) - ( sin 60° + cos 60° ) is 0.
(sine 30 + cos 30 ) - (sin 60 + cos 60 )
= ([tex]\frac{1}{2}[/tex] + [tex]\frac{\sqrt{3} }{2}[/tex]) - ([tex]\frac{\sqrt{3} }{2}[/tex] + [tex]\frac{1}{2}[/tex])
= [tex]\frac{1}{2}[/tex] + [tex]\frac{\sqrt{3} }{2}[/tex] - [tex]\frac{\sqrt{3} }{2}[/tex] - [tex]\frac{1}{2}[/tex]
= [tex]\frac{\sqrt{3} }{2}[/tex] - [tex]\frac{\sqrt{3} }{2}[/tex]
= 0
Trigonometry is a branch of mathematics that focuses on the relationships between angles and the sides of triangles. It involves the study of trigonometric functions such as sine, cosine, tangent, cotangent, secant, and cosecant, and their various properties and applications. These functions relate the angles of a right triangle to the lengths of its sides, and they can be used to solve a wide range of problems in fields such as engineering, physics, astronomy, and navigation.
Trigonometry also includes the study of trigonometric identities, which are mathematical expressions that are true for all values of the variables involved. These identities can be used to simplify complex trigonometric expressions and to prove other mathematical theorems.
To learn more about Trigonometry visit here:
brainly.com/question/13971311
#SPJ4
there are 2 coins in a bin. when one of them is flipped it lands on heads with probability 0.6 and when the other is flipped it lands on heads with probability 0.3. one of these coins is to be randomly chosen and then flipped. without knowing which coin is chosen, you can bet any amount up to 10 dollars and you then either win that amount if the coin comes up heads or lose if it comes up tails. suppose, however, that an insider is willing to sell you, for an amount c, the information as to which coin was selected. what is your expected payoff if you buy this information? note that if you buy it and then bet x, then you will end up either winning x - c or -x - c (that is, losing x c in the latter case). also, for what values of c does it pay to purchase the information? reference: https://www.physicsforums/threads/expected-payoff-given-info.200076/
It pays to purchase the information for any value of c less than $13.25 then we buy the information for a price less than $13.25, we can increase our expected payoff above a loss of $1.
To calculate it Let C1 be the event that the first coin is selected and C2 be the event that the second coin is selected. Then, we have:
P(C1) = P(C2) = 1/2 (since one of the two coins is randomly chosen)
P(H|C1) = 0.6 (probability of getting heads when the first coin is flipped)
P(H|C2) = 0.3 (probability of getting heads when the second coin is flipped)
Let's consider the case when we do not buy the insider's information. Then, our expected payoff can be calculated as follows:
E(X) = P(C1) * P(H|C1) * (10) + P(C1) * P(T|C1) * (-10) + P(C2) * P(H|C2) * (10) + P(C2) * P(T|C2) * (-10)
= (1/2) * (0.610 - 0.410 + 0.310 - 0.710)
= -1
Therefore, if we do not buy the insider's information, our expected payoff is a loss of $1.
Now, let's consider the case when we buy the insider's information for an amount c.
If we buy the information, we will know which coin was selected and we can bet accordingly to maximize our expected payoff.
If we know that the first coin was selected, we should bet on heads since it has a higher probability of occurring. If we know that the second coin was selected, we should bet on tails since it has a higher probability of occurring.
Therefore, if we buy the insider's information, our expected payoff can be calculated as follows:
E(X|buying information) = P(C1) * P(H|C1) * (10-c) + P(C1) * P(T|C1) * (-c) + P(C2) * P(H|C2) * (-c) + P(C2) * P(T|C2) * (10-c)
= (1/2) * (0.6*(10-c) - 0.4c + 0.3(-c) - 0.7*(10-c))
= -0.2c + 1.5
To find the values of c for which it pays to purchase the information, we need to solve the inequality:
E(X|buying information) > E(X)
-0.2c + 1.5 > -1
Solving for c, we get:
c < 13.25
Therefore, it pays to purchase the information for any value of c less than $13.25. If we buy the information for a price less than $13.25, we can increase our expected payoff above a loss of $1.
To practice more question about coin toss:
https://brainly.com/question/29188181
#SPJ11
the probability that deshawn palys basketball after school is 20% the probability that he talks to friends after school is 45% he says the p b or t is 65% explain dans error
Dan’s mistake is that he said the probability of Deshawn not doing basketball or not talking to friends after school is 35% which is not true.
How do we find the error?Given:
Probability of Deshawn playing basketball after school = 20%Probability of Deshawn talking to friends after school = 45%Probability of Deshawn doing either basketball or talking to friends after school = 65%Let’s consider the probability of Deshawn not doing basketball after school:Probability of Deshawn not doing basketball after school = 100% - Probability of Deshawn doing basketball after school= 100% - 20% = 80%
Similarly, let’s consider the probability of Deshawn not talking to friends after school: Probability of Deshawn not talking to friends after school = 100% - Probability of Deshawn talking to friends after school= 100% - 45% = 55% Probability of Deshawn doing neither basketball nor talking to friends after school:Probability of Deshawn not doing basketball after school * Probability of Deshawn not talking to friends after school= 80% * 55% = 44%
The probability of Deshawn doing either basketball or talking to friends after school is 65%, and the probability of Deshawn doing neither basketball nor talking to friends after school is 44%, which is greater than 35% which is Dans mistake. Hence, Dan’s mistake is that he said the probability of Deshawn not doing basketball or not talking to friends after school is 35% which is not true.
See more about probability at: https://brainly.com/question/24756209
#SPJ11
At a party to celebrate a successful school play, the drama club bought 999 large pizzas. Each pizza had sss slices. All together, there were 727272 slices of pizza for the club to share.
Write an equation to describe this situation.
How many slices does each pizza have?
Answer:
Step-by-step explanation:
Let's use "n" to represent the number of slices in each pizza. Then the equation to describe the situation is:
999n = 727272
To solve for "n", we divide both sides by 999:
n = 727272/999
Using a calculator or long division, we get:
n ≈ 728.56
Therefore, each pizza has approximately 728 slices.
Graph the system of equations {y=−12x+4y=−12x−2
Answer:
Step-by-step explanation: i hope this help if not let me know so i can fix it
Can someone help me? I’m not sure what to do.
Step-by-step explanation:
A. To find f(x+h), we substitute (x+h) for x in the equation f(x) = 4x + 7:
f(x+h) = 4(x+h) + 7
Expanding the brackets:
f(x+h) = 4x + 4h + 7
Simplifying, we get:
f(x+h) = 4x + 7 + 4h
Therefore, f(x+h) = 4x + 7 + 4h.
B. To find f(x+h)-f(x)/h, we use the formula for the difference quotient:
[f(x+h) - f(x)] / h
Substituting the expressions we derived earlier:
[f(x+h) - f(x)] / h = [(4x + 7 + 4h) - (4x + 7)] / h
Simplifying, we get:
[f(x+h) - f(x)] / h = (4x + 4h - 4x) / h
Canceling out the 4x terms, we get:
[f(x+h) - f(x)] / h = 4h / h
Simplifying further, we get:
[f(x+h) - f(x)] / h = 4
Therefore, f(x+h)-f(x)/h = 4.
could someone help out?
Answer:
27.18
Step-by-step explanation:
Firstly, you must label the triangle.
r- opposite
13.85- adjacent
We know that tan θ = opposite/ adjacent so we substitute our numbers into the equation.
tan (63) = r/13.85
Then, times 13.85 on both sides so we only have our unknown on one side.
(x13.85) tan(63)= r/13.85 (x13.85)
r= tan (63) x 13.85
r=27.18
:)
What is the next fraction in this sequence? Simplify your answer. 13/ 21 , 9/ 14 , 2/ 3 , 29 /42 ,
Answer:
5/7
Step-by-step explanation:
Make all the denominators 42.
26/42, 27/42, 28/42, 29/42
The pattern is the numerator increases by one each time.
30/42 = 5/7
Hope this helps!
If the weight of the package is multipled by 5/7 the result is 40. 5. How much does the package weigh
The weight of the package is 56 using arithmetic operations.
What is multiplication?Mathematicians use multiplication to calculate the product of two or more integers. It is a fundamental operation in mathematics that is frequently used in everyday living. When we need to combine sets of similar sizes, we use multiplication. The fundamental concept of repeatedly adding the same number is represented by the process of multiplication. The results of multiplying two or more numbers are known as the product of those numbers, and the factors that are compounded are referred to as the factors. Repeated adding of the same number is made easier by multiplying the numbers.
let weight of package be= x
x*5/7=40
x=(40*7)/5
x=56
To know more about multiplication, visit
https://brainly.com/question/5992872
#SPJ1
Which of the following subsets of M3(R) are subspaces of M3(R)? (Note: M3(R) is the vector space of all real 3 x 3 matrices)
A. The 3×3 matrices in reduced row-echelon form
B. The 3×3 matrices with all zeros in the third row
C. The diagonal 3×3 matrices
D. The invertible 3×3 matrices
E. The non-invertible 3×3 matrices
F. The symmetric 3×3 matrices
The subsets B. The 3×3 matrices with all zeros in the third row. C. The diagonal 3×3 matrices, and F. The symmetric 3×3 matrices are subspaces of M3(R).
What is a subspace?A subspace of a vector space is a portion of that space that meets the three criteria of closure under addition, closure under scalar multiplication, and the presence of the zero vector. If two vectors from the subspace are added, the resultant vector will still be in the subspace because of closure under addition. If a vector from the subspace is multiplied by any scalar, the resultant vector will still be in the subspace, according to the concept of closure under scalar multiplication.
The conditions of a subspace are: closure under addition, closure under scalar multiplication, and contains the zero vector.
For all the options we have:
A: The 3 x 3 matrices in reduced row-echelon form (A): As this subset is not closed under addition, M3(R), it is not a subspace of M3(R).
B. The 3 x 3 matrices with all zeros in the third row: Due to its closure under addition and scalar multiplication as well as the presence of the zero vector, this subset is a subspace of M3(R).
C. The diagonal 3 x 3 matrices: This subset, which is closed under addition and scalar multiplication and contains the zero vector, is a subspace of M3(R).
D. The invertible 33 matrices: Because this subset is not closed under addition, M3(R), it is not a subspace of M3(R).
E. The 3 x 3 matrices that are not invertible Due to the fact that it is not closed under scalar multiplication, this subset is not a subspace of M3(R).
F. The symmetric 3x 3 matrices: This subset, which is closed under addition and scalar multiplication and contains the zero vector, is a subspace of M3(R).
Learn more about subspace here:
https://brainly.com/question/30894605
#SPJ1
Make up a sequences that have (a) 3,3,3,3,... as its second differences. (b) 1, 2,3,4,5,... as its third differences (c) 1, 2, 4,8,16,... as its 100th differences.
The nth term of the sequence is 2^n.
(a) 3, 3, 3, 3, ... is a sequence that has 0 for both its first and second differences. That is, every term in the sequence is the same.(b) The sequence is the series of natural numbers. It has 0 for its first and second differences, and 6 for its third differences. The nth term of the sequence is n.(c) The sequence has 0 for its first 99 differences and 100! for its 100th difference. The nth term of the sequence is 2^n.
Learn more about Sequence
brainly.com/question/1606838
#SPJ11
The given family of functions is the general solution of the differential equation on the indicated interval. Find a member of the family that is a solution of the initial-value problem. y = c1ex + c2e−x, (−[infinity], [infinity]); y'' − y = 0, y(0) = 0, y'(0) = 5
The given family of functions is y = c1ex + c2e−x which is the general solution of the differential equation y'' − y = 0 on the indicated interval which is (−∞, ∞).
Now, we are required to find a member of the family that is a solution to the initial-value problem which is
y(0) = 0 and y′(0) = 5.
The differential equation is y'' − y = 0
The characteristic equation is r2 − 1 = 0r2 = 1r1 = 1 and r2 = −1
The general solution of the differential equation is y = c1ex + c2e−x
Let us solve for the constants by using the given initial conditions:
At x = 0,y(0) = c1e0 + c2e0 = 0 + 0 = 0y(0) = 0
means c1 + c2 = 0or c1 = -c2At x = 0, y′(0) = c1ex |x=0 + c2e−x |x=0(d/dx)(c1ex + c2e−x) |x=0y′(0) = c1 - c2 = 5c1 - c2 = 5c1 - (-c1) = 5c1 + c1 = 5c1 = 5/2c1 = 5/2
Let's replace c1 = 5/2 in c1 = -c2, c2 = -5/2
The solution of the initial-value problem y = (5/2)ex − (5/2)e−x is a member of the family y = c1ex + c2e−x that is a solution of the initial-value problem y(0) = 0 and y′(0) = 5.
#SPJ11
Learn more about differential equations at: https://brainly.com/question/1164377
list the sides of ΔRST in ascending order
m∠R=2x+11°, m∠S=3x+23°, m∠T=x+42°
pls help
Answer:
Step-by-step explanation:
[tex]\angle R+\angle S+ \angle T =180[/tex] (angle sum of a triangle is 180°)
[tex]2x+11+3x+23+x+42=180[/tex]
[tex]6x+76=180[/tex]
[tex]6x=104[/tex]
[tex]x=17.667[/tex]
[tex]\text{So we get: } \angle R= 46.33,\angle S=76,\angle T=59.667[/tex]
In ascending order:
[tex]\angle R= 46.33,\angle T=59.667,\angle S=76[/tex]
The length of a rectangle is increasing at a rate of 7 cm/s and its width is increasing at a rate of 8 cm/s. When the length is 7 cm and the width is 5 cm, how fast is the area of the rectangle increasing (in cm²/s)?
Answer:
Step-by-step explanation: In the problem, they tell us that
dL / dt = 7 cm/s (the rate at which the length is changing) and
dw / dt = 8 cm/s (the rate at which the width is changing)
Want dA/dt (the rate at which the area is changing) when L = 7 cm and w = 5 cm
The equation for the area of a rectangle is:
A = L·w, so will need the product rule when taking the derivative.
dA/dt = L (dw/dt) + w (dL/dt)
Now just plug in all of the given numbers:
dA/dt = (7)(7) + (5)(8) = 49+40 = 89 cm²/s
b) The nearest-known exoplanet from earth is 4.25 light-years away.
About how many miles is this?
Give your answer in standard form.
The star Proxima Centauri is 4.2 light-years away from Earth, making it the sun's nearest rival. The word "nearest" means "nearest" in Spanish.
What is unitary method?"A method to find a single unit value from a multiple unit value and to find a multiple unit value from a single unit value."
We always count the unit or amount value first and then calculate the more or less amount value.
For this reason, this procedure is called a unified procedure.
Many set values are found by multiplying the set value by the number of sets.
A set value is obtained by dividing many set values by the number of sets.
Hence, The star Proxima Centauri is 4.2 light-years away from Earth, making it the sun's nearest rival. The word "nearest" means "nearest" in Spanish.
learn more about unitary method click here:
brainly.com/question/24587372
#SPJ1
I’m a bit stuck please help me out
On solving the question we can say that Therefore, the solutions to the inequality given inequality are: x < 4 or x > 6.
What is inequality?An inequality in mathematics is a relationship between two expressions or values that are not equal. Imbalance therefore leads to inequality. An inequality establishes a connection between two values that are not equal in mathematics. Equality is different from inequality. The inequality sign () is most commonly used when two values are not equal. Various inequalities are used to contrast values, no matter how small or large. Many simple inequalities can be solved by changing both sides until only variables remain. But many things contribute to inequality.
two inequalities
4x - 6 < 10
4x < 16
x < 4
2x - 4 > 8
2x > 12
x > 6
Therefore, the solutions to the given inequality are:
x < 4 or x > 6.
To know more about inequality visit:
https://brainly.com/question/29914203
#SPJ1
Transcranial magnetic stimulation (TMS) is a noninvasive method for studying brain function, and possibly for treatment as well. In this technique, a conducting loop is held near a person's head. When the current in the loop is changed rapidly, the magnetic field it creates can change at a rate of 3.00 104 T/s. This rapidly changing magnetic field induces an electric current in a restricted region of the brain that can cause a finger to twitch, a bright spot to appear in the visual field, or a feeling of complete happiness to overwhelm a person. If the magnetic field changes at the previously mentioned rate over an area of 1.75 10-2 m2, what is the induced emf?
The induced emf in a region of the brain when a conducting loop is held near a person's head and the current in the loop is changed rapidly, is equal to -525 V.
The induced emf can be calculated using Faraday's law of electromagnetic induction, which states that the emf induced in a loop of wire is equal to the rate of change of magnetic flux through the loop.
The magnetic flux (Φ) is equal to the product of the magnetic field (B) and the area (A) through which it passes. Therefore, the induced emf (ε) is given by:
ε = -dΦ/dt ⇒ -B dA/dt.
Where the negative sign indicates that the emf is induced in a direction that opposes the change in magnetic flux.
In this problem, the magnetic field changes at a rate of 3.00 × 10^4 T/s over an area of 1.75 × 10^-2 m^2. Therefore, the induced emf is:
Plugging in our values, we get:
E = (-3.00 10^4 T/s)(1.75 10^(-2) m^2)/(1 s)
E = -525 V
Therefore, the induced emf, in this case, is -525 V. Here, the negative sign shows that the emf is induced in a direction that opposes the change in magnetic flux
To know more about the "induced emf": https://brainly.com/question/13744192
#SPJ11
Which graph represents this equation? [tex]y=\frac{3}{2}x^{2}-6x[/tex]
I know the answer is C. What I want to know is WHY.
The x-intercepts are (0, 0) and (4, 0), and the y-intercept is (0, 0).
Why are equatiοns graphed?By graphing linear equatiοns, yοu can explain the relatiοnship between twο variables visually. We can easily see what happens tο οne variable as the οther grοws by using a graph. The value οf the x variable rises as we mοve tο the right οn a graph.
[tex]y = (3/2)x^2 - 6x[/tex] is the given equatiοn.
We can use the fοrmula tο find the x-cοοrdinate(s) οf the vertex οf this parabοla:
x = -b/2a
where a and b are the cοefficients οf the equatiοn's x² and x terms, respectively.
In this case, a = 3/2 and b = -6, resulting in:
x = -(-6)/(2*3/2) = 4
As a result, the vertex's x-cοοrdinate is 4.
Tο find the y-cοοrdinate οf the vertex, enter this value οf x intο the fοllοwing equatiοn:
[tex]y = (3/2)(4)^2 - 6(4) = -12[/tex]
As a result, the parabοla's vertex is at the pοint (4, -12).
To know more about Graph Equation visit:
brainly.com/question/30842552
#SPJ1
What is the image of (-2, 6) after a dilation by a scale factor of 1/2 centered at the
origin?
The image of (-2, 6) after a dilation by a scale factor of 1/2 centered at the origin is given as follows:
(-1, 3).
What is a dilation?A dilation is a transformation that changes the size of a figure, but not its shape. Specifically, a dilation is a type of similarity transformation that involves multiplying the coordinates of each point in a figure by a scale factor. This causes the figure to either enlarge or reduce in size.
The scale factor in the context of this problem is given as follows:
1/2.
The coordinates of the original point are given as follows:
(-2, 6).
Multiplying the coordinates of the original point by the scale factor, the coordinates of the image are given as follows:
(-1,3).
More can be learned about dilation at https://brainly.com/question/3457976
#SPJ1
which sampling approach was used in the following statement?kane randomly sampled 250 nurses from urban areas and 250 from rural areas from a list of licensed nurses in wisconsin to study their attitudes toward evidence-based practice.
The sampling approach that was used in the statement "Kane randomly sampled 250 nurses from urban areas and 250 from rural areas from a list of licensed nurses in Wisconsin to study their attitudes toward evidence-based practice" is Stratified random sampling.
What is Stratified random sampling?Stratified random sampling is a method of sampling that is based on dividing the population into subgroups called strata. Stratified random sampling is a statistical sampling method that involves the division of the population into subgroups or strata, and a sample is then drawn from each stratum in proportion to the size of the stratum. It's a sampling method that ensures the representation of all population strata in the sample, making it more effective than simple random sampling.
Stratified random sampling is used when there are variations in the population that are likely to influence the outcome of the study. The stratified random sampling method is used to ensure that these differences are reflected in the sample. In this way, the results of the study are more representative of the entire population than they would be if a simple random sample were used.
Learn more about Stratified random sampling here: https://brainly.com/question/20544692.
#SPJ11
David is working two summer jobs, making $13 per hour landscaping and making $8 per hour clearing tables. In a given week, he can work no more than 16 total hours and must earn no less than $160. Also, he must work at most 13 hours landscaping. If
� x represents the number of hours landscaping and �y represents the number of hours clearing tables, write and solve a system of inequalities graphically and determine one possible solution.
Answer: One possible solution is to work 12.3 hours landscaping and 3.7 hours clearing tables, earning approximately $167.1.
Step-by-step explanation:
Let x be the number of hours landscaping and y be the number of hours clearing tables.
The system of inequalities can be written as:
x ≤ 13 (maximum of 13 hours landscaping)
x + y ≤ 16 (maximum of 16 hours total)
13x + 8y ≥ 160 (minimum earnings of $160)
To graph this system of inequalities, we can start by graphing the boundary lines of each inequality as follows:
x = 13 (vertical line at x = 13)
x + y = 16 (line with intercepts at (0, 16) and (16, 0))
13x + 8y = 160 (line with intercepts at (0, 20) and (12.3, 0))
Note that we only need to graph the portion of the lines that are in the feasible region (i.e. where x and y are non-negative).
The feasible region is the triangle formed by the intersection of the three boundary lines, as shown below:
|
20 --|--------------------------
| /|
| / |
| / |
| / |
16 --|------------------
| / |
|/ |
-------------------------
13 12.3
Let x be the number of hours landscaping and y be the number of hours clearing tables.
The system of inequalities can be written as:
x ≤ 13 (maximum of 13 hours landscaping)
x + y ≤ 16 (maximum of 16 hours total)
13x + 8y ≥ 160 (minimum earnings of $160)
To graph this system of inequalities, we can start by graphing the boundary lines of each inequality as follows:
x = 13 (vertical line at x = 13)
x + y = 16 (line with intercepts at (0, 16) and (16, 0))
13x + 8y = 160 (line with intercepts at (0, 20) and (12.3, 0))
Note that we only need to graph the portion of the lines that are in the feasible region (i.e. where x and y are non-negative).
The feasible region is the triangle formed by the intersection of the three boundary lines, as shown below:
lua
Copy code
|
20 --|--------------------------
| /|
| / |
| / |
| / |
16 --|------------------
| / |
|/ |
-------------------------
13 12.3
The vertices of the feasible region are (0, 16), (12.3, 3.7), and (13, 0).
To determine one possible solution, we can evaluate the objective function (total earnings) at each vertex:
(0, 16): 13(0) + 8(16) = $128
(12.3, 3.7): 13(12.3) + 8(3.7) ≈ $167.1
(13, 0): 13(13) + 8(0) = $169
Therefore, one possible solution is to work 12.3 hours landscaping and 3.7 hours clearing tables, earning approximately $167.1.
what is the percentage of 28% of n is 196
Answer:
700
Step-by-step explanation:
28 % of n = 28/100 x n = 0.28n
If 28% of n = 196 that means
0.28n = 196
Divide both sides by 0.28
0.28n/0.28 = 196/0.28
n = 700
A 0.625 kg basketball is dropped from a height of 3 meters straight down. The coefficient of restitution between the ball and the ground is e = 0.87. At 0.15 seconds after the basketball is dropped, a 58.5 gram tennis ball is dropped from the same 3 meter height straight onto the basketball. If the coefficient of restitution between the tennis ball and the basketball is e = 0.9, determine how high the tennis ball bounces above the ground after the collision. Neglect the size of the balls. (Balls meet at 0.5073 m above ground, final height of tennis ball = 12.6 m above the ground)
Given that a 0.625 kg basketball is dropped from a height of 3 meters straight down. The coefficient of restitution between the ball and the ground is e = 0.87. At 0.15 seconds after the basketball is dropped, a 58.5-gram tennis ball is dropped from the same 3-meter height straight onto the basketball. If the coefficient of restitution between the tennis ball and the basketball is e = 0.9,
determine how high the tennis ball bounces above the ground after the collision. Neglect the size of the balls.
The balls meet at a height of 0.5073 m above the ground. Hence the height that the tennis ball bounces above the ground is to be calculated.
Given that the coefficient of restitution between the ball and the ground is e = 0.87The coefficient of restitution between the tennis ball and the basketball is e = 0.9
The coefficient of restitution(e) is defined as the ratio of the relative velocity of separation and relative velocity of approach between two objects.
When a ball falls from height, it gains potential energy.
Potential energy (PE) = mghWhere, m = mass of the object, g = acceleration due to gravity, h = height
PE of Basketball = mgh= 0.625 kg * 9.81 m/s² * 3 m= 18.4 Joules
Initial kinetic energy (KE) = PE of Basketball
KE of Basketball = 18.4 J
Let the velocity of the basketball before collision be u1 and the velocity of the tennis ball before collision be u2. After the collision, let the velocity of the basketball be v1 and the velocity of the tennis ball be v2.
Using the coefficient of restitution (e) we can find the velocity of the balls after collision
v1 - v2 = -e(u1 - u2)
Initial momentum (P) = Final momentum (P)
before the collision P = m1u1 + m2u2
after collision P = m1v1 + m2v2P = (0.625 kg * u1) + (0.0585 kg * u2)P
= (0.625 kg * v1) + (0.0585 kg * v2)
Using the above two equations and the given coefficients of restitution, we can find the velocity of the balls after collisionv1 = (m1u1 + m2u2 + e * m2 * (u2 - u1)) / (m1 + m2)v2 = (m1u1 + m2u2 + e * m1 * (u1 - u2)) / (m1 + m2)
Here, m1 = mass of basketball
= 0.625 kg,
m2 = mass of tennis ball
= 0.0585 kg,
u1 = 0, u2 = 0P = m1v1 + m2v2 => v1 + v2 = P / (m1 + m2)
Also given that the time taken by the balls to meet is 0.15 seconds
Let h be the height to which the tennis ball bounces after the collision.
When the tennis ball bounces to height h, it gains potential energy.
KE + PE = Total energy
= Constant Using the principle of conservation of energy we can find the height to which the tennis ball bounces after collision(1/2) * m2 * v2² + (1/2) * m2 * g * h
= (1/2) * m2 * u2² + (1/2) * m2 * g * 0(1/2) * m2 * v2²
= (1/2) * m2 * u2² - (1/2) * m2 * g * h(1/2) * v2²
= (1/2) * u2² - g * h
Substituting the values of u1, u2, m1, m2, e, t and g, we get:
v1 = (0 + 0.0585 kg * 9.81 m/s² + 0.9 * 0.0585 kg * (0 - 0)) / (0.625 kg + 0.0585 kg)v1
= 1.96 m/sv2
= (0.625 kg * 0 + 0 + 0.9 * 0.625 kg * (0 - 0)) / (0.625 kg + 0.0585 kg)v2
= 5.5 m/s
Here, u1 = u2 = 0.
Using the above equation, we can find the height to which the tennis ball bounces after collision (1/2) * (0.0585 kg) * (5.5 m/s)² = (1/2) * (0.0585 kg) * (0 m/s)² - (0.0585 kg) * 9.81 m/s² * h12.83 J
= -0.286 J - 0.572 h0.572 h
= -12.83 J / 2h
= -12.83 J / (2 * 0.572)
= 11.2 m
Hence the height to which the tennis ball bounces above the ground after the collision is 11.2 m.
#SPJ11
Learn more about basketball is dropped and the coefficient of restitution at: https://brainly.com/question/19339515
when an automatic press is a manufacturing process is operaing properly, the lengths of the component it produces are normally distributed with a mean of 8 inches and a standard deviation of 1.5 inches. what is the probability thata randomly selected component is shorter than 7 inches long? (report your answer to 4 decimal places.)
The probability that a randomly selected component is shorter than 7 inches long is approximately 25.14%.
What is the probability of randomly selected component?We are given that the lengths of components produced by the automatic press are normally distributed with a mean of 8 inches and a standard deviation of 1.5 inches.
We need to find the probability that a randomly selected component is shorter than 7 inches long.
We can use the standard normal distribution to find this probability. We first need to convert the length of 7 inches to a z-score:
z = (7 - 8) / 1.5 = -0.67
Using a standard normal distribution table or calculator, we can find the area to the left of this z-score, which represents the probability that a randomly selected component is shorter than 7 inches long:
P(z < -0.67) = 0.2514
Learn more about probability here: https://brainly.com/question/24756209
#SPJ1
Find a particular solution to the differential equation day dy 8 dt + 20y = 68 – 20t dt2 You do not need to find the general solution. y(t) = symbolic expression
The particular solution to the differential equation is given by: y(t) = y_ h(t) + y_ p(t) = c exp (-5/2 t) + t + 3Here, y_ h(t) is the homogeneous solution, which we don't need to find for this problem.
To solve the given differential equation, we'll need to use the method of undetermined coefficients. In this method, we assume that the particular solution to the differential equation has the same form as the forcing term. Here's how we can solve the given differential equation: Identify the forcing term and its derivatives. The forcing term is given by: f(t) = 68 - 20tWe can find its first derivative as follows: f'(t) = -20We can find its second derivative as follows: f''(t) = Guess the form of the particular solution We assume that the particular solution has the same form as the forcing term.
Since the forcing term is a first-degree polynomial, we assume that the particular solution also has the form of a first-degree polynomial: y_ p(t) = At + B Here, A and B are constants that we need to determine. Find the derivatives of the assumed form of the particular solution. Here are the first and second derivatives of the assumed form of the particular solution: y_ p(t) = At + B ==> y_ p'(t) = A ==> y_ p''(t) = 0. Substitute the assumed form of the particular solution and its derivatives into the differential equation Substituting y_ p(t), y_ p'(t), and y_ p''(t) into the differential equation, we get:8A + 20(At + B) = 68 - 20t Simplifying the above equation, we get: (8A + 20B) + (20A - 20)t = 68Comparing the coefficients of t and the constant terms on both sides,
we get two equations:8A + 20B = 68 (1)20A - 20 = 0 (2)Solving equation (2) for A, we get: A = 1 Substituting A = 1 into equation (1), we get:8 + 20B = 68Solving for B, we get: B = 3. Write the particular solution to the differential equation Substituting A = 1 and B = 3 into the assumed form of the particular solution, we get :y_ p(t) = t + 3Therefore, the particular solution to the differential equation is given by: y(t) = y_ h(t) + y_ p(t) = c exp (-5/2 t) + t + 3Here, y_ h(t) is the homogeneous solution, which we don't need to find for this problem.
Learn more about Symbolic Expression
brainly.com/question/1577706
#SPJ11
In the coordinate plane, the points X9, 5, Y−−3, 6, and Z−8, 4 are reflected over the x-axis to the points X′, Y′, and Z′, respectively. What are the coordinates of X′, Y′, and Z′?
Answer:
When a point is reflected over the x-axis, the x-coordinate remains the same, but the y-coordinate is multiplied by -1.
So, the coordinates of X' are (9, -5) since the x-coordinate remains the same and the y-coordinate is multiplied by -1.
Similarly, the coordinates of Y' are (-3, -6) and the coordinates of Z' are (-8, -4).
Therefore, X′ is (9,−5), Y′ is (−3,−6), and Z′ is (−8,−4).