The results of the gold foil experiment led to the conclusion that an atom is

1.

mostly empty space and has a small, negatively charged nucleus

2.

mostly empty space and has a small, positively charged nucleus

3.

a hard sphere and has a large, negatively charged nucleus

4.

a hard sphere and has large a large, positively charged nucbus

Answers

Answer 1

The results of the gold foil experiment led to the conclusion that an atom is mostly empty space and has a small, positively charged nucleus.

This was concluded by Ernest Rutherford, Hans Geiger, and Ernest Marsden through their gold foil experiment.

The Gold Foil Experiment was an experimental test conducted by Ernest Rutherford, Hans Geiger, and Ernest Marsden in which they bombarded alpha particles onto thin gold foils, expecting them to pass right through the gold foil. The team was astonished when the alpha particles were deflected back in all directions.

The results of the gold foil experiment led to the conclusion that an atom is mostly empty space and has a small, positively charged nucleus. Most of the alpha particles passed straight through the gold foil, indicating that the atom's mass was not evenly distributed but instead concentrated in a small, positively charged nucleus in the atom's center.

The Rutherford model, often known as the planetary model of the atom, was developed by Ernest Rutherford following the gold foil experiment. The model depicted the atom as a tiny, dense, and positively charged nucleus, with electrons orbiting the nucleus in the way that planets orbit a star.

For more such questions on atom, click on:

https://brainly.com/question/26952570

#SPJ11


Related Questions

Identify the compounds that should rearrange following the same mechanism as the pinacol rearrangement?

Answers

The pinacol rearrangement is a well-known organic reaction that involves the rearrangement of vicinal diols, which are compounds that have two hydroxyl groups (-OH) attached to adjacent carbon atoms.

The reaction typically occurs under acidic conditions and results in the formation of ketones or aldehydes.

The mechanism of the pinacol rearrangement begins with protonation of one of the hydroxyl groups, usually the more acidic one, by an acid catalyst.

This protonation leads to the formation of a carbocation intermediate, which is a carbon atom with a positive charge due to the loss of a proton.

The adjacent hydroxyl group then attacks the carbocation, forming a carbon-oxygen bond and leading to the formation of a cyclic intermediate.

This cyclic intermediate is unstable and rearranges through migration of the alkyl group or hydrogen atom from the carbocation to the adjacent carbon atom, forming a new carbocation intermediate.

This rearrangement is typically facilitated by the presence of neighboring electron-withdrawing or electron-donating groups that stabilize the intermediate carbocation through resonance or inductive effects.

The rearranged carbocation intermediate is then deprotonated, leading to the formation of a ketone or an aldehyde, depending on the conditions and the specific structure of the starting compound.

The final product of the pinacol rearrangement is typically a ketone or an aldehyde with a carbonyl group (C=O) in the position where the original hydroxyl group was attached.

To learn more about carbonyl group, refer below:

https://brainly.com/question/13564853

#SPJ11

Preparations of lead compounds and percentage yield

Answers

A chemical substance or natural product known as a lead compound has biological action against a pharmacological target.

A critical phase of the drug discovery program is lead identification and optimization.

There are two main oxidation states for compounds containing lead: +2 and +4. The first is more typical. Strong oxidants or only occurring in extremely acidic conditions are typical characteristics of inorganic lead(IV) compounds.

The percent yield equation is:

percent yield = actual yield/theoretical yield x 100%

The ratio of the actual yield to the theoretical yield multiplied by 100 is the percent yield.

Characterizing natural products, using combinatorial chemistry, or using molecular modeling as in rational drug design are methods for finding lead compounds. Lead compounds can also be made from substances that high-throughput screening identified as hits.

To know about yield

https://brainly.com/question/2506978

#SPJ4

4. A sample of water with a mass of 785 g and a starting temperature of
15.0°C is heated. What would the final temperature of the water be if 250,000
joules of heat are added to the water?(Ans: 91°C)

Answers

The final temperature of the water would be approximately 91°C after 250,000 joules of heat are added.

Describe Heat Capacity?

Heat capacity is the amount of heat energy required to increase the temperature of a substance by one degree Celsius (or one Kelvin). It is a measure of how much energy a substance can absorb without a significant change in its temperature.

The heat capacity of a substance depends on its mass and composition. Substances with more mass or more complex molecular structures generally have higher heat capacities, meaning they require more energy to increase their temperature than substances with less mass or simpler molecular structures.

To solve this problem, we can use the specific heat capacity formula:

Q = m * c * ΔT

where Q is the amount of heat transferred, m is the mass of the substance, c is the specific heat capacity of the substance, and ΔT is the change in temperature.

We can rearrange this formula to solve for ΔT:

ΔT = Q / (m * c)

We are given the mass of the water (m = 785 g), the amount of heat added (Q = 250,000 J), and the specific heat capacity of water (c = 4.184 J/g°C).

Substituting these values into the equation, we get:

ΔT = 250,000 J / (785 g * 4.184 J/g°C)

ΔT ≈ 75.4°C

Therefore, the final temperature of the water would be:

15.0°C + 75.4°C = 91 °C

So the final temperature of the water would be approximately 91 °C after 250,000 joules of heat are added.

To know more about capacity visit:

https://brainly.com/question/28921175

#SPJ1

you are given the following information at 1000 K.CaCO3(s) CaO(s) + CO2(g) K1 = 0.039C(s) + CO2(g) 2 CO(g) K2 = 1.9Determine the equilibrium constant at 1000 K for the following.CaCO3(s) + C(s) CaO(s) + 2 CO(g)

Answers

The equilibrium constant at 1000K for the reaction CaCO3(s) + C(s) --> CaO(s) + 2CO(g) is K = K1.K2 = 0,039 . 1,9 = 0,074.

The equilibrium constant at 1000 K for the given chemical reaction, CaCO3(s) + C(s) CaO(s) + 2 CO(g), can be determined as follows:

[tex]K1 = 0,039\\K2 = 1,9[/tex]

We know that the equilibrium constant of a reaction is the product of the equilibrium constants of its individual steps (if the reaction is made up of more than one step) under the given conditions. Therefore, we can use the following equations to calculate the equilibrium constant of the given reaction: [tex]Kc = \frac{K1. K2}{Keq}[/tex] (where Keq is the equilibrium constant of the desired reaction) [tex]Kc = [(P(CO))^2/(P(CaCO3).P(C))] . 0,039 . 1,9[/tex].

Now, we have to express the pressure of all the species involved in terms of the equilibrium constant of the reaction we need to find. For this, we use the following relation:

Keq = [tex](P(CaO).P(CO)^2)/(P(CaCO3).P(C))[/tex]. On substituting the above expression for Keq in the expression for Kc, we get:

Kc = [tex][(P(CO))^2/(P(CaCO3).P(C))] . 0,039 . 1,9[/tex]

Keq = [tex](P(CaO).P(CO)^2)/(P(CaCO3).P(C))[/tex]

On comparing the expressions for Kc and Keq, we get:

[tex]Kc = K1 . K2/Keq\\Kc = [(P(CO))^2/(P(CaCO3).P(C))] . 0.039 . 1.9\\Kc = (P(CaO).P(CO)^2)/(P(CaCO3).P(C))[/tex]

Therefore, we can write: [tex](P(CaO).P(CO)^2)/(P(CaCO3).P(C))[/tex]

Kc =[tex][(P(CO))^2/(P(CaCO3).P(C))] . 0,039 . 1,9(P(CaO).P(CO)^2)/(P(CaCO3))^2[/tex]

[tex]Kc = 0,039. 1,9P(CO)^2/P(CaCO3) \\Kc = 0,074251/P(CaO) \\Kc = (P(CaCO3).P(C) )/P(CO)^2.[/tex]

Now, using the expression for Keq, we can write:

[tex]Keq = (P(CaO).P(CO)^2)/(P(CaCO3).P(C))\\Keq = (P(CaCO3).P(C).P(CO)^2)/(P(CaCO3).P(C))\\Keq = P(CO)^2/P(C)\\Keq = 0.07425[/tex]

Learn more about equilibrium constant: brainly.com/question/3159758

#SPJ11

Consult your laboratory notebook and notes about the color changes you observed during the titration to select the choice that most correctly describes the pH range and color change observed with the phenolphthalein indicator. a. When the indicator was added to the solution, it started out colorless, turned to pink at about pH 9 and was deep purple at the first equivalence point. b. When the indicator was added to the solution, it started out a deep purple, turned to pink at about pH 9 which faded to become colorless at the first equivalence point. c. When the indicator was added to the solution, started out blue, became green during the titration at about pH 5 and turned to yellow at the second equivalence point and beyond. d. When the indicator was added to the solution, it started out yellow, passed through green at about pH 5 and became blue at the second equivalence point and beyond.

Answers

Consulting the laboratory notebook and notes about the color changes observed during titration, it is seen that the most accurate option for phenolphthalein is option (a).

When phenolphthalein was added to the solution, it started out colorless, turned to pink at about pH 9, and was deep purple at the first equivalence point.

Phenolphthalein is a pH-sensitive indicator that changes color in the pH range of 8.3 to 10.0. The colorless form of phenolphthalein is present in acidic solutions, whereas the pink form of phenolphthalein is present in basic solutions. The deep purple coloration is representative of the first equivalence point.

The pH of a solution can be determined using an acid-base indicator. Indicators are chemicals that change color in response to changes in acidity. Indicators are typically used to determine the endpoint of an acid-base titration when the pH changes rapidly over a small range of volumes. The color of the indicator corresponds to a specific pH value.

A colorless solution with a low pH will gradually become pink as it approaches the endpoint. As a result, the pH range observed with the phenolphthalein indicator is from about pH 8.3 to 10.0, with a color change from colorless to pink occurring around pH 9.0.

Therefore, "When the indicator was added to the solution, it started out colorless, turned to pink at about pH 9, and was deep purple at the first equivalence point" is the correct answer.

To know more about phenolphthalein, refer here:

https://brainly.com/question/15211751#

#SPJ11

Determine if the following statements are true and false. Type true or false in the space provided.Part ATo rinse the entire inner surface of the buret, one should add water from a wash bottle while rotating the buret.Part BRinsing the buret with water is always enough to clean the buret.Part CTo clean the inner surface of the buret, one should wash it with soapy water three times .Part DAfter rinsing with water and soapy water solution, one can add the titrating solution and begin the titration.Part EAlways rinse a buret with the titration solution three times before beginning a titration.

Answers

Part A: True.

Part B: False. Rinsing with water may not be enough to clean the buret completely.

Part C: False. Soapy water should not be used to clean a buret since it can leave residue.

Part D: False. After rinsing with water and soapy water solution, the buret should be rinsed with distilled water and dried before adding the titrating solution.

Part E: False. The buret should be rinsed with the titration solution only once before beginning a titration.

Titration is a laboratory procedure used to compare a solution's concentration to that of a reference solution with known concentration. It entails gradually mixing the standard solution into the sample solution up until the reaction is finished, which can be detected by a colour change or another quantifiable signal.

In many disciplines, including chemistry, medicine, and environmental research, titration is used. It can be used to quantify the quantity of a certain component in a sample, examine the concentration of acids and bases, and ascertain the purity of a substance.

Titration calls for exact volume and concentration measurements, as well as safe chemical handling and disposal. There are several different kinds of titration techniques, including complexometric, redox, and acid-base titration.

Learn more about titration here:

https://brainly.com/question/2728613

#SPJ4

Be sure to answer all parts. One of the compounds used to increase the octane rating of gasoline is toluene (pictured). Suppose 38.4 mL of toluene (d= 0.867 g/mL) is consumed when a sample of gasoline burns in air. (a) How many grams of oxygen are needed for complete combustion of the toluene? (b) How many total moles of gaseous products form? mol (c) How many molecules of water vapor form? ___ x 10 (select) molecules (Enter your answer in scientific notation.)

Answers

The amount of oxygen needed for complete combustion of the toluene is 3.249 grams. The total moles of gaseous products formed are 3.971 moles. The molecules of water vapor formed are 8.684 x 10²².

What is the amount of oxygen formed?

One of the compounds used to increase the octane rating of gasoline is toluene. Suppose 38.4 mL of toluene (d= 0.867 g/mL) is consumed when a sample of gasoline burns in air. In order to solve the above problem, let us write the chemical equation for the combustion of toluene is as follows:

C₇H₈ + 9O₂ → 7CO₂ + 4H₂O

In the above reaction, we can see that 9 moles of oxygen are needed to completely combust one mole of toluene. Hence, the amount of oxygen needed for complete combustion of toluene can be calculated as follows:

n(C₇H₈) = m(C₇H₈)/M(C₇H₈)

n(C₇H₈) = d × V / M(C₇H₈)

n(C₇H₈) = 0.867 g/mL × 38.4 mL / 92.14 g/mol = 0.361 mol

So, the amount of oxygen needed for complete combustion of toluene = 9 × 0.361 = 3.249 g

In the above reaction, there are 11 moles of gaseous products, i.e., 7 moles of CO₂ and 4 moles of H₂O.

So, the amount of moles of gaseous products formed can be calculated as follows: n(gas) = 11 × n(C₇H₈)

n(gas) = 11 × 0.361 = 3.971 mol.

The amount of moles of H₂O formed can be calculated as follows:

n(H₂O) = 4 × n(C₇H₈)

n(H₂O) = 4 × 0.361 = 1.444 mol

Now, we can calculate the number of molecules of water vapor as follows:

n(H₂O) = N × Na

N = n(H₂O) / Na

N = 1.444 mol / 6.022 x 10²³ mol¯¹ = 8.684 x 10²²

Hence, the number of molecules of water vapor formed is 8.684 x 10²².

Learn more about Complete combustion here:

https://brainly.com/question/31123826

#SPJ11

How would poisoning proton pumps impact anion uptake? a. It would decrease the uptake of anions via cotransport with protons.b. It would have no effect; most anions utilize ATP-driven pumps for uptake.c. It would decrease the uptake of anions by passive diffusion.d. It would increase the uptake of anions via cotransport with protons.

Answers

Poisoning proton pumps impact anion uptake in such a way that  It would decrease the uptake of anions by passive diffusion.

What is passive diffusion ?

The process by which molecules diffuse from a region of higher concentration to a region of lower concentration is known as passive diffusion. It is the most important mechanism for drug passage across membrane.

Diffusion is the net movement of material from a high concentration area to a low concentration area. The concentration gradient is the difference in concentration between the two areas, and diffusion will continue until this gradient is eliminated. Because diffusion transports materials from a high concentration area to a low concentration area

to know more about passive diffusion , visit ;

brainly.com/question/1304999

#SPJ1

Which of the following factors is unique for each substance when calculating the energy change associated with a change in temperature?A) massB) enthalpyC) temperature changeD) specific heat

Answers

The answer to this question is D) specific heat. When determining the energy change associated with a change in temperature, specific heat is a factor that is unique to each substance.

Specific heat- Specific heat is the amount of heat that must be added or removed from a unit of mass of a substance to increase or decrease its temperature by one degree Celsius or Kelvin. The amount of heat required to alter the temperature of a material varies depending on the nature of the substance. As a result, specific heat is a factor that is unique to each substance.

D) specific heat is correct because it is the unique factor for each substance when calculating the energy change associated with a change in temperature.

In conclusion, it is important to consider that when determining the energy change associated with a change in temperature, specific heat is a factor that is unique to each substance.

To learn more about "energy change", visit: brainly.com/question/30083274

#SPJ11

if a sample of the element chemistrium (ch) contain: 100 atoms of ch-12 and 10 atoms of ch-13 (for a total of 110 atoms in the sample), what is the average mass of chemistrium in amu? a 12.1 b 12.3 c 12.5 d 13.1 e 13.3 f 13.5

Answers

The average mass of chemistrium (Ch) in amu is: 12.5 amu.

What is chemistrium (Ch)?

Chemistrium is an element with the atomic number 106. It is a transactinide synthetic element with an atomic weight of 268 u. Until 2009, this element was known as unnilhexium (Unh). It was named chemistrium in honor of the chemistry in recognition of the Moscow-based Joint Institute for Nuclear Research's contributions to the synthesis of new elements.

If a sample of the element chemistrium (Ch) contains 100 atoms of Ch-12 and 10 atoms of Ch-13 (for a total of 110 atoms in the sample), the average mass of chemistrium in amu can be calculated as follows:

Average mass of Ch = [(number of atoms of Ch-12 x atomic weight of Ch-12) + (number of atoms of Ch-13 x atomic weight of Ch-13)] / Total number of atoms of Ch= [(100 x 12.000000) + (10 x 13.003355)] / 110= [1200.0000 + 130.03355] / 110= 1330.03355 / 110= 12.18212318 amu, which is rounded off to 12.5 amu.

Learn more about element: https://brainly.com/question/25608430

#SPJ11

what product is finally formed when the initial compound formed from cyclohexanone and morpholine is mixed with methyl iodide and that product is heated and then hydrolyzed

Answers

When the initial compound formed from cyclohexanone and morpholine is mixed with methyl iodide and heated and then hydrolyzed, the product that is finally formed is N-Methylaminoethylcyclohexanone.

The reaction between cyclohexanone and morpholine in the presence of an acid catalyst produces a cyclic imine named N-morpholino-cyclohexanone, which is an intermediate in the synthesis of several drugs. It reacts with methyl iodide and potassium carbonate in methanol to form N-methylaminoethylcyclohexanone, which upon hydrolysis produces the final product, N-methylaminoethylcyclohexanone. This reaction is an example of the Mannich reaction.N-methylaminoethylcyclohexanone is a synthetic intermediate and a building block for the synthesis of various drugs. It's commonly used as an intermediate in the synthesis of sedatives and analgesics. It's also used in the synthesis of ephedrine analogs and the anticancer agent 2-[2-(4-ethoxyphenyl)ethyl]aminoethylcyclohexanone.

Learn more about hydrolysis here: https://brainly.com/question/30578484

#SPJ11

For the precipitation reaction occurring between iron (II) chloride, FeCl2 and potassium carbonate K2CO3, show the Molecular, Complete Ionic and Net Ionic Equations
If you take 20 g FeCl2 and 25 g K2CO3, what will be the theoretical yield of the solid product? This calculation depends on the limiting agent.

Answers

The theoretical yield of the solid product FeCO₃ in the reaction here is 18.18 grams. This is because, FeCl₂ is a limiting agent.

What is the theoretical yield?

The precipitation reaction occurring between iron (II) chloride, FeCl₂ and potassium carbonate K₂CO₃

The Molecular equation is given below: FeCl₂ + K₂CO₃ → FeCO₃ + 2KCl

The Complete Ionic equation is given below: Fe₂⁺ + 2Cl⁻ + 2K⁺ + CO₃²⁻ → FeCO₃ + 2K⁺ + 2Cl⁻

The Net Ionic equation is given below: Fe²⁺ + CO₃²⁻→ FeCO₃

Molar mass of FeCl₂ = 126.75 g/mol

Molar mass of K₂CO₃ = 138.21 g/mol

n(FeCl₂) = mass/Mr = 20/126.75 = 0.1578 m

n(K₂CO₃) = mass/Mr = 25/138.21 = 0.1808 m

Therefore, FeCl₂ is the limiting agent. The theoretical yield of FeCO₃ can be calculated as follows: FeCl₂ + K₂CO₃ → FeCO₃ + 2KCl

1 mole of FeCl₂ produces 1 mole of FeCO₃

Moles of FeCO₃ produced = 0.1578 mol

FeCO₃ molar mass = 115.86 g/mol

Mass of FeCO₃ produced = 0.1578 mol × 115.86 g/mol = 18.18 g

Thus, the theoretical yield of the solid product FeCO₃ is 18.18 g.

Learn more about Theoretical yield here:

https://brainly.com/question/14966377

#SPJ11

phosphorylation of either of the terminal hydroxyl groups of glycerol will create: (a) (r)-glycerol-3-phosphate (b) l-glycerol-1-phosphate (c) d-glycerol-3-phosphate (d) a pair of enantiomers (e) none of the above

Answers

Phosphorylation of either of the terminal hydroxyl groups of glycerol will create b. L-glycerol-1-phosphate.

Glycolysis is a metabolic pathway in which glucose is broken down into two pyruvates in the presence of oxygen. Glycerol is a molecule that serves as a precursor to triacylglycerols and phospholipids. Glycerol, which is a 3-carbon molecule, is broken down into dihydroxyacetone phosphate and glyceraldehyde 3-phosphate in the glycolysis pathway.

The structure of glycerol comprises of two terminal hydroxyl groups, -OH, on carbons 1 and 3 of glycerol are the primary alcohol groups. These groups can be phosphorylated by a kinase enzyme to produce two different phosphates: L-glycerol-1-phosphate or D-glycerol-3-phosphate.

Phosphorylation of either of the terminal hydroxyl groups of glycerol will create L-glycerol-1-phosphate. This molecule is a phosphoric acid ester of glycerol that is classified as a glycerophosphate. Phosphorylation of the 1-hydroxyl group produces L-glycerol-1-phosphate, whereas phosphorylation of the 3-hydroxyl group produces D-glycerol-3-phosphate.

Therefore, the phosphorylation of either of the terminal hydroxyl groups of glycerol will create L-glycerol-1-phosphate.

To know more about phosphorylation click here:

https://brainly.com/question/15585148

#SPJ11

1. Analysis of a 50-g sample of a liquid compound composed of carbon, hydrogen, and nitrogen showed it to contain 9.5 g C, 3.40 g H, and 5.71 g N. What is the percent composition of Hydrogen?​

Answers

The chemical contains 18.26% hydrogen in terms of percentage.

What is mass?

A fundamental physical characteristic of matter is mass, which expresses how much matter is present in an item. It serves as a gauge for an object's resistance to acceleration, therefore the more massive an object, the more force is needed to move it.

How do you determine it?

Calculating the total mass of the compound and the mass of the hydrogen in the compound is necessary to determine the percent composition of hydrogen in the compound.

mass of compound = sum of masses of carbon, hydrogen, and nitrogen.

mass of the mixture= 9.5 g + 3.40 g + 5.71 g

Mass of the compound= 18.61 g.

The compound's mass of hydrogen is:

mass of hydrogen=3.40 g

We can use the following formula to determine the percentage composition of hydrogen:

The percentage of hydrogen=quantity of hydrogen/ the total mass of the chemical x 100%

When we enter the values, we obtain:

hydrogen content as a percentage = (3.40 g/18.61 g) x 100% = 18.26%

Thus, 18.26% of the compound is hydrogen, according to its percent composition.

To know more about mass, visit:

https://brainly.com/question/19694949

#SPJ1

etermine whether each of the molecules below is polar or nonpolar. linear c o 2 c o 2 choose... tetrahedral c h 4 c h 4 choose... linear n 2 n 2 choose... bent h 2 o h 2 o choose...

Answers

CO₂ is nonpolar molecule, CH₄ is a nonpolar molecule, N₂ is a nonpolar molecule, and H₂O is a polar molecule.

What are Polar and non-polar molecules?

Non polar molecules are the molecules which are symmetric with no unshared electrons in the structure. Polar molecules are the asymmetric molecules, which are either containing lone pairs of electrons on a central atom or having atoms with different electronegativities bonded to each other.

The linear CO₂ molecule is polar molecule due to the difference in electronegativity between the Carbon and Oxygen atoms. The tetrahedral CH₄ molecule is nonpolar since all the atoms have the same electronegativities. The linear N₂ molecule is nonpolar since it has a symmetrical linear shape. Finally, the bent H₂O molecule is polar due to the difference in electronegativity between the Hydrogen and Oxygen atoms.

Learn more about Molecules here:

https://brainly.com/question/15173422

#SPJ11

What are the ang and In the actua molecule of which this Lewis structure? Note for advanced students: give the ideal angles; and don't worry about small differences from the ideal that might be caused by the fact that different electron groups may have slightly different sizes

Answers

The actual molecule for this Lewis structure is BeF2 (Beryllium Fluoride). The ideal angle of the molecule is 180°. This is because the two Fluorine atoms have single bonds to the Beryllium atom, and two single bonds always form a linear shape. The bond angle is 180° in linear molecules.

The angles in the actual molecule of which the given Lewis structure is for can be determined by looking at the VSEPR theory. According to VSEPR theory, the shapes of the molecules are determined by the number of electron groups surrounding the central atom. The electron groups can be either bonding or non-bonding, and they repel each other, which results in the formation of a particular shape or geometry.

The ideal angles of the molecules are as follows:Linear shape: 180 degrees Trigonal planar shape: 120 degrees Tetrahedral shape: 109.5 degrees Trigonal bipyramidal shape: 120 degrees (equatorial) and 90 degrees (axial)Octahedral shape: 90 degrees.The actual angles may deviate slightly from the ideal angles due to the fact that different electron groups may have slightly different sizes. This is known as the lone pair-bond pair repulsion. It is important to note that the actual angles of the molecule depend on the type of bonding that takes place between the atoms of the molecule.

More on Lewis structure: https://brainly.com/question/12476602

#SPJ11

PLS HELP!! HURRY!!

Match the terms to the appropriate definition and/or descriptions

Answers

Absolute dating and relative dating are two methods used by scientists to determine the age of rocks, fossils, and other geological materials.

What are the different types of dating?

Relative dating involves comparing the placement of fossils in rock layers. By analysing the sequence of rock layers, scientists can determine the relative ages of fossils and other materials. For example, if a fossil is found in a layer of rock that is below another layer, it is considered to be older than the layer above it.

Absolute dating involves using scientific methods to determine the exact age of a material. This is often done using radiometric dating techniques, which involve measuring the amount of certain isotopes in a sample.

Carbon-14 dating is based on the fact that carbon-14, an isotope of carbon, is created when cosmic rays interact with nitrogen in the atmosphere. Plants and animals take in carbon-14 through photosynthesis and eating, and the carbon-14 decays over time at a known rate. By measuring the amount of carbon-14 in a sample, scientists can determine the age of the material.

Radiometric dating is a technique used to date rocks and other geological materials based on the decay rate of radioactive isotopes. For example, uranium-lead dating can be used to date rocks that are billions of years old, by measuring the amount of uranium and lead in the sample and calculating how long it has been decaying.

To find out more about dating techniques, visit:

https://brainly.com/question/12291163

#SPJ1

You observed a phase change of liquid iodine that has a negative ΔH value. Which of the following statements are true? (Assume constant pressure and a flexible container.)(You may select more than one answer. Incorrect answers will be penalised.)Question 4 options:A. It was an exothermic reaction.B. Energy was transferred from the system to the surroundings.C. q is positive.D. The liquid became a gas.

Answers

The statements which are true include: it was an exothermic reaction and energy was transferred from the system to the surroundings. Thus, the correct options are A and B.

What is an Exothermic reaction?

The reason for this reaction to be an exothermic reaction is that a negative ΔH value represents that the reaction or process was exothermic and as per the first law of thermodynamics, energy can neither be created nor destroyed, it only changes form from one form to another.

In this case, as the reaction is exothermic, it releases energy which was transferred from the system to the surroundings. Hence, the correct options will be A and B. The options C and D are incorrect options. The value of q is negative in this case, and the liquid would have become a solid instead of a gas, considering that there is no change in pressure or flexible container is used.

Learn more about Exothermic reaction here:

https://brainly.com/question/10373907

#SPJ11

consider an ideal gas of molecules, with n adsorbing sites. each site can be occupied or unoccupied by one or two of the ideal gas molecules. determine the average number of molcules adsorbed by the table

Answers

The average number of molecules adsorbed by the table is the number of different ways of placing a total of r particles on n adsorption sites when two particles can occupy each site given by (r + n-1) C (n-1).

This formula follows from the fact that each placement corresponds to choosing n-1 boundaries that divide the particles into n groups (each group may be empty) and then putting one group into each adsorption site. Thus the required number of ways is(r + n-1) C (n-1). The number of ways of placing r particles on n adsorption sites when one or two particles can occupy each site is the sum of the number of ways in which exactly one particle occupies a site and the number of ways in which two particles occupy a site. Each adsorption site can be either empty, occupied by one molecule, or occupied by two molecules. Therefore, there are three different states that each adsorption site can have. There are n adsorption sites, and therefore there are 3n different states that the table can have. Each state is characterized by the number of molecules adsorbed by the table. Therefore, the average number of molecules adsorbed by the table is given by the sum of the number of molecules adsorbed in each state, divided by the total number of states. The number of molecules adsorbed in each state is the sum of the number of molecules adsorbed by each adsorption site, overall adsorption sites. Therefore, the number of molecules adsorbed in each state is either 0, 1, or 2.

Learn more about  ideal gas   at brainly.com/question/28257995

#SPJ4

Select all of the following lab techniques that you will utilize in the Recystallization experiment is called

Answers

The correct answer is that the recrystallization is a common technique used to purify solid compounds in organic chemistry.

The following are some of the lab techniques that may be utilized in a recrystallization experiment: Dissolving the impure compound in a suitable solvent. Filtering the solution to remove insoluble impurities. Heating the solution to dissolve the compound completely. Allowing the solution to cool slowly to allow the compound to crystallize out. Filtering the crystallized product using a Buchner funnel or filter paper. Washing the product with a suitable solvent to remove any remaining impurities. Drying the product using a desiccator or oven. Other techniques that may be used in conjunction with recrystallization include melting point determination, thin-layer chromatography, and spectroscopic analysis to confirm the purity and identity of the compound.

To learn more about recrystallization click the link below

brainly.com/question/29215760

#SPJ4

Which aqueous solution has the lowest freezing point?
1. 1.0 M C6H12O6
2.1.0 M C2H5OH
3.1.0 M CH3COOH
4.1.0 M NaCl

Answers

According to the given Information:

The aqueous solution that has the lowest freezing point is 1.0 M C2H5OH (ethanol).

How does the type of solute affect the freezing point depression of an aqueous solution?

Because it determines the concentration of solute particles in the solution.

Ionic solutes, such as NaCl, dissociate into multiple ions in water, producing a higher concentration of solute particles per unit concentration than molecular solutes, such as ethanol.

This results in a greater degree of freezing point depression for ionic solutes than molecular solutes.

What is an aqueous solution?

An aqueous solution is one in which water serves as the solvent.

Aqueous solutions are very common in nature and in laboratory settings. Many substances can dissolve in water to form aqueous solutions, including salts, acids, bases, and gases.

Aqueous solutions are important in many fields of science, including chemistry, biology, and environmental science.

To know more about aqueous solution, visit:

https://brainly.com/question/13608038

#SPJ1

A compass is placed near a certain type of metal. The needle on the compass moves. What type of force causes the needle to move SC. 6. P. 13. 1

Answers

A magnetic force is what moves the compass needle when it is in close proximity to a particular kind of metal. This is so because the magnetic fields of the metal item and the compass needle interact to create a force.

Permanent magnets, electric currents, and various types of metals may all be surrounded by magnetic fields, which are created by moving charges like electrons. The compass needle will move or align itself with the magnetic field lines when a magnetic field is applied to a magnetic substance, such as that material.If the compass is placed next to a metal item, the metal must likewise have a magnetic field or be able to create one when exposed to one. The compass needle moves as a result of the force created by the interaction of the magnetic fields, revealing the existence and direction of the magnetic field generated by the metal item.

learn more about compass needle here:

https://brainly.com/question/2577109

#SPJ4

In 1828, Friedrich Wöhler produced urea
when he heated a solution of ammonium
cyanate. This reaction is represented by the
balanced equation below.
H 7+
H-N-H[C=N-O]
I
H
Ammonium
cyanate
H O
\/
N-CIN
H
Urea
Explain why this balanced equation represents a
conservation of atoms.
H
H

Answers

This balanced equation represents the principle of conservation of atoms, which is a fundamental principle of chemistry in the sense that the number and type of atoms are the same on both sides which means that no atoms were created or destroyed during the reaction, only rearranged to form new molecule.

What is a balanced equation?

A balanced equation is described as an equation for a chemical reaction in which the number of atoms for each element in the reaction and the total charge are the same for both the reactants and the products.

Analyzing the diagram,

On the left-hand side we have :

1 nitrogen atom (N)

3 hydrogen atoms (H)

1 carbon atom (C)

2 oxygen atoms (O)

On the right-hand side:

1 nitrogen atom (N)

4 hydrogen atoms (H)

1 carbon atom (C)

2 oxygen atoms (O)

This can only mean that no atoms were created or destroyed during the reaction, only rearranged to form new molecules.

Learn more about balanced equation atr:

https://brainly.com/question/11904811

#SPJ1

which system provided here, if any, would be best modeled by an ideal solution? if any of the solutions are non-ideal, discuss whether the scatchard-hildebrand approach would be appropriate to model the non-idealities. explain your answer. (i) ethane n-decane (ii) water 1-butanol (iii) benzene toluene

Answers

The systems that would be best modeled by an ideal solution are (i) ethane n-decane, (iii) benzene toluene. If any of the solutions are non-ideal, the Scatchard-Hildebrand approach would be appropriate to model the non-idealities. A solution is said to be ideal if the solution behaves like an ideal gas, which means that there are no intermolecular interactions between the molecules of the components. i.e., the solution will obey Raoult's law.

The systems that would be best modeled by an ideal solution are(i) ethane n-decane(ii) water 1-butanol(iii) benzene toluene. An ideal solution occurs when the components of a mixture form a homogeneous mixture that does not exhibit deviations from Raoult's law. Since the ideal mixture is composed of solvent and solute, it is impossible to completely exclude interactions between the two components.  

It is best suited for non-polar and small polar solutes. In this way, the non-ideality of the solution can be predicted. Therefore, if any of the solutions are non-ideal, the Scatchard-Hildebrand approach would be appropriate to model the non-idealities.

For more information about Raoult's law refer here

https://brainly.com/question/28304759

#SPJ11

10 ml of ethanol is mixed with 250 ml of water calculate the volume percentage of ethanol

Answers

Answer: 3.85%

Explanation: To calculate the volume percentage of ethanol in the mixture, we need to determine the total volume of the mixture first.

Total volume = volume of ethanol + volume of water

Total volume = 10 ml + 250 ml

Total volume = 260 ml

Now, we can calculate the volume percentage of ethanol in the mixture using the following formula:

Volume percentage of ethanol = (volume of ethanol ÷ total volume) x 100%

Plugging in the values, we get:

Volume percentage of ethanol = (10 ml ÷ 260 ml) x 100%

Volume percentage of ethanol = 3.85%

Therefore, the volume percentage of ethanol in the mixture is 3.85%.

what charge does al typically have in ionic compounds, and why? responses 1 , because in the ground state it has one unpaired electron. 2 , because it has two electrons in the 2s subshell. 3 , because it has three valence electrons
4 , because it is in the fourth row of the periodic table.

Answers

The correct option is 3. Aluminum typically has a charge of +3 in ionic compounds, and the reason behind this is the number of valence electrons in the outermost shell of the aluminum atom.

How is the charge of Aluminum determined in ionic compounds?

In ionic compounds, the charge of an element is determined by the number of valence electrons present in its outermost shell. The valence electrons are those that are involved in chemical bonding and they determine the reactivity of an atom. This gives aluminum an atomic number of 13 and an electron configuration of 1s²2s²2p⁶3s²3p¹.

In the case of aluminum, it has three valence electrons in its outermost shell, which means it can lose these three electrons to form a positively charged ion with a charge of +3. So, in ionic compounds, aluminum typically has a charge of +3.

Moreover, when aluminum loses these three valence electrons, it attains a noble gas configuration, which is a stable configuration that many elements strive to achieve.

What is aluminum?

Aluminum is a chemical element with the symbol Al and atomic number 13. It is a silvery-white, soft, non-magnetic, and ductile metal in the boron group. It is the third most abundant element after oxygen and silicon and the most abundant metal in the Earth's crust. It is commonly used in various applications due to its low density, high strength-to-weight ratio, and good corrosion resistance.

Therefore, option 3 is the correct reason for Al having +3 charge.

To know more about Aluminum, refer here:

https://brainly.com/question/9496279#

#SPJ11

Calcium carbonate, CaCO3, is able to remove sulfur dioxide, SO2, from waste gases by a reaction in which they react in a 1: 1 stoichiometric ratio to form equimolar amounts of CaSO3. When 255 g of CaCO3 reacted with 135 g of SO2, 198 g of CaSO3 were formed. Determine the percentage yield of CaSO3

Answers

The percentage yield of CaSO3 is approximately 69%.

CaCO3 + SO2 → CaSO3 + CO2

Number of moles of CaCO3 = 255 g / 100.09 g/mol = 2.549 mol

Number of moles of SO2 = 135 g / 64.06 g/mol = 2.109 mol

Since the reaction is 1:1 stoichiometric, the number of moles of CaSO3 formed is 2.109 mol. We can then calculate the theoretical yield of CaSO3:

Theoretical yield of CaSO3 = 2.109 mol x 136.14 g/mol = 286.9 g

Percentage yield = (Actual yield / Theoretical yield) x 100%

The actual yield is given as 198 g. Plugging in the values, we get:

Percentage yield = (198 g / 286.9 g) x 100% ≈ 69%.

Stoichiometric is the study of the quantitative relationship between reactants and products in a chemical reaction. The stoichiometric ratio is the ratio of the moles of one substance to the moles of another substance in a chemical reaction.

For example, consider the reaction between hydrogen gas (H2) and oxygen gas (O2) to form water (H2O). The balanced chemical equation for this reaction is 2H2 + O2 → 2H2O. The stoichiometric ratio for this reaction is 2:1. This means that for every two moles of hydrogen gas reacted, one mole of oxygen gas is required to completely react with it and form two moles of water.

Stoichiometric is important in chemical reactions because it allows us to determine the number of reactants needed to produce a certain amount of product or the amount of product that can be produced from a given amount of reactants. This information is crucial in industrial and laboratory settings where the cost of materials and the desired yield of the product are important factors.

To learn more about Stoichiometric visit here:

brainly.com/question/6907332

#SPJ4

WHAT IS THE MASS OF O2 GIVEN THE EQUATION: 4FE + 3O2 --> 2FE2O3

Answers

Answer: I think its 111.6

Explanation:

fermentation in certain types of yeast occurs in the ___________ of oxygen.

Answers

Fermentation in certain types of yeast occurs in the absence of oxygen.

Fermentation is an anaerobic metabolic process that occurs in the absence of oxygen, which converts sugar into cellular energy, primarily adenosine triphosphate (ATP), and produces carbon dioxide and alcohol as waste products. Fermentation is used in a variety of industrial and food production processes. Yeast, a type of fungus, is used to ferment carbohydrates and produce carbon dioxide and alcohol in bread baking, winemaking, and beer brewing. Lactobacilli bacteria are used in the production of yogurt and cheese by fermenting milk lactose.

There are two types of fermentation processes: alcoholic fermentation and lactic acid fermentation.

Alcoholic fermentation is a metabolic process that produces alcohol and carbon dioxide from carbohydrates, typically sugars. Yeast and certain bacteria are the most common types of organisms that undergo alcoholic fermentation. In lactic acid fermentation, the bacteria or yeast convert the sugar into lactic acid instead of ethanol. The lack of oxygen in the fermentation process is an essential factor. During fermentation, oxygen is not required as it would serve as a toxin to the fermenting yeast, which is why it happens in the absence of oxygen. Yeast obtains energy in the form of adenosine triphosphate (ATP) through anaerobic respiration when oxygen is absent.

for such more question on Fermentation

https://brainly.com/question/11554005

#SPJ11

The following are the main steps in the formation of an 'action potential'. Which of the following lists the steps in the correct sequential order? (Not every step may be given, however the given steps should be in the correct sequence) (hint - step # 3 is the last step)
1. voltage-gated Na+ channels are inactivated
2. voltage-gated K+ channels open and K+ move out of the cell
3. voltage-gated Na+ channels regain their normal properties
4. a graded depolarization brings an excited membrane to threshold potential
5. a temporary hyperpolarization occurs
6. voltage-gated Na+ channel activation occurs
7. Na+ enter the cell and depolarization occurs

Answers

The correct sequence of steps in the formation of an action potential is as follows: 4. a graded depolarization brings an excited membrane to threshold potential, 6. voltage-gated Na+ channel activation occurs, 7. Na+ enter the cell and depolarization occurs, 1. voltage-gated Na+ channels are inactivated, 2. voltage-gated K+ channels open and K+ move out of the cell, 3. voltage-gated Na+ channels regain their normal properties, and 5. a temporary hyperpolarization occurs.
Explanation: Action potential is generated when a neuron sends information down an axon, away from the cell body. The steps involved in the formation of an action potential are:Graded depolarization occurs, which brings an excited membrane to threshold potential.Na+ enters the cell and depolarization occurs.Voltage-gated Na+ channel activation occurs.Voltage-gated Na+ channels are inactivated.Voltage-gated K+ channels open and K+ move out of the cell.A temporary hyperpolarization occurs.Voltage-gated Na+ channels regain their normal properties, which complete the cycle.Action potential is a result of ions moving in and out of the cell membrane, which changes the voltage difference between the inside and outside of the cell membrane. Action potential, therefore, involves the sequential opening and closing of different types of voltage-gated ion channels, including sodium (Na+) and potassium (K+) channels.

For more such questions on hyperpolarization

https://brainly.com/question/15997473

#SPJ11

Other Questions
Match each process to its description. Note: in order to complete the question and move on to the next one, you will need to drag one of the statements to more than one target! Drag each item on the left to its matching item on the right. Note that every item may not have a match, while some items may have more than one match. 1.separates sister chromatids. 2. results in diploid cells 3.separates homologous chromosomes. A) . meiosis Il B)mitosis C) meiosis I What were some of the reasons that Japanese traditionalists had for disliking Western culture? identify each phrase as expressing an attitude that is postmodern or modern. FILL IN THE BLANK. in television advertising, the formula cost of commercial time/program rating gives the ______ ... provides an estimate of the frequency of an advertisement. On January 18, a company provides services to a customer for $500 and offers the customer terms 2/10, n/30. Which of the following would be recorded when the customer remits payment on January 25?debit sales discount for $10debit sales discount for $15debit sales discount for $20debit sales discount for $25 (b) Write 5 as a percentage. Help Me Find YShow Work Using C2H4 + 3 O2 -> 2 CO2 + 2 H2O. If 20 moles of fuel are combusted in the above equation, how many moles of CO2 are produced? Suppose that the domain of discourse of the propositionalfunction P(x) is {1,2,3,4}. Rewrite each propositional function below using only negation, disjunction, and conjunction. (a) Vx P(x) (b) -(Vx P(x)) (c) 3x P(x) (d) -(E. P(x)) Based on the same principles as above, classify the radioactive decays as alpha emission, beta emission, or electron capture.Alpha emission:Beta Emission:Electron Capture:-40K19-218Po84-226Ra88-234Th90 3) Which of the following are considered solid alternative non-written sources for the space race? (choose 2) theories of double-paned glass ceilings are based on studies of u.s. organizations and are unlikely to apply globally. How does twin from poet x change throughout the story? HELP PLEASE !!Use the information given in the figure to find the length RV.If applicable, round your answer to the nearest whole number.The lengths on the figure are not drawn accurately.513RT11150 In addition to the rending of the altar, another clear sign from the Lord to ___ was the withering of his ___. you work at a large department store selling computer products. iwina walks in and wants to buy a wireless router. she explains that the media streaming device she ordered online supports a transmission speed of up to 200 mbps. what type of router should you recommend? Mendelian ratios are modified in crosses involving autotetraploids.Assume that one plant expresses the dominant trait green seeds and is homozygous (WWWW). This plant is crossed to one with white seeds that is also homozygous (wwww).1. If only one dominant allele is sufficient to produce green seeds, predict the F1 phenotypic ratio of such a cross. Assume that synapsis between chromosome pairs is random during meiosis.2.Predict the phenotypic ratio of the F2 generation.____ green : ____ white3. Having correctly established the F2 ratio in Part B, now predict the F2 phenotypic ratio of a "dihybrid" cross involving two independently assorting genes, A and W, for this cross.WWWWAAAA x wwwwaaaaThe F2 ratio would be:____ dominant W and dominant A individuals :____ dominant W and recessive a individuals :____ recessive w and dominant A individuals :____ recessive w and recessive a individuals what are the different sizes and shapes of galaxies? Jupiter's four large moons - Io, Europa, Ganymede, and Callisto - were discovered by Galileo in 1610. Jupiter also has dozens of smaller moons. Callisto has a radius of about 2.40 x 106 m, and the mean orbital radius between Callisto and Jupiter is 1.88 x 109 m.(a) If Callisto's orbit were circular, how many days would it take Callisto to complete one full revolution around Jupiter?(b) If Callisto's orbit were circular, what would its orbital speed be? polysaccharides are complex carbohydrates and consist of long chains of glucose molecules. which of the following is a polysaccharide?