Answer:
The pressure near the surface of the pool will be less as compared that the bottom of the pool as water has weight. This is in relation to gravity
Explanation:
There is a relationship between volume and pressure. The increase in depth leads to an increase in volume and an increase in the force of gravity near the surface as compared to lifting and rising light pressure as light air rises and heavy air sinks.the roque requried to turn the crank on an ice cream maker is 4.50 N.m how much work does it take to turn the crank through 300 full turns
Answer:
the work required to turn the crank at the given revolutions is 8,483.4 J
Explanation:
Given;
torque required to turn the crank, T = 4.50 N.m
number of revolutions, = 300 turns
The work required to turn the crank is given as;
W = 2πT
W = 2 x 3.142 x 4.5
W = 28.278 J
1 revolution = 28.278 J
300 revlotions = ?
= 300 x 28.278 J
= 8,483.4 J
Therefore, the work required to turn the crank at the given revolutions is 8,483.4 J
What happens in this story that tells us this story is a fairy tale? (Prove this is a fairy tale by quoting something from the story that shows this is a fairy tale and not a true story)
Answer:
Use of words such as once upon a time, god mother, forest tower etc.
Explanation:
A fairy tale is a story based on society, class and relationships. Its a short and has mythical creatures like dragons and many more. It is less technical and generally has a happy or fairy tale ending.Some copper wire has a resistance of 200 ohms at 20 degrees C . A current is then passed through the same wire and the temperature rises to 90 degrees C. Determine the resistance of the wire at 90 degrees correct to the nearest ohm assuming the coefficient of resistance is 0.004/degree C at 0 degrees
Answer:
256 ohms
Explanation:
Applying,
R = R'[1+α(T-T')]............. Equation 1
Where R = Final resistance of the wire, R' = Initial resistance of the wire, T = Final temperature, T' = Initial temperature, α = Temperature coefficient of resistance
From the question,
Given: R' = 200 ohms, T = 90 degrees, T' = 20 degrees, α = 0.004/degree
Substitute these values into equation 1
R = 200[1+0.004(90-20)]
R = 200[1+0.28]
R = 200(1.28)
R = 256 ohms
The resistance of the wire at 90 °C correct to the nearest ohm assuming the coefficient of resistance is 0.004 °C¯¹ is 256 ohm
Data obtained from the question Original resistance (R₁) = 200 ohmOriginal temperature (T₁) = 20 °C Coefficient of resistivity (α) = 0.004 °C¯¹New temperature (T₂) = 90 °C New resistance (R₂) =? How to determine the new resistanceα = R₂ – R₁ / R₁(T₂ – T₁)
0.004 = R₂ – 200 / 200(90 – 20)
0.004 = R₂ – 200 / 200(70)
0.004 = R₂ – 200 / 14000
Cross multiply
R₂ – 200 = 0.004 × 14000
R₂ – 200 = 56
Collect like terms
R₂ = 56 + 200
R₂ = 256 ohm
Learn more about linear expansion:
https://brainly.com/question/23207743
when we jump on a concrete surface,the feet get injured.Why
Answer:
Explanation:
Bhjb
Explanation:
its because a concrete surface is a hard surface which doesn't absorb the energy of gravitation when we fall down so we get hurt more badly..
hope this helps
explain relative velocity briefly
Answer:
Explanation:
Relative velocity is defined as the velocity of an object B in the rest frame of another object A.
a 2.00 kg object is moving east at 4.00 m/s when it collides with a 6 kg object that is initially at rest. after the collision the larger object moves east at 1 m/s. what is the final velocity of the smaller object after the collision
The final velocity of the smaller object is 1 m/s.
To calculate the final velocity of the smaller object, we use the formula below.
Formula:
mu+m'u' = mv+m'v'............. Equation 1Where:
m = mass of the bigger objectm' = mass of the smaller objectu = initial velocity of the bigger objectu' = initial velocity of the smaller objectv = final velocity of the bigger objectv' = final velocity of the smaller object.From the question,
m = 6 kgm' = 2 kgu = 0 m/s (at rest) u' = 4 m/sv = 1 m/sSubstitute these values into equation 1
6(0)+2(4) = 6(1)+2(v')8 = 6+2v'2v' = 8-62v' = 2v' = 1 m/sHence, The final velocity of the smaller object is 1 m/s.
Learn more about velocity here: https://brainly.com/question/25749514
Thermodynamic Processes: An ideal gas is compressed isothermally to one-third of its initial volume. The resulting pressure will be
Answer:
The resulting pressure is 3 times the initial pressure.
Explanation:
The equation of state for ideal gases is described below:
[tex]P\cdot V = n \cdot R_{u}\cdot T[/tex] (1)
Where:
[tex]P[/tex] - Pressure.
[tex]V[/tex] - Volume.
[tex]n[/tex] - Molar quantity, in moles.
[tex]R_{u}[/tex] - Ideal gas constant.
[tex]T[/tex] - Temperature.
Given that ideal gas is compressed isothermally, this is, temperature remains constant, pressure is increased and volume is decreased, then we can simplify (1) into the following relationship:
[tex]P_{1}\cdot V_{1} = P_{2}\cdot V_{2}[/tex] (2)
If we know that [tex]\frac{V_{2}}{V_{1}} = \frac{1}{3}[/tex], then the resulting pressure of the system is:
[tex]P_{2} = P_{1}\cdot \left(\frac{V_{1}}{V_{2}} \right)[/tex]
[tex]P_{2} = 3\cdot P_{1}[/tex]
The resulting pressure is 3 times the initial pressure.
The diagram below shows snapshots of an oscillator at different times. What is the amplitude of oscillation?
Answer:
the amplitude of the oscillation of the given mass is 0.1 m.
Explanation:
The amplitude of an oscillation is the maximum displacement of the object from the equilibrium position.
The equilibrium position of the given mass in question is at the zero (0) mark.
The maximum displacement of the object from the equilibrium position is 0.1 m upwards or 0.1 m downwards.
Therefore, the amplitude of the oscillation of the given mass is 0.1 m.
While standing at the edge of the roof of a building, a man throws a stone upward with an initial speed of 6.63 m/s. The stone subsequently falls to the ground, which is 14.5 m below the point where the stone leaves his hand.
At what speed does the stone impact the ground? Ignore air resistance and use =9.81 m/s2 for the acceleration due to gravity.
impact speed:
18.1151
m/s
How much time is the stone in the air?
elapsed time:
Answer:
Explanation:
You final velocity is correct but not to the correct number of significant digits. The actual answer should be 18.1 m/s. We will use that to find the total time the stone was in the air in the equation:
v = v₀ + at
18.1 = 6.63 + (-9.81)t and
11.5 = -9.81t so
t = 1.17 seconds.
We know this was how long the stone was in the air (as compared to the time that the stone took to reach its max height or some other height) because we used the velocity with which the stone hit the ground to find the total time the rock was in the air before it hit the ground going at that velocity.
How much work does a supermarket checkout attendant do on a can of soup he pushes 0.420 m horizontally with a force of 4.60 N? Express your answer in joules and kilocalories.
We know
[tex]\boxed{\sf Work\:Done=Force\times Displacement} [/tex]
[tex]\\ \rm\longmapsto Work\:done=0.420\times 4.60[/tex]
[tex]\\ \rm\longmapsto Work\:done=1.932J[/tex]
A billiard ball moving at 5 m/s strikes a stationary ball of the same mass. After the collision, the original ball moves at a velocity of 4.35 m/s at an angle of 30 o below its original motion. Find the velocity and angle of the second ball after the collision.
A) 1.25 m/s at 31.2o
B) 1.44 m/s at 60.0o
C) 2.16 m/s at 30.0o
D) 2.47 m/s at 61.9o
90 degrees - 30 = 60 degrees
Velocity = (5m/s - 4.35m/s x cos(30)) / cos(60)
Velocity = 2.47 m/s
The answer is D) 2.47 m/s at 61.9 degrees
The velocity and angle of the second ball after the collision are (A.) 1.25 m/s at 31.2° below the horizontal. Option A
How to calculate velocityUse the conservation of momentum and conservation of kinetic energy to solve this problem.
Let's denote the velocity and angle of the second ball after the collision as v₂ and θ₂, respectively.
Thus:
Conservation of momentum: [tex]m_1v_1 = m_1v_1'cos(30^o) + m_2v_2cos(\theta_2)[/tex]
Conservation of kinetic energy: [tex](1/2)m_1v_1^2 = (1/2)m_1v_1'^2 + (1/2)m_2v_2^2[/tex]
where m₁ and m₂ are the masses of the first and second balls, respectively.
Since the masses and initial velocity are the same, we can simplify the equations to:
m₁v₁ = m₁v₁'cos(30°) + m₂v₂cos(θ₂)
[tex]v_1^2 = v_1'^2 + v_2^2[/tex]
Substitute in the given values
[tex](1)(5) = (1)(4.35)cos(30^o) + (1)(v_2)cos(\theta_2)\\5^2 = 4.35^2 + v2^2\\v_2 = 1.25 m/s\\\theta2 = 31.2^o[/tex]
Therefore, the velocity and angle of the second ball after the collision are approximately 1.25 m/s at an angle of 31.2° below the horizontal.
Learn more on velocity on https://brainly.com/question/80295
#SPJ6
What is your angular position 75 seconds after the wheel starts turning, measured counterclockwise from the top? Express your answer as an angle between 0∘ and 360∘. Express your answer in degrees.
Complete Question
A Ferris wheel on a California pier is 27 m high and rotates once every 32 seconds in the counterclockwise direction. When the wheel starts turning, you are at the very top.
What is your angular position 75 seconds after the wheel starts turning, measured counterclockwise from the top? Express your answer as an angle between 0∘ and 360∘. Express your answer in degrees.
Answer:
[tex]\phi=123.75[/tex]
Explanation:
From the question we are told that:
Height [tex]h=27m[/tex]
Period [tex]T=32sec[/tex]
Time [tex]t=75sec[/tex]
Generally the equation for angular velocity is mathematically given by
[tex]\omega=\frac{2 \pi}{T}[/tex]
[tex]\omega=\frac{2 \pi}{32}[/tex]
[tex]\omega=0.196rad/s[/tex]
Therefore
[tex]\theta=\omega t[/tex]
[tex]\theta=0.196rad/s*75sec[/tex]
[tex]\theta=843.75 \textdegree[/tex]
Therefore
[tex]\phi=\theta-2(360)[/tex]
[tex]\phi=123.75[/tex]
In a race, Usain Bolt accelerates at
1.99 m/s2 for the first 60.0 m, then
decelerates at -0.266 m/s2 for the final
40.0 m. How much time did the race take?
(Unit = s)
Answer:
65.87 s
Explanation:
For the first time,
Applying
v² = u²+2as.............. Equation 1
Where v = final velocity, u = initial velocity, a = acceleration, s = distance
From the question,
Given: u = 0 m/s (from rest), a = 1.99 m/s², s = 60 m
Substitute these values into equation 1
v² = 0²+2(1.99)(60)
v² = 238.8
v = √238.8
v = 15.45 m/s
Therefore, time taken for the first 60 m is
t = (v-u)/a............ Equation 2
t = (15.45-0)/1.99
t = 7.77 s
For the final 40 meter,
t = (v-u)/a
Given: v = 0 m/s(decelerates), u = 15.45 m/s, a = -0.266 m/s²
Substitute into the equation above
t = (0-15.45)/-0.266
t = 58.1 seconds
Hence total time taken to cover the distance
T = 7.77+58.1
T = 65.87 s
A bullet is fired vertically upward a velocity of 80m/s to what height will the bullet rise above the point of projection
Answer:
The bullet will rise 320 meters above the point of projection.
Explanation:
Assuming that air friction is negligent we can use the kinematic equation:
[tex]v_{2} ^2=v_{1} ^2+2(-a)d\\0\frac{m^2}{s^2} =6400\frac{m^2}{s^2} +2(-10\frac{m}{s^2} )d\\-6400\frac{m^2}{s^2} =(-20\frac{m}{s^2}) d\\320m=d[/tex]
*acceleration is negative (-a) as it is acting in the opposite direction of the motion of the bullet.*
The bullet rises to a height of 3600 m if a bullet is fired upward with a velocity of 80 m/s.
Assume the air friction is negligible, the kinematic equation:
[tex]v_f^2 = v_i^2 +2(-a) d[/tex]
Where,
[tex]v_i^2[/tex] - iinitial velocity = 80 m/s
[tex]v_f^2[/tex]- final velocity = 0
[tex]d[/tex]- distance= ?
[tex]a[/tex]- gravitational acceleration = 9.8 m/s² = 10 m/s²
Put the values in the formula,
[tex]\begin {aligne} 0 = (80)^2 + 2 (10)^2 d\\\\d = \dfrac {6400}{ 200}\\\\d &= 3600 \rm \ m\end {aligne}\\[/tex]
Therefore, the bullet rises to a height of 3600 m if a bullet is fired upward with a velocity of 80 m/s.
To know more about kinematic equation:
https://brainly.com/question/5955789
why the change of the pressure and temperature affect the velocity of the sound
Air pressure has no effect at all in an ideal gas approximation. This is because pressure and density both contribute to sound velocity equally, and in an ideal gas the two effects cancel out, leaving only the effect of temperature. Sound usually travels more slowly with greater altitude, due to reduced temperature.
* 1a Average speed
Carl Lewis runs the 100 m sprint in about 10 s.
His average speed in units of m/s would be:
of
Answer:
Explanation:
[tex] \implies v_{av} = \dfrac{total \: displacement}{total \: time} [/tex]
[tex] \implies v_{av} = \dfrac{100}{10} [/tex]
[tex]\implies v_{av} =10 \: {ms}^{ - 1} [/tex]
Why does the north poll of Jupiter form hexagonal shapes in the clouds of Jupiter. Trying to see if people got brains
Explanation:
They believe that vortexes occur at the planet's north pole because of atmospheric flows deep within the gas giant, and that these vortexes pinch an intense horizontal jet near the equator—which is what warps the storm into a hexagon
what is the critical angle of light traveling from vegetable oil into water
56.1∘
Question: A glass is half-full of water, with a layer of vegetable oil (n = 1.47) floating on top. A ray of light traveling downward through the oil is incident on the water at an angle of 56.1∘ .
A glass is half-full of water, with a layer of vegetable oil (n ...https://study.com › academy › answer › a-glass-is-half-ful...
An capacitor consists of two large parallel plates of area A separated by a very small distance d. This capacitor is connected to a battery and charged until its plates carry charges Q and - Q, and then disconnected from the battery. If the separation between the plates is now doubled, the potential difference between the plates will
Answer:
Will be doubled.
Explanation:
For a capacitor of parallel plates of area A, separated by a distance d, such that the charges in the plates are Q and -Q, the capacitance is written as:
[tex]C = \frac{Q}{V} = e_0\frac{A}{d}[/tex]
where e₀ is a constant, the electric permittivity.
Now we can isolate V, the potential difference between the plates as:
[tex]V = \frac{Q}{e_0} *\frac{d}{A}[/tex]
Now, notice that the separation between the plates is in the numerator.
Thus, if we double the distance we will get a new potential difference V', such that:
[tex]V' = \frac{Q}{e_0} *\frac{2d}{A} = 2*( \frac{Q}{e_0} *\frac{d}{A}) = 2*V\\V' = 2*V[/tex]
So, if we double the distance between the plates, the potential difference will also be doubled.
What magnitude point charges creates a 10000 N/C electric field at a distance of 0.5 m?
a. 877.2 nC
b. 287.7 nC
c. 277.8 nC
d. 872.7 nC
Answer:
c. 277.8 nC
Explanation:
applying,
E = kq/r²............. Equation 1
Where E = electric field intensity, q = charge, r = distance, k = coulomb's constant.
make q the subject of the equation
q = Er²/k............... Equation 2
From the question,
Given: E = 10000 N/C, r = 0.5 m
Constant: k = 9×10⁹ Nm²/C²
Substitute these values into equation 2
q = (10000×0.5²)/(9×10⁹)
q = 277.8×10⁹
q = 277.8 nC
Hence the right option is c. 277.8 nC
Explain briefly how solar energy is used to generate electricity
This when the energy from the sun is trapped by either sun panel or others. It passes through conventions then we get the energy out as electricity.
Answer:
Solar radiation may be converted directly into electricity by solar cells (photovoltaic cells). In such cells, a small electric voltage is generated when light strikes the junction between a metal and a semiconductor (such as silicon) or the junction between two different semiconductors.
Explanation:
Pls mark me as brainliest
Solar radiation may be converted directly into electricity by solar cells or photovoltaic cells. This is how solar energy is used to generate electricity.
What is solar energy?Solar energy is the radiant light and heat from the Sun that is captured and used in a variety of technologies, including solar power to generate electricity, solar thermal energy, and solar architecture.
When the sun shines on a solar panel, the photovoltaic cells in the panel absorb the energy from the sun. When light strikes the junction of a metal and a semiconductor (such as silicon) or the junction of two different semiconductors, a small electric voltage is generated. This energy generates electrical charges that move in response to an internal electrical field in the cell, resulting in the flow of electricity.
Therefore, solar energy is used to generate electricity.
To learn more about solar energy, click here:
https://brainly.com/question/9704099
#SPJ6
When the gun fires a projectile with a mass of 0.040 kg and a speed of 380 m/s, what is the recoil velocity of the shotgun and arm–shoulder combination?
Complete question:
The recoil of a shotgun can be significant. Suppose a 3.6-kg shotgun is held tightly by an arm and shoulder with a combined mass of 15.0 kg. When the gun fires a projectile with a mass of 0.040 kg and a speed of 380 m/s, what is the recoil velocity of the shotgun and arm–shoulder combination?
Answer:
The recoil velocity of the shotgun and arm–shoulder combination is 1.013 m/s
Explanation:
Given;
combined mass of the shotgun and arm–shoulder, m₁ = 15 kg
mass of the projectile, m₂ = 0.04 kg
speed of the projectile, u₂ = 380 m/s
let the recoil velocity of the shotgun and arm–shoulder combination = u₁
Apply the principle of conservation of linear momentum;
m₁u₁ + m₂u₂ = 0
m₁u₁ = - m₂u₂
[tex]u_1 = -\frac{m_2u_2}{m_1} \\\\u_1 = - \frac{0.04\times 380}{15} \\\\u_1 =-1.013 \ m/s\\\\u_1 = 1.013 \ m/s \ \ \ in \ opposite \ direction[/tex]
Therefore, the recoil velocity of the shotgun and arm–shoulder combination is 1.013 m/s
? What is the difference between the Primitive cell and convectional cell
A uniform circular disk has a radius of 34 cm and a mass of 350 g. Its center is at the origin. Then a circular hole of radius 6.8 cm is cut out of it. The center of the hole is a distance 10.2 cm from the center of the disk. Find the moment of inertia of the modified disk about the origin.
Answer:
u can ask it to the person who give ot to u i dont no
Question 8 of 20
What identifies your skills and interests to help you plan out your career
goals?
A. A self-examination
B. A self-assessment
O C. A self-help book
O D. A bit of self-knowledge
Answer:
c
Explanation: because i took it and got it correct
how liquid state is change into solid state?
Answer:
The change from the liquid state to the solid state is called freezing. As the liquid cools, it loses thermal energy. ... For example, solid water melts at 0°C and liquid water freezes at 0°C. During freezing, the temperature of a substance remains constant while the particles in the liquid form a crystalline solid.
Explanation:
When the liquid state freezes, it changes into solid state.
Example,
When you freeze water, it changes into ice, ice is a solid.
Help please. I don’t understand
(D)
Explanation:
That's the statement of the Pythagorean theorem.
[tex]c^2=a^2+b^2 \Rightarrow c = \sqrt{a^2+b^2}[/tex]
Projectile Problems – Type 2:
1. The photograph below shows a basic projectile at several locations on its trajectory.
a) List the location(s) where the vertical component of the velocity would be zero.
b) What is the vertical component of the acceleration at location #3?
c) What is the horizontal acceleration of the projectile?
d) Identify the location where the vertical displacement would be zero.
e) Identify the location with the maximum displacement.
f) Rank each location in terms of the projectile's speed (highest to lowest).
Answer:
Explanation:
( a ) At top position , vertical component of velocity will be zero .
So answer is position no (3)
b )
At position (3) which is the topmost position , acceleration is acting due to gravity , so it will be downwards.
c )
Horizontal component of acceleration at all points will be zero because gravity acts vertically downwards.
d )
Vertical displacement will be zero at position ( 1 ) and ( 5 )
e )
Displacement is maximum at extreme position , ie at position ( 5 )
f )
Speed is highest at position (1) and it is lowest at position ( 3 )
From highest to lowest
( 1 ) , ( 2 ) , ( 3 )
State what is meant by a gravitational potential at point A is -1·70 × 109 J kg-1.
Answer:
The energy stored in a body due to either it's position or change in shape is called gravitational potential energy.
When a player's finger presses a guitar string down onto a fret, the length of the vibrating portion of the string is shortened, thereby increasing the string's fundamental frequency. The string's tension and mass per unit length remain unchanged.
If the unfingered length of the string is l=65cm, determine the positions x of the first six frets, if each fret raises the pitch of the fundamental by one musical note in comparison to the neighboring fret. On the equally tempered chromatic scale, the ratio of frequencies of neighboring notes is 21/12
x1=
x2=
x3=
x4=
x5=
x6=
Answer:
Explanation:
For frequencies n generated in a string , the expression is as follows
n = 1 /2L√ ( T/m )
n is fundamental frequency , T is tension in string , m is mass per unit length and L is length of string.
If T and m are constant , then
n x L = constant , hence n is inversely proportional to L or length of string.
Frequencies increase by 21/12 = 1.75 , length must decrease by 1 / 1.75 times
Initial length of string is 65 cm .
x1 = 65 x 1 / 1.75 = 37.14 cm
x2 = 37.14 x 1/ 1.75 = 21.22 cm
x3 = 21.22 x 1 / 1.75 = 12.12 cm
x4= 12.12 x 1 / 1.75 = 6.92 cm
x5 = 6.92 x 1 / 1.75 = 3.95 cm
x6 = 3.95 x 1 / 1.75 = 2.25 cm