The city had 20,000 residents. The next year, it went up by 2%. The new population of the city after a 2% increase is 20400.
To find the new population of the city after a 2% increase from 20000, we need to use the following formula:
New population = Old population + (Percentage increase x Old population)
Substituting the given values into the formula, we get:
New population = 20000 + (2/100 x 20000)
New population = 20000 + 400
New population = 20400
It is important to note that this calculation assumes that the increase in population is the only factor affecting the total population. In reality, there may be other factors that affect the population, such as migration, birth rates, and mortality rates.
Additionally, this calculation only gives the estimated population based on the percentage increase, and the actual population may differ due to various factors.
To learn more about the population
https://brainly.com/question/27991860
#SPJ4
The island of Martinique has received $32,000
for hurricane relief efforts. The island’s goal is to
fundraise at least y dollars for aid by the end of
the month. They receive donations of $4500
each day. Write an inequality that represents this
situation, where x is the number of days.
An inequality representing the amount that the island of Martinique can received for hurricane relief efforts, where x is the number of days is y ≤ 32,000 + 4,500x.
What is inequality?Inequality is an algebraic statement that two or more mathematical expressions are unequal.
Inequalities can be represented as:
Greater than (>)Less than (<)Greater than or equal to (≥)Less than or equal to (≤)Not equal to (≠).The total amount received by the island = $32,000
The daily receipt of donations = $4,500
Let the number of days = x
Let the funds raised for aid = y
Inequality:y ≤ 32,000 + 4,500x
Thus, the inequality for the funds that the island can fundraise for hurricane relief aid by the end of the month is y ≤ 32,000 + 4,500x.
Learn more about inequalities at https://brainly.com/question/24372553.
#SPJ1
You have five student groups to present in class one group cannot go first because they need additional set up time and how many orders can they present
They can present in 96 different orders. Given, there are five student groups to present in class and one group cannot go first because they need additional set-up time.
Permutation is to select an object then arrange it and it cares about the orders while Combination is about only selecting an object without caring the orders.
We have 5 positions to fill here.
First position: 4 ways (one of the rest 4 groups will present first)
Second position: 4 ways (one of the rest 3 groups and the group which could not present first, will present second)
Third position: 3 ways (one of the rest 3 groups will present third)
Fourth position: 2 ways (one of the rest 2 groups will present fourth)
Fifth position: 1 way (rest group will present last)
Total ways in which they can present = 4*4*3*2*1 = 96
Hence, the answer is 96.
Learn more about permutation at:
https://brainly.com/question/28065038
#SPJ4
Eddie est discutiendo con Tana sobre las probabilidades de los distintos resultados al lanzar tres monedas. Decide lanzar una moneda de un centavo, una de cinco centavos y una de die centavos. ¿ Cuál es la probabilidad de que las tres monedas salgan cruz?
The probability of getting tails in the three coins would be 0.125 or 12.5%.
How to calculate the probability?To calculate the probability of an event happening, first, we need to identify the rate of the desired outcome versus the total possible outcomes. Moreover, to determine the total probability of two or more events happening we need to calculate the probability of each event and then multiply the results.
Probability of getting tails in any of the three coins:
1 / 2 = 0.5
Total probabilityy:
0.5 x 0.5 x 0.5 = 0.125 or 12.5%
Learn more about probability in https://brainly.com/question/30034780
#SPJ1
16^(3x-1) = 32. pls help
Answer:x=33/4096=0.008
Step-by-step explanation: 1.1 16 = 24
(16)3 = (24)3 = 212
Equation at the end of step
1
:
((212 • x) - 1) - 32 = 0
STEP
2
:
Equation at the end of step 2
4096x - 33 = 0
STEP
3
:
Solving a Single Variable Equation:
3.1 Solve : 4096x-33 = 0
Add 33 to both sides of the equation :
4096x = 33
Divide both sides of the equation by 4096:
x = 33/4096 = 0.008
D. A population of rabbits is doubling every 3 months. If there were 2 rabbits to begin
with, how many will there be after 5 years?
There will be a population of 2,097,152 rabbits after 5 years.
What is exponential growth?A form of growth known as exponential growth occurs when a quantity's rate of expansion is proportionate to its present value. In other words, a quantity expands more quickly the greater it is. A prime example of exponential expansion is the rabbit population, which doubles in size every three months.
Given that, population of rabbits is doubling every 3 months.
That is,
5 years = 5 x 12 = 60 months
Number of doublings = 60 / 3 = 20
For every doubling, the population will be twice as large.
Thus,
P = 2 x 2²⁰ = 2 x 1,048,576 = 2,097,152 rabbits
Therefore, there will be approximately 2,097,152 rabbits after 5 years.
Learn more about exponential growth here:
https://brainly.com/question/11487261
#SPJ1
Solve equation for x
216=6^4x+5
Answer: x=211/1296
Step-by-step explanation:
Suppose that 30 students take a quiz worth 30 points. The SD of the scores is 1 point. Which of the following gives the most reasonable description of the distribution of quiz scores?
A) All of the individual scores are one point apart.
B) The difference between the highest and lowest score is 1.
C) The difference between the 1st and 3rd quartile marks is 1.
D) A typical score is within 1 point of the mean.
The statement that gives the most reasonable description of the distribution of quiz scores is "A typical score is within 1 point of the mean." The correct answer is Option D.
What is Standard deviation?The standard deviation (SD) is a measure of the variability of data in a population. Standard deviation is a measure of how much each value differs from the mean (average) value of the data set.
What is the range?The difference between the highest and lowest values in a dataset is known as the range. It's a quick way to see the data's spread. If the range is big, it implies that the data is more diverse, while if it's small, it implies that the data is more consistent.
What is the first quartile?The first quartile (Q1) is the value that splits the lowest 25% of a data set from the rest of the data set. If we order the dataset from smallest to largest, the first quartile is the value at the 25th percentile.
What is the third quartile?The third quartile (Q3) is the value that splits the highest 25% of a data set from the rest of the data set. If we order the dataset from smallest to largest, the third quartile is the value at the 75th percentile.
What is the mean?The sum of all values in a dataset divided by the total number of values in the dataset is known as the mean. The mean, often known as the arithmetic mean, is one of the most basic measures of central tendency in statistics.
Learn more about standard deviation (SD) here: https://brainly.com/question/19243813
#SPJ11
Find the mean, median, mode, and range for the data set given.
112, 122, 132, 142, 152
A bag contains 8 green cubes, 12 black cubes and 16 white cubes. What is the ratio of green to black to white cubes in its simplest form?
Answer:
Total number bags is 36
green cubes is 8white cubes is 16Black cubes is 121:2:3 the answer
Gill opened an account at a different bank. The banks rate of interest was 6%. After one year the bank paid Gill interest. The amount in her account was now $2306
Answer:
Step-by-step explanation:
To solve this problem, we can use the formula for calculating simple interest:
I = P * r * t
where:
I = interest earned
P = principal (initial amount of money)
r = rate of interest
t = time (in years)
We can rearrange the formula to solve for the principal:
P = I / (r * t)
In this case, we know that Gill earned $2306 in interest after one year at a rate of 6%. So:
I = $2306
r = 0.06
t = 1 year
Substituting these values into the formula, we get:
P = $2306 / (0.06 * 1)
P = $38,433.33
Therefore, the initial amount of money that Gill deposited into her account was $38,433.33.
13. The diagonals of a trapezium ABCD intersect at O. AB is parallel to DC, AB = 3 cm and DC = 6 cm. If CO = 4 cm and OB = 3 cm, find AO and DO.
Answer:
AO = 2 cmDO = 6 cmStep-by-step explanation:
You want the measures of AO and DO in a trapezium in which AB║CD, the diagonals intersect at O, and AB = 3 cm, CD = 6 cm, CO = 4 cm, OB = 3 cm.
Similar trianglesDiagonal AC is a transversal to parallel lines AB and CD, so alternate interior angles BAO and DCO are congruent. Vertical angles AOB and COD are also congruent, so ∆ABO ~ ∆CDO by the AA similarity postulate.
This means the side lengths are proportional, so ...
AB/CD = AO/CO = BO/DO
3/6 = AO/4 = 3/DO ⇒ AO = 2, DO = 6
The measures of AO and DO are 2 cm and 6 cm, respectively.
__
Additional comment
It can help to draw a diagram.
Please urgent need the work and answer
X=3.2
Y=6.1
Z=0.2
XZ +Y2
Answer: 12.84
Step-by-step explanation:
if x = 3.2 and y = 6.1 and Z = 0.2
then plug in the numbers
(3.2)(0.2) + (6.1)(2)
0.64 + 12.2 = 12.84
Any variable next to a number means multiplication.
if I was wrong lmk
Each of these measures is rounded to nearest whole: a=5cm and b=3cm Calculate the upper bound of a +b
The upper bound of a + b can be found by adding the upper bounds of a and b.
For a = 5cm, the nearest whole number is 5. The upper bound would be the midpoint between 5 and 6, which is 5.5.
For b = 3cm, the nearest whole number is 3. The upper bound would be the midpoint between 3 and 4, which is 3.5.
So the upper bound of a + b is:
5.5 + 3.5 = 9
Therefore, the upper bound of a + b is 9cm.
josh borrowed $250 from his mother to buy an electric scooter. josh will pay her back in 1 year with 3% simple annual interest. how much interest will josh pay?
The interest which josh will pay on the electric scooter with a simple annual interest of 3% is 7.50.
What is interest rate?Interest rate can be defined as the amount of interest which is due per period, as a proportion of the amount lent, deposited, or borrowed by someone.
The interest rate formula is:
Interest Rate = {(Simple Interest × 100)}/{ (Principal × Time)}
Here,
Josh borrowed 250 from his mother to buy an electric scooter and will pay her back in one year with three simple annual interest.
The amount of interest that Josh will pay is calculated as:
Interest = Principal Amount × Rate of Interest × Time
Interest = 250 × 3
Therefore, Josh will pay his mother $7.50 in interest for the loan.
Learn more about Interest rate here:
https://brainly.com/question/13324776
#SPJ11
PLEASE Answer before 3/12/2023
6, 14, 22, 30, 38, … Use the expression below to determine the value of the 15th term. 6 + 8n, where n is equal to 0, 1, 2, 3, … answers: 112 118 120 126
Answer: 118
Step-by-step explanation: 38 is the highest value, which is the fifth number in the pattern, and we need to find out what the 15th number is. We simply need to add (8x10) to 38.
Answer: 118
Step-by-step explanation:
you just keep going up at the rate of 8
Suppose we create a box model for the outcome of a game of darts. The player has a 1/3 chance of throwing a dart in the inner ring, and a 2/3 chance of the dart landing in the outer ring. In our model, we have two unique tickets marked "inner" and "outer." We put in 1 ticket marked "inner." How many tickets do we put in that are marked "outer?"
a. 0
b. 1
c. 2
d. 3
As per the combination method, the number of tickets that we put in that are marked "outer" is 3 (option d).
In this case, we want to choose the number of tickets marked "outer." Let's call this number k. We know that we already put one ticket marked "inner" in the box, so the total number of tickets in the box is 2. Therefore, n = 2.
Now we need to determine k. We want to know how many tickets we need to put in that are marked "outer." We can represent this as a. So we have:
ᵃC₁ = a! / ((1!)(a-1)!) = a
We want to find the value of a that satisfies the condition that the probability of choosing an "inner" ticket is 1/3 and the probability of choosing an "outer" ticket is 3/2.
Since we already put in 1 ticket marked "inner," the probability of choosing an "inner" ticket is 1/2, which means the probability of choosing an "outer" ticket is also 1/2.
We know that the probability of choosing an "outer" ticket is 3/2, so we can set up the following equation:
ᵃC₁ / 2 = 3/2
Solving for a, we get:
a = 3
In conclusion, the answer is (d) 3.
To know more about combination here
https://brainly.com/question/28998705
#SPJ4
I don’t know helppp
Me
[tex]f(x) = -2(x - 0.5)^2 + 6[/tex] is the equation of the quadratic function that passes through the points (-1, 14), (0, 8), (1, 6), and (2, 8).
What is quadratic function?
f(x) = ax2 + bx + c, where a, b, and c are numbers with a not equal to zero, is a quadratic function.
To find the equation of the quadratic function that passes through the points (-1, 14), (0, 8), (1, 6), and (2, 8), we can use the vertex form of the quadratic function, which is:
[tex]f(x) = a(x - h)^2 + k[/tex]
[tex]f(1) = a(1 - h)^2 + k\\\\6 = a(1 - h)^2 + k[/tex]
We can use a second point to find a relationship between h and k. Let's use the point (0, 8):
[tex]f(0) = a(0 - h)^2 + k\\\\8 = a(-h)^2 + k\\\\6 - 8 = a(1 - h)^2 + k - (a(-h)^2 + k)\\\\-2 = a(1 - h)^2 - a(h)^2\\\\-2 = a(1 - 2h + h^2) - a(h^2)\\\\-2 = a - 2ah + ah^2 - ah^2\\\\-2 = a - 2ah\\\\a = -2/(2h - 1)[/tex]
Let's use the second equation:
[tex]8 = a(-h)^2 + k\\\\8 = (-2/(2h - 1))(h^2) + k\\\\8(2h - 1) = -2h^2 + k(2h - 1)\\\\16h - 8 = -2h^2 + k(2h - 1)\\\\-2h^2 + 16h - 8 = k(2h - 1)\\\\k = (-2h^2 + 16h - 8)/(2h - 1)[/tex]
Now we can substitute this value of h into our expressions for a and k to get:
[tex]a = -2/(2(0.5) - 1) = -2\\\\k = (-2(0.5)^2 + 16(0.5) - 8)/(2(0.5) - 1) = 6[/tex]
So the equation of the quadratic function is:
[tex]f(x) = -2(x - 0.5)^2 + 6[/tex]
Therefore, [tex]f(x) = -2(x - 0.5)^2 + 6[/tex] is the equation of the quadratic function that passes through the points (-1, 14), (0, 8), (1, 6), and (2, 8).
To know more about quadratic function visit,
https://brainly.com/question/25841119
#SPJ1
I need the answer for number 3 step by step, please help!
Answer:
[tex]\frac{-1}{3}[/tex]
Step-by-step explanation:
Look at the red slope triangle that is drawn. If you start at the point on the left, you go down 1 unit and then to the right 3 units. This would be represented by -1/3. Down would be negative and going right would be positive. The slope is the rise over the run.
Helping in the name of Jesus.
19. Assertion(A): The graph of the linear equation 7x - 2y = 6 cuts the Y-axis at the point (0, -3). Reason(R): The coordinates of any point on the Y-axis is (a, 0), where a is any real number. pls help
get the answer
Answer:
Pretty sure its C
Step-by-step explanation:
To cut through y axis, x axis is always 0, So it would be (0, a) where a is any real number, not (a,0) as is given in reason.
Elmer is on a Ferris wheel which has a diameter of 180 ft and whose center is 120 ft off the ground. Find all of the angles θ such that 0≤θ≤3π and such that Elmer's carriage is at a height of 165 ft when it makes an angle of θ with the horizontal. Leave your answers in exact form
The angles θ at which Elmer's carriage is at a height of 165 ft are θ = π/6, 13π/6 and 25π/6
The center of the Ferris wheel is represented by the point at the top of the triangle, and Elmer's carriage is represented by the lower point on the right-hand side of the triangle. We are given that the diameter of the Ferris wheel is 180 ft and that its center is 120 ft off the ground. This means that the radius of the Ferris wheel is 90 ft (half of the diameter), and that the distance from the center of the Ferris wheel to Elmer's carriage is also 90 ft.
We are also given that Elmer's carriage is at a height of 165 ft when it makes an angle of θ with the horizontal. Using trigonometry function , we can find the sine of θ as follows:
sin(θ) = (165 - 120) / 90
= 45 / 90
= 1/2
Therefore, we have:
θ = sin^(-1)(1/2)
= π/6
Since we are looking for all angles θ such that 0≤θ≤3π, we need to add multiples of 2π to our answer. The multiples of 2π that satisfy this inequality are 0, 2π, and 4π. Therefore, the solutions to the problem are:
θ = π/6, 13π/6, 25π/6
Learn more about trigonometric functions here
brainly.com/question/14434745
#SPJ4
what proportion of values for a standard normal distribution are less than 2.98?
Regardless of the appearance of the normal distribution or the size of the standard deviation, approximately less than 2.98% of observations consistently fall within two deviations types (one high and one low).
The normal distribution, also known as the Gaussian distribution, is a probability distribution symmetrical about the mean, indicating that data near the mean occurs more frequently than data far from the mean. In graphical form, the normal distribution is represented by a "bell curve".
The normal distribution is important in statistics and is often used in the natural and social sciences to represent real-valued random variables whose distribution is unknown. Their importance is partly due to the central limit theorem. It states that in some cases the mean of many samples (observations) of a random variable with finite mean and variance is itself a random variable - whose distribution converges to a normal distribution as the size of the l sample increases. Therefore, physical quantities assumed to be the sum of many independent processes, such as measurement errors, tend to have a near-normal distribution.
Learn more about Normal Distribution:
https://brainly.com/question/29509087
#SPJ4
WHAT IS THE CENTRAL ATOM OF NITRIC OXIDE (NO)
Answer:
The answer is Nitrogen
Hope this helps :)
Complimentary Event The compliment of an event E is the set of outcomes in the sample space that are not included in the outcomes of event E. The complement of E is denoted E (read "E bar"). Rule for Complimentary Events P(E)=1-P(E) or P(E)=1-P(E) O P(E)+P(E)=1 Example # 12: The probability that Mary can work a problem is 70%. Find the probability that Mary cannot work the problem. Example # 13: In 2004, 57.2% of all enrolled college students were females. Choose one enrolled student at random. What is the probability that the student was a male?
The student is male, which is P(male).Using the rule of complementary events, P(male) = 1 - P(female)P(male) = 1 - 0.572 = 0.428Therefore, the probability that the student is male is 0.428 or 42.8%.
The complimentary event is a part of probability theory. It is the event that occurs when the event E does not occur. In other words, it is a set of outcomes in the sample space that are not included in the outcomes of event E. The notation for the complement of E is E'. Rule for Complimentary EventsThe rule for complementary events can be expressed in two ways:
P(E) = 1 - P(E)P(E) + P(E') = 1Example # 12:Let the probability that Mary can work a problem be P(E) = 0.70.We need to find the probability that Mary cannot work the problem, which is P(E').Using the rule of complementary events,P(E') = 1 - P(E)P(E') = 1 - 0.70 = 0.30Therefore, the probability that Mary cannot work the problem is 0.30 or 30%.Example # 13:Let P(female) be the probability that the student is female. We are given that P(female) = 0.572.
for such more questions on probability
https://brainly.com/question/13604758
#SPJ11
The general form of the equation of a circle is x2 y2 8x 22y 37 = 0. the equation of this circle in standard form is (x )2 (y )2 = . the center of the circle is at the point ( , ).
The centre οf the circle is (-4, -11).
What is a circle's general equatiοn?We knοw that the general equatiοn fοr a circle is (x - h)² + (y - k)² = r² with (h, k) representing the centre and r representing the radius. Sο multiply bοth sides by 21 tο get the cοnstant term οn the right side οf the equatiοn. Then, fοr the y terms, cοmplete the square.
Tο write a circle equatiοn in standard fοrm, we must cοmplete the square fοr bοth x and y.
Tο begin, cοnsider the fοllοwing equatiοn: x²+ y² + 8x + 22y + 37 = 0.
Let's separate the terms with x frοm the terms with y:
[tex](x^2 + 8x) + (y^2 + 22y) + 37 = 0[/tex]
We add (8/2)² = 16 tο bοth sides tο cοmplete the square fοr x: (x²+ 8x + 16) + (y² + 22y) + 37 = 16
Simplifying the left side οf the equatiοn and cοmbining cοnstants οn the right:
[tex](x + 4)^2 + (y^2 + 22y + 121) = 16 - 37 - 121\s(x + 4)^2 + (y + 11)^2 = 50[/tex]
The equatiοn can nοw be written in standard fοrm:
[tex](x + 4)^2/50 + (y + 11)^2/50 = 1[/tex]
The circle's centre is (-4, -11).
As a result, the standard fοrm οf the circle's equatiοn is (x + 4)²/50 + (y + 11)²/50 = 1, and the circle's centre is (-4, -11).
To know more about circle equation visit:
brainly.com/question/29538993
#SPJ1
An electric dipole with its center located at the origin of a Cartesian coordinate system oscillates along the z axis, creating an electromagnetic wave. At a position on the y axis far from the origin, what is the polarization of the wave and which axis are the magnetic (a) The wave is polarized parallel to the a axis and the magnetic field lines are parallel to b The wave is polarized parallel to the z axis and the magnetic field lines are parallel to (c) The wave is polarized parallel to the y axis and the magnetic field lines are parallel to (d) The wave is polarized parallel to the y axis and the magnetic field lines are parallel to (e) The wave is polarized parallel to the z axis and the magnetic field lines are parallel to field lines parallel to? the y axis the axis the r axis the z axis the z axis
The wave is polarized parallel to the y-axis, and the magnetic field lines are parallel to the x-axis. Here option D is the correct answer.
The oscillating electric dipole along the z-axis creates an electromagnetic wave with electric and magnetic fields perpendicular to each other and to the direction of wave propagation. At a position on the y-axis far from the origin, the electric field will be parallel to the y-axis.
The polarization of the wave refers to the orientation of the electric field vector. Since the electric field is parallel to the y-axis, the wave is polarized parallel to the y-axis.
According to the right-hand rule, the direction of the magnetic field lines will be perpendicular to both the electric field and the direction of wave propagation, which is along the z-axis. Therefore, the magnetic field lines will be parallel to the x-axis.
To learn more about magnetic fields
https://brainly.com/question/11514007
#SPJ4
x cos y = 1, (2, pi/3), Find the derivative.
The derivative of the implicit function x · cos y = 1 at point (2, π / 3) is equal to y' = √3 / 6.
How to find the derivative of a function by implicit differentiation
In this problem we find the case of a implicit function of the form f(x, y), whose derivative must be found. This can be done by implicite differentiation, whose procedure is shown:
Derive the function by derivative rules.Clear y' within the resulting expression. Substitute x and y.Step 1 - Derive the expression by derivative rules:
cos y - x · sin y · y' = 0
Step 2 - Clear y' within the expression:
y' = cos y / (x · sin y)
Step 3 - Clear x and y in the resulting expression:
y' = cos (π / 3) / [2 · sin (π / 3)]
y' = 1 / [2 · tan (π / 3)]
y' = √3 / 6
To learn more on derivatives of implicit functions: https://brainly.com/question/29460339
#SPJ1
use the slicing method to find the volume of the solid whose base is the region inside the circle with radius 3 if the cross sections taken parallel to one of the diameters are equilateral triangles.
The volume of the solid whose base is the region inside the circle with radius 3 if the cross sections taken parallel to one of the diameters are equilateral triangles is 81/2*\sqrt3 by using the slicing method.
To find the volume of the solid whose base is the region inside the circle with radius 3, we need to integrate the area of the cross sections taken parallel to one of the diameters, which are equilateral triangles.
Let's consider a cross section of the solid taken at a distance x from the center of the circle.
Since the cross section is an equilateral triangle, all its sides have the same length.
Let this length be y. Since the triangle is equilateral, its height can be found using the Pythagorean theorem as follows:
[tex]height = \sqrt{(y^2 - (y/2)^2)} = \sqrt{(3/4y^2)}= \sqrt{3/2y}[/tex]
Therefore, the area of the cross section at a distance x from the center of the circle is:
[tex]A(x) = (1/2)y\sqrt{3/2y} = \sqrt{3/4y^2}[/tex]
Now, we need to integrate this area over the range of x from -3 to 3 (since the circle has radius 3):
[tex]V = \int\ [-3,3]\sqrt{3/4*y^2} dx[/tex]
To find the limits of integration for y, we need to consider the equation of the circle:
[tex]x^2 + y^2= 3^2[/tex]
Solving for y, we get:
[tex]y =\pm\sqrt{(3^2 - x^2)}=\pm\sqrt{(9^2 - x^2)}[/tex]
Since we want the cross sections to be equilateral triangles, we know that y is equal to the height of an equilateral triangle with side length equal to the diameter of the circle, which is 2*3 = 6. Therefore, we can write:
[tex]y = 3*\sqrt{3}[/tex]
Substituting this into the integral, we get:
[tex]V = \int\ [-3,3] \sqrt{3/4*(3\sqrt3)^2} dx[/tex]
[tex]= \int\ [-3,3] 27/4*\sqrt{3} dx[/tex]
Integrating, we get:
[tex]V = [27/4\sqrt{3x}]*[-3,3][/tex]
[tex]= 81/2*\sqrt{3}[/tex]
Therefore, the volume of the solid is [tex]81/2*\sqrt3[/tex]cubic units
To practice more questions about 'volume of solid':
https://brainly.com/question/20284914
#SPJ11
Will a 12.5-inch x 17-inch rectangular tray fit in
the box shown? Explain.
Please help!!!
Therefore, the correct response is OB: No, the box is a rectangle, and the tray's 12.5-inch length is greater than the box's 11-inch breadth.
what is rectangle ?A rectangle is a geometric shape with four edges and four angles that exists in two dimensions. Because it is a sort of quadrilateral, it has four sides that are parallel to one another. Rectangles are a form of parallelogram because they have opposite sides that are the same length and opposite angles that are the same size. A rectangle's two adjacent sides make right angles, so all four of the angles, which each measure 90 degrees, are right angles.
given
The tray has a breadth of 17 inches and a length of 12.5, according to the measurements given. The package is 13 inches by 11 inches by 11 inches in size.
The platter can fit inside the box because its length is less than the box's length, which is 13 inches. But we also need to think about the box's breadth and height.
The tray cannot fit inside the box in that dimension because its width, which is 17 inches, is larger than the box's, which is 11 inches. The tray cannot fit inside the box because the height of the box is also 11 inches, which is shorter than the length of the tray neither in that realm.
Therefore, the correct response is OB: No, the box is a rectangle, and the tray's 12.5-inch length is greater than the box's 11-inch breadth.
To know more about rectangle visit:
https://brainly.com/question/29123947
#SPJ1
Ted is five times as old as Rosie was when Ted was Rosie's age. When Rosie
reaches Ted's current age, the sum of their ages will be 72. Find Ted's current age.
Answer:
45 yo
Step-by-step explanation:
Let's start by defining some variables to represent the ages of Ted and Rosie:
- Let's call Ted's current age "T"
- Let's call Rosie's current age "R"
From the problem statement, we know that:
- Ted is five times as old as Rosie was when Ted was Rosie's age. Written as an equation, this becomes:
T = 5(R - (T - R))
Simplifying this equation, we get:
T = 5(R - T + R)
T = 10R - 5T
- When Rosie reaches Ted's current age, the sum of their ages will be 72. Written as an equation, this becomes:
R + T = 72 - T
We now have two equations with two variables. We can use substitution to solve for T.
Substitute the second equation into the first equation to eliminate R:
T = 10R - 5T
T = 10(72 - T) - 5T
T = 720 - 15T
16T = 720
T = 45
Therefore, Ted's current age is 45.
#1 Brainlist!
Answer and show steps and I will make you brainlist.
Answer:
Multiplying the second equation by 5, we get:
15x + 20y = 180
Now, we can add this equation to the first equation:
26x = 208
x = 8
Substituting x = 8 in the second equation:
3(8) + 4y = 36
4y = 12
y = 3
Therefore, the solution to the system is (8, 3).