the number 73 can be written as the sum of 73 consecutive integers. What are the greatest and the smallest of those numbers?

Answers

Answer 1

Answer:

-35 and 37

Step-by-step explanation:

If you start with negative 35 and count up (including zero), you’ll cancel out when you get to positive 35 and have 71 numbers.  Then you continue on with 36 and 37 which equals 73, and you have 73 consecutive integers.


Related Questions

Show the distributive property can be used to evaluate 7x8 4/5

Answers

Answer:

308/5

Step-by-step explanation:

It can be Written as

= 7 ×(8 + 4/5 )

= 7 × 8 + 7 ×   4/5

= 56 +  28/5

= 280+28

________

       5  

=  308/5

When x€Q, what is the solution of 3x-2/2=x-1/2 ?​

Answers

Answer:

x = [tex]\frac{1}{2}[/tex]

Step-by-step explanation:

[tex]\frac{3x-2}{2}[/tex] = [tex]\frac{x-1}{2}[/tex]

Cross-multiply:

2(3x-2) = 2(x-1)

Simplify:

6x - 4 = 2x - 2

Subtract 2x from both sides:

4x - 4 = -2

Add 4 to both sides:

4x = 2

Divide both sides by 4:

x = [tex]\frac{1}{2}[/tex]

Calculate two iterations of Newton's Method for the function using the given initial guess. (Round your answers to four decimal places.) f(x) = x2 − 5, x1 = 2n xn f(xn) f '(xn) f(xn)/f '(xn) xn − f(xn)/f '(xn)1 2

Answers

Answer:

Step-by-step explanation:

Given that:

[tex]\mathsf{f(x) = x^2 -5 } \\ \\ \mathsf{x_1 = 2}[/tex]

The derivative of the first function of (x) is:

[tex]\mathsf{f'(x) =2x }[/tex]

According to Newton's Raphson method for function formula:

[tex]{\mathrm{x_{n+1} = x_n - \dfrac{f(x_n)}{f'(x_n)}}[/tex]

where;

[tex]\mathbf{x_1 =2}[/tex]

The first iteration is as follows:

[tex]\mathtt{f(x_1) = (2)^2 - 5} \\ \\ \mathbf{f(x_1) = -1}[/tex]

[tex]\mathtt{f'(x_1) = 2(2)} \\ \\ \mathbf{ = 4}[/tex]

[tex]\mathtt{\dfrac{f(x_1)}{f'(x_1)}} = \dfrac{-1}{4}}[/tex]

[tex]\mathbf{\dfrac{f(x_1)}{f'(x_1)} =-0.25}[/tex]

[tex]\mathtt{x_1 - \dfrac{f(x_1)}{f'(x_1)}} = \mathtt{2 - (-0.25)}}[/tex]

[tex]\mathbf{x_1 - \dfrac{f(x_1)}{f'(x_1)} = 2.25}[/tex]

Therefore;

[tex]\mathbf{x_2 = 2.25}[/tex]

For the second iteration;

[tex]\mathtt f(x_2) = (2.25)^2 -5}[/tex]

[tex]\mathtt f(x_2) = 5.0625-5}[/tex]

[tex]\mathbf{ f(x_2) =0.0625}[/tex]

[tex]\mathtt{f'(x_2)= 2(2.25)}[/tex]

[tex]\mathbf{f'(x_2)= 4.5}[/tex]

[tex]\mathtt{ \dfrac{f(x_2)}{f'(x_2)}} = \dfrac{0.0625}{4.5}}[/tex]

[tex]\mathbf{ \dfrac{f(x_2)}{f'(x_2)} = 0.01389}[/tex]

[tex]\mathtt{x_2 - \dfrac{f(x_2)}{f'(x_2)}} = \mathtt{2.25 -0.01389}}[/tex]

[tex]\mathbf{x_2 - \dfrac{f(x_2)}{f'(x_2)} = 2.2361}}[/tex]

Therefore, [tex]\mathbf{x_3 = 2.2361}[/tex]

what is the end point of a ray​

Answers

Answer:

point A is the rays endpoint

Step-by-step explanation:

Answer:

The "endpoint" of a ray is the origin point of the ray, or the point at which the ray starts.

Step-by-step explanation:

A ray starts at a given point, the endpoint, and then goes in a certain direction forever ad infinitum.  The origin point of a ray is called "the endpoint".

Cheers.

Solve for y: 1/3y+4=16

Answers

Hey there! I'm happy to help!

We want to isolate y on one side of the equation to see what it equals. To do this, we use inverse operations to cancel out numbers on the y side and find the correct value.

1/3y+4=16

We subtract 4 from both sides, canceling out the +4 on the right but keeping the same y-value by doing the same to the other side.

1/3y=12

We divide both sides by 1/3 (which is multiplying both sides by 3) which will cancel out the 1/3 and tell us what y is equal to.

y=36

Now you know how to solve basic equations! Have a wonderful day! :D

1/3y=16-4
1/3y=12
y=12/1/3
y= 36.3

The amount of money spent on textbooks per year for students is approximately normal.
A. To estimate the population mean, 19 students are randomly selected the sample mean was $390 and the standard deviation was $120. Find a 95% confidence for the population meam.
B. If the confidence level in part a changed from 95% 1 to 1999%, would the margin of error for the confidence interval:
1. decrease.
2. stay the same.
3. increase not.
C. If the sample size in part a changed from 19% 10 to 22, would the margin of errot for the confidence interval:
1. decrease.
2. stay the same.
3. increase
D. To estimate the proportion of students who purchase their textbookslused, 500 students were sampled. 210 of these students purchased used textbooks. Find a 99% confidence interval for the proportion of students who purchase used text books.

Answers

Answer:

(A) A 95% confidence for the population mean is [$332.16, $447.84] .

(B) If the confidence level in part (a) changed from 95% to 99%, then the margin of error for the confidence interval would increase.

(C) If the sample size in part (a) changed from 19 to 22, then the margin of error for the confidence interval would decrease.

(D) A 99% confidence interval for the proportion of students who purchase used textbooks is [0.363, 0.477]  .

Step-by-step explanation:

We are given that 19 students are randomly selected the sample mean was $390 and the standard deviation was $120.

Firstly, the pivotal quantity for finding the confidence interval for the population mean is given by;

                             P.Q.  =  [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex]  ~ [tex]t_n_-_1[/tex]

where, [tex]\bar X[/tex] = sample mean = $390

            s = sample standard deviation = $120

            n = sample of students = 19

            [tex]\mu[/tex] = population mean

Here for constructing a 95% confidence interval we have used a One-sample t-test statistics because we don't know about population standard deviation.

So, 95% confidence interval for the population mean, [tex]\mu[/tex] is ;

P(-2.101 < [tex]t_1_8[/tex] < 2.101) = 0.95  {As the critical value of t at 18 degrees of

                                               freedom are -2.101 & 2.101 with P = 2.5%}  

P(-2.101 < [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] < 2.101) = 0.95

P( [tex]-2.101 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]{\bar X-\mu}[/tex] < [tex]2.101 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.95

P( [tex]\bar X-2.101 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X+2.101 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.95

95% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-2.101 \times {\frac{s}{\sqrt{n} } }[/tex] , [tex]\bar X+2.101 \times {\frac{s}{\sqrt{n} } }[/tex] ]

                        = [ [tex]\$390-2.101 \times {\frac{\$120}{\sqrt{19} } }[/tex] , [tex]\$390+2.101 \times {\frac{\$120}{\sqrt{19} } }[/tex] ]

                        = [$332.16, $447.84]

(A)  Therefore, a 95% confidence for the population mean is [$332.16, $447.84] .

(B) If the confidence level in part (a) changed from 95% to 99%, then the margin of error for the confidence interval which is [tex]Z_(_\frac{\alpha}{2}_) \times \frac{s}{\sqrt{n} }[/tex] would increase because of an increase in the z value.

(C) If the sample size in part (a) changed from 19 to 22, then the margin of error for the confidence interval which is [tex]Z_(_\frac{\alpha}{2}_) \times \frac{s}{\sqrt{n} }[/tex]  would decrease because as denominator increases; the whole fraction decreases.

(D) We are given that to estimate the proportion of students who purchase their textbooks used, 500 students were sampled. 210 of these students purchased used textbooks.

Firstly, the pivotal quantity for finding the confidence interval for the population proportion is given by;

                             P.Q.  =  [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex]  ~ N(0,1)

where, [tex]\hat p[/tex] = sample proportion students who purchase their used textbooks = [tex]\frac{210}{500}[/tex] = 0.42    

            n = sample of students = 500

            p = population proportion

Here for constructing a 99% confidence interval we have used a One-sample z-test statistics for proportions

So, 99% confidence interval for the population proportion, p is ;

P(-2.58 < N(0,1) < 2.58) = 0.99  {As the critical value of z at 0.5%

                                               level of significance are -2.58 & 2.58}  

P(-2.58 < [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < 2.58) = 0.99

P( [tex]-2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < [tex]{\hat p-p}[/tex] < [tex]2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.99

P( [tex]\hat p-2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < p < [tex]\hat p+2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.99

99% confidence interval for p = [ [tex]\hat p-2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] , [tex]\hat p+2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ]

= [ [tex]0.42 -2.58 \times {\sqrt{\frac{0.42(1-0.42)}{500} } }[/tex] , [tex]0.42 +2.58 \times {\sqrt{\frac{0.42(1-0.42)}{500} } }[/tex] ]

= [0.363, 0.477]

Therefore, a 99% confidence interval for the proportion of students who purchase used textbooks is [0.363, 0.477]  .

Help with number 50 please. Thanks.

Answers

Answer:

[tex] d = 7 + 3\sqrt{3} [/tex] and

[tex] d = 7 - 3\sqrt{3} [/tex]

Step-by-step explanation:

To solve the equation, [tex] d^2 - 14d - 22 = 0 [/tex], using the quadratic formula,

Recall: quadratic formula = [tex] \frac{-b ± \sqrt{b^2 - 4ac}}{2a} [/tex]

Where,

a = 1

b = -14

c = 22

Plug in your values into the formula and solve:

[tex] \frac{-(-14) ± \sqrt{(-14)^2 - 4(1)(22)}}{2(1)} [/tex]

[tex] \frac{14 ± \sqrt{196 - 88}}{2} [/tex]

[tex] \frac{14 ± \sqrt{108}}{2} [/tex]

[tex] d = \frac{14 + \sqrt{108}}{2} [/tex]

[tex] d = \frac{14 + 6\sqrt{3}}{2} [/tex]

[tex] d = (\frac{2(7 + 3\sqrt{3})}{2} [/tex]

[tex] d = 7 + 3\sqrt{3} [/tex]

And

[tex] d = \frac{14 - \sqrt{108}}{2} [/tex]

[tex] d = \frac{14 - 6\sqrt{3}}{2} [/tex]

[tex] d = (\frac{2(7 - 3\sqrt{3})}{2} [/tex]

[tex] d = 7 - 3\sqrt{3} [/tex]

Put the following equation of a line into slope-intercept form, simplifying all
fractions.
3x + 3y = -9

Answers

Answer:

[tex]y = -x - 3[/tex]

Step-by-step explanation:

We are trying to get the equation [tex]3x + 3y = -9[/tex] into the form [tex]y = mx+b[/tex], aka slope-intercept form.

To do this we are trying to isolate y.

[tex]3x + 3y = -9[/tex]

Subtract 3x from both sides:

[tex]3y = -9 - 3x[/tex]

Rearrange the terms:

[tex]3y = -3x - 9[/tex]

Divide both sides by 3:

[tex]y = -x - 3[/tex]

Hope this helped!

2/3a - 1/6 =1/3 please help me

Answers

Answer:

[tex]a = \frac{3}{4}[/tex]

Step-by-step explanation:

Let's convert everything to sixths to make it easier to work with.

[tex]\frac{4}{6}a - \frac{1}{6} = \frac{2}{6}[/tex]

Add 1/6 to both sides:

[tex]\frac{4}{6}a = \frac{3}{6}[/tex].

Dividing both sides by 4/6:

[tex]a = \frac{3}{6} \div \frac{4}{6}\\\\a = \frac{3}{6} \cdot \frac{6}{4}\\\\a = \frac{18}{24}\\\\a = \frac{3}{4}[/tex]

Hope this helped!

How do you write 5.44 in words?

Answers

Answer:

five and forty-four hundredths

Step-by-step explanation:

Answer:

five point four four

Step-by-step explanation:

The ratio of the number of Anne's pencils to the number of jason's pencils is 4:3 Anne has 100 pencils how many pencils does jason have

Answers

Answer:

75

Step-by-step explanation:

4:3

4x25=100

3x25=75

The energy E (in ergs) released by an earthquake is approximated by log E= 11.8 + 1.5M. Where M is the magnitude of the earthquake. What is the energy released by the 1906 San Francisco quake, which measured 8.3 on the Richter scale? This energy, it is estimated, would be sufficient to provide the entire world's food requirements for a day. Answer in ergs.

Answers

Answer:

[tex]\large \boxed{3.4 \times 10^{10}\text{ ergs }}[/tex]

Step-by-step explanation:

[tex]\begin{array}{rcl}\log E & = & 11.8 + 1.5M\\& = & 11.8 + 1.5 \times 8.3\\& = & 11.8 + 12.45\\& = & 24.25\\E & = & e^{24.25}\\& = & \mathbf{3.4 \times 10^{10}} \textbf{ ergs}\\\end{array}\\\text{ The energy released was $\large \boxed{\mathbf{3.4 \times 10^{10}}\textbf{ ergs }}$}[/tex]

Determine if the matrix below is invertible. Use as few calculations as possible. Justify your answer. [Start 4 By 4 Matrix 1st Row 1st Column 4 2nd Column 5 3rd Column 7 4st Column 5 2nd Row 1st Column 0 2nd Column 1 3rd Column 4 4st Column 6 3rd Row 1st Column 0 2nd Column 0 3rd Column 3 4st Column 8 4st Row 1st Column 0 2nd Column 0 3rd Column 0 4st Column 1 EndMatrix ]

Answers

Answer:

Yes, it is invertible

Step-by-step explanation:

We need to find in the matrix determinant is different from zero, since iif it is, that the matrix is invertible.

Let's use co-factor expansion to find the determinant of this 4x4 matrix, using the column that has more zeroes in it as the co-factor, so we reduce the number of determinant calculations for the obtained sub-matrices.We pick the first column for that since it has three zeros!

Then the determinant of this matrix becomes:

[tex]4\,*Det\left[\begin{array}{ccc}1&4&6\\0&3&8\\0&0&1\end{array}\right] +0+0+0[/tex]

And the determinant of these 3x3 matrix is very simple because most of the cross multiplications render zero:

[tex]Det\left[\begin{array}{ccc}1&4&6\\0&3&8\\0&0&1\end{array}\right] =1 \,(3\,*\,1-0)+4\,(0-0)+6\,(0-0)=3[/tex]

Therefore, the Det of the initial matrix is : 4 * 3 = 12

and then the matrix is invertible

The blood platelet counts of a group of women have a​ bell-shaped distribution with a mean of 256.3 and a standard deviation of 66.8. ​(All units are 1000 ​cells/μ​L.) Using the empirical​ rule, find each approximate percentage below. a. What is the approximate percentage of women with platelet counts within 3 standard deviations of the​ mean, or between 55.9 and 456.7​? b. What is the approximate percentage of women with platelet counts between 122.7 and 389.9​?

Answers

Answer:

a) In the interval  (  55,9  ;   456,7 ) we will find 99,7 % of all values

b) In the interval  (  122,7  ;  389,9 ) we find 95,4 % of all values

Step-by-step explanation:

For a Normal distribution N (μ ; σ ) the Empirical rule establishes that the intervals:

( μ  ±  σ  )          contains 68,3 % of all values

( μ  ±  2σ  )        contains 95,4 % of all values

( μ  ±  3σ  )        contains 99,7 % of all values

If   N ( 256,3 ; 66,8 )

σ  =  66,8        ⇒   3*σ  = 3 * 66,8  = 200,4

Then:     256,3 - 200,4  =  55,9

And        256,3 + 200,4 = 456,7

a) In the interval  (  55,9  ;   456,7 ) we will find 99,7 % of all values

b) 2*σ  = 2 * 66,8  = 133,6

Then  256,3 - 133,6  = 122,7

And    256,3 + 133,6 = 389,90

Then in the interval  (  122,7  ;  389,9 ) we find 95,4 % of all values

An investigator claims, with 95 percent confidence, that the interval between 10 and 16 miles includes the mean commute distance for all California commuters. To have 95 percent confidence signifies that

Answers

Answer:

Hello the options to your question is missing below are the options

 A) if sample means were obtained for a long series of samples, approximately 95 percent of all sample means would be between 10 and 16 miles

B.the unknown population mean is definitely between 10 and 16 miles

C.if these intervals were constructed for a long series of samples, approximately 95 percent would include the unknown mean commute distance for all Californians

D.the unknown population mean is between 10 and 16 miles with probability .95

Answer : if these intervals were constructed for a long series of samples, approximately 95 percent would include the unknown mean commute distance for all Californians  ( c )

Step-by-step explanation:

95%  confidence

interval = 10 to 16 miles

To have 95% confidence signifies that if these intervals were constructed for a long series of samples, approximately 95 percent would include the unknown mean commute distance for all Californians

confidence interval covers a range of samples/values in the interval and the higher the % of the confidence interval the more precise the interval is,

Please help me understand this question!

Answers

Answer:

C

Step-by-step explanation:

The first sentence basically sets up the equation which is given, so we can read it for knowledge but it is not crucial to solve the problem.

We start here:

we are given: $120 - 0.2($120)

= 120 - (0.2)(120)   (factoring out 120)

= 120 (1 - 0.2)

= 120 (0.8)

= 0.8 (120)     (answer c)

the answer is C!! 0.8 (120$)

The diagonals of a rhombus bisect each other of measures 8cm and 6cm .Find its perimeter. please help !!!!!!!!!!!!!!!!!!!!!!!!

Answers

Answer:

20 cm

Step-by-step explanation:

20 cm

8/2 = 4

6/2 = 3

3 and 4 are the sides of the triangle (four triangles in rhombus)

a²+b²=c²

4³+3²=c²

c = 5

5 x 4 = 20

Hope this helped

Answer:

perimeter = 20 cm

Step-by-step explanation:

consider breaking the rhombus into four equal parts.

and that gives you a triangle.

(refer to image attached for more clarification)

let a = 3, b = 4

to get the side c, use Pythagorean theorem = c² = a² + b²

c = sqrt (3² + 4²)

side c = 5

therefore,

perimeter = 4 x sides (c)

perimeter = 4 x 5

perimeter = 20 cm

A rectangular parcel of land has an area of 6,000 ft2. A diagonal between opposite corners is measured to be 10 ft longer than one side of the parcel. What are the dimensions of the land, correct to the nearest foot? ft (smaller value) by ft (larger value)

Answers

Answer:

50ft by 120ft

Step-by-step explanation:

Area of a rectangle = L × W

6000ft² = L × W

L = 6000/W

When a diagonal line divides a rectangle into 2 right angled triangles, the diagonal line = Hypotenuse of either of the triangle and it is the longest side.

The formula for a right angle triangle =

a² + b² = c²( c = hypotenuse)

We are told in the question that:

A diagonal between opposite corners is measured to be 10 ft longer than one side of the parcel

Let us assume the side that the hypotenuse is longer than = Width

Hence, the Diagonal = (W + 10)²

Therefore

L² + W² = (W + 10)²

Since L = 6000/W

W² + (6000/W)² = (W + 10)²

W² + (6000/W)² = (W + 10) (W + 10)

W² + (6000/W)² = W² + 10W + 10W + 100

W² + (6000/W)² = W² + 20W + 100

W² - W² + (6000/W)² = 20W+ 100

6000²/W² = 20W + 100

6000² = W²( 20W + 100)

6000² = 20W³ + 100W²

20W³ + 100W² - 6000² = 0

20W³ + 100W² - 36000000 = 0

20(W³ + 5W² - 1800000) = 0

Factorising the quadratic equation,

20(W − 120)(W² + 125W + 15000) = 0

W - 120 = 0

W = 120

Therefore,

W(Width) = 120feet

Since the Width = 120 feet

We can find the length

6000ft² = L × W

L = 6000/W

L = 6000/120

L = 50 feet

The dimensions of the land, correct to the nearest foot is 50ft by 120ft

which of the following are possible values of r?
[tex] {r}^{2 } = \frac{3}{16} [/tex]

Answers

Answer:

[tex]r=\frac{\sqrt{3} }{4}[/tex]    and    [tex]r=-\frac{\sqrt{3} }{4}[/tex]

Step-by-step explanation:

when you solve for r in the given equation, you need to apply the square root property, which gives positive and negative answers (both should therefore be considered):

[tex]r^2=\frac{3}{16} \\r=+/-\sqrt{\frac{3}{16}} \\r=+/-\frac{\sqrt{3} }{4}[/tex]

then you need to include these two possible solutions:

[tex]r=\frac{\sqrt{3} }{4}[/tex]    and    [tex]r=-\frac{\sqrt{3} }{4}[/tex]

A box contains 40 identical discs which are either red or white if probably picking a red disc is 1/4. Calculate the number of;
1. White disc.
2. red disc that should be added such that the probability of picking a red disc will be 1/4

Answers

The wording in this question is off... I am assuming you’re asking for the number of white discs and red discs if the probability of picking a red disc is 1/4.
If the probability of picking a red disc is 1/4, there are 10 red discs and 30 white discs.

x
Find the value
of x. Show
3
10
your work.

Answers

Step-by-step explanation:

Hello, there!!!

Let ABC be a Right angled triangle,

where, AB = 3

BC= 10

and AC= x

now,

As the triangle is a Right angled triangle, taking angle C asrefrence angle. we get,

h= AC = x

p= AB = 3

b= BC= 10

now, by Pythagoras relation we get,

[tex]h = \sqrt{ {p}^{2} + {b}^{2} } [/tex]

[tex]or ,\: h = \sqrt{ {3}^{2} + {10}^{2} } [/tex]

by simplifying it we get,

h = 10.44030

Therefore, the answer is x= 10.

Hope it helps...

Sarah has $30,000 in her bank account today. Her grand-father has opened this account for her 15 years ago when she was born. Calculate the money that was deposited in the account 15 years ago if money has earned 3.5% p.a. compounded monthly through all these years.

Answers

Answer:

Deposit value(P) = $17,760 (Approx)

Step-by-step explanation:

Given:

Future value (F) = $30,000

Number of Year (n) = 15 year = 15 × 12 = 180 month

rate of interest (r) = 3.5% = 0.035 / 12 = 0.0029167

Find:

Deposit value(P)

Computation:

[tex]A = P(1+r)^n\\\\ 30000 = P(1+0.0029167)^{180} \\\\ 30000 = P(1.68917) \\\\ P = 17760.2018[/tex]

Deposit value(P) = $17,760 (Approx)

1-What is the sum of the series? ​∑j=152j​ Enter your answer in the box.

2-What is the sum of the series? ∑k=14(2k2−4) Enter your answer in the box.

3-What is the sum of the series? ∑k=36(2k−10)

4-Which answer represents the series in sigma notation? 1+12+14+18+116+132+164 ∑j=1712(j+1) ∑j=172j−1 ∑j=1712j+1 ∑j=17(12)j−1

5-Which answer represents the series in sigma notation? −3+(−1)+1+3+5 ∑j=155j−1 ∑j=15(3j−6) ∑j=15(2j−5) ∑j=15−3(13)j−1

Answers

Answer:

Please see the Step-by-step explanation for the answers

Step-by-step explanation:

1)

∑[tex]\left \ {{5} \atop {j=1}} \right.[/tex] 2j

The sum of series from j=1 to j=5 is:

∑ = 2(1) + 2(2) + 2(3) + 2(4) + 2(5)

  =  2 + 4 + 6 + 8 + 10

∑ = 30

2)

This question is not given clearly so i assume the following series that will give you an idea how to solve this:

∑[tex]\left \ {{4} \atop {k=1}} \right.[/tex] 2k²

The sum of series from k=1 to j=4 is:

∑ = 2(1)² + 2(2)² + 2(3)² + 2(4)²

  = 2(1) + 2(4) + 2(9) + 2(16)

  =  2 + 8 + 18 + 32

∑ = 60

∑[tex]\left \ {{4} \atop {k=1}} \right.[/tex] (2k)²

∑ = (2*1)² + (2*2)² + (2*3)² + (2*4)²

  = (2)² + (4)² + (6)² + (8)²

  = 4 + 16 + 36 + 64

∑ = 120

∑[tex]\left \ {{4} \atop {k=1}} \right.[/tex] (2k)²- 4

∑ = (2*1)²-4 + (2*2)²-4 + (2*3)²-4 + (2*4)²-4

  = (2)²-4 + (4)²-4 + (6)²-4 + (8)²-4

  = (4-4) + (16-4) + (36-4) + (64-4)

  = 0 + 12 + 32 + 60

∑ = 104

∑[tex]\left \ {{4} \atop {k=1}} \right.[/tex] 2k²- 4

∑ = 2(1)²-4 + 2(2)²-4 + 2(3)²-4 + 2(4)²-4

  = 2(1)-4 + 2(4)-4 + 2(9)-4 + 2(16)-4

  = (2-4) + (8-4) + (18-4) + (32-4)

  = -2 + 4 + 14 + 28

∑ = 44

3)

∑[tex]\left \ {{6} \atop {k=3}} \right.[/tex] (2k-10)

∑ = (2×3−10) + (2×4−10) + (2×5−10) + (2×6−10)  

  = (6-10) + (8-10) + (10-10) + (12-10)

  = -4 + -2 + 0 + 2  

∑ = -4

4)

1+1/2+1/4+1/8+1/16+1/32+1/64

This is a geometric sequence where first term is 1 and the common ratio is 1/2 So

a = 1

This can be derived as

1/2/1 = 1/2 * 1 = 1/2

1/4/1/2 = 1/4 * 2/1 = 1/2

1/8/1/4 = 1/8 * 4/1  = 1/2

1/16/1/8 = 1/16 * 8/1  = 1/2

1/32/1/16 = 1/32 * 16/1  = 1/2

1/64/1/32 = 1/64 * 32/1  = 1/2

Hence the common ratio is r = 1/2

So n-th term is:

[tex]ar^{n-1}[/tex] = [tex]1(\frac{1}{2})^{n-1}[/tex]

So the answer that represents the series in sigma notation is:

∑[tex]\left \ {{7} \atop {j=1}} \right.[/tex] [tex](\frac{1}{2})^{j-1}[/tex]

5)

−3+(−1)+1+3+5

This is an arithmetic sequence where the first term is -3 and the common difference is 2. So  

a = 1

This can be derived as

-1 - (-3) = -1 + 3 = 2

1 - (-1) = 1 + 1 = 2

3 - 1 = 2

5 - 3 = 2

Hence the common difference d = 2

The nth term is:

a + (n - 1) d

= -3 + (n−1)2

= -3 + 2(n−1)

= -3 + 2n - 2

= 2n - 5

So the answer that represents the series in sigma notation is:

∑[tex]\left \ {{5} \atop {j=1}} \right.[/tex] (2j−5)

For (1) the sum is 30, for (2) the sum is 90, for (3) the sum is -4, for(4) the sigma notation is  [tex]\rm \sum j = 1(\frac{1}{2})^{j-1}\\[/tex]  where j = 1 to j = 7, and for (5) the sigma notation is  [tex]\rm\sum j = (2j-5)[/tex]  where j = 1 to j = 5.

We have different series in the question.

It is required to find the sum of all series.

What is a series?

In mathematics, a series can be defined as a group of data that followed certain rules of arithmetic.

1) We have:

[tex]\rm \sum j=2j[/tex]   where j = 1 to j = 5

After expanding the series, we get:

= 2(1)+2(2)+2(3)+2(4)+2(5)

=2(1+2+3+4+5)

= 2(15)

=30

2) We have:

[tex]\rm \sum k=(2k^2-4)[/tex]  where k = 1 to k = 4

After expanding the series, we get:

[tex]\rm = (2(1)^2-4)+(2(2)^2-4)+(2(3)^2-4)+(2(4)^2-4)+(2(5)^2-4)\\[/tex]

[tex]\rm = 2[1^2+2^2+3^2+4^2+5^2]-4\times5\\\\\rm=2[55]-20\\\\\rm = 90[/tex]

3) We have:

[tex]\rm \sum k= (2k-10)[/tex]  where k = 3 to k = 6

After expanding the series, we get:

[tex]= (2(3)-10)+(2(4)-10)+(2(5)-10)+(2(6)-10)\\\\=2[3+4+5+6] - 10\times4\\\\=2[18] - 40\\\\= -4[/tex]

4) The series given below:

[tex]1, \frac{1}{2} ,\frac{1}{4},\frac{1}{8},\frac{1}{16},\frac{1}{32},\frac{1}{64}[/tex]

It is a geometric progression:

[tex]\rm n^t^h[/tex] for the geometric progression is given by:

[tex]\rm a_n = ar^{n-1}[/tex]

[tex]\rm a_n = 1(\frac{1}{2})^{n-1}\\\\\rm a_n = (\frac{1}{2})^{n-1}\\[/tex]

In sigma notation we can write:

[tex]\rm \sum j = 1(\frac{1}{2})^{j-1}\\[/tex]  where j = 1 to j = 7

5) The given series:

−3+(−1)+1+3+5, it is arithmetic series.

[tex]\rm n^t^h[/tex] for the arithmetic progression is given by:

[tex]\rm a_n = a+(n-1)d[/tex]

[tex]\rm a_n = -3+(n-1)(2)\\\\\rm a_n = 2n-5[/tex]

In sigma notation we can write:

[tex]\rm\sum j = (2j-5)[/tex]  where j = 1 to j = 5

Thus, for (1) the sum is 30, for (2) the sum is 90, for (3) the sum is -4, for(4) the sigma notation is  [tex]\rm \sum j = 1(\frac{1}{2})^{j-1}\\[/tex]  where j = 1 to j = 7, and for (5) the sigma notation is  [tex]\rm\sum j = (2j-5)[/tex]  where j = 1 to j = 5.

Learn more about the series here:

https://brainly.com/question/10813422

Let A = {June, Janet, Jill, Justin, Jeffrey, Jelly}, B = {Janet, Jelly, Justin}, and C = {Irina, Irena, Arena, Arina, Jelly}. Find the given set. A ∪ C a. {June, Janet, Jill, Justin, Jeffrey, Jelly, Irina, Irena, Arena, Arina} b. {June, Justin, Irina, Irena, Arena, Arina, Jelly} c. {June, Janet, Jill, Justin, June, Jelly} {Jelly} d. ∅

Answers

Answer:

{June, Janet, Jill, Justin, Jeffrey, Jelly,Irina, Irena, Arena, Arina, }

Step-by-step explanation:

A ∪ C

This means union so we join the sets together

A = {June, Janet, Jill, Justin, Jeffrey, Jelly} + C = {Irina, Irena, Arena, Arina, Jelly}

A U C =  {June, Janet, Jill, Justin, Jeffrey, Jelly,Irina, Irena, Arena, Arina, Jelly}

We get rid of repeats

A U C =  {June, Janet, Jill, Justin, Jeffrey, Jelly,Irina, Irena, Arena, Arina, }

Need a little help thanks :D

Answers

Answer:

  71°

Step-by-step explanation:

Consider triangle BDH. x is the external angle that is remote to internal angles B and D, so is equal to their sum:

  x° = 41° +30°

  x° = 71°

Benjamin decides to treat himself to breakfast at his favorite restaurant. He orders chocolate milk that costs $3.25. Then, he wants to buy as many pancakes as he can, but he wants his bill to be at most $30 before tax. The restaurant only sells pancakes in stacks of 44 pancakes for $5.50 . Let S represent the number of stacks of pancakes that Benjamin buys. 1) Which inequality describes this scenario?2) What is the largest number of pancakes that Benjamin can afford?

Answers

Answer:

3.25 + 5.50S ≤ 30

Step-by-step explanation:

Given:

Chocolate milk cost $3.25.

Maximum bill that Benjamin wants = $30

Cost of a stack pancake(44) = $5.50

Let number of stacks of pancakes bought = S

Benjamin will spend all the money available on 1 chocolate milk and S number of stacks of pancakes.

Cost of 1 pancake = $5.50

Cost of S number of stacks of pancakes = S*5.50

=5.50S

Total money spent =$3.25+5.50S

The total money spent should either be lesser than or equal to $30

The inequality is

3.25 + 5.50S ≤ 30

Largest number of pancakes Benjamin can afford

3.25 + 5.50S ≤ 30

5.50S ≤ 30-3.25

5.50S ≤ 26.75

Divide both sides by 5.50

S ≤ 4.86

1 stack=44 pancakes

4.86 stacks= 4.86 *44

=213.84 pancakes

Answer:

3.25+5.50S≤30

and 16 pancakes

Step-by-step explanation:

graph 3x-y-2=0 using the x- and y-intercepts

Answers

Step-by-step explanation:

I used an app called DESMOS It Is usually super helpful!!!

Answer:

Explanation:

Look at picture

What is the difference between a line graph and a scatter plot?

Answers

Step-by-step explanation:

scatter plot s are similar to line graphs in that they start with mapping quantitive data points. The difference is that with a scatter plot, the decision is made the the individual points should not be connected directly together with a line but, instead express a trend

Question 15
FLAG QUESTION
You bought 9.5 pounds of chicken for $12.73. Find the cost of one pound of chicken.

Answers

Answer:

One pound of chicken is $1.34

Step-by-step explanation:

So, if 9.5 pounds of chicken is $12.73, all you have to do it divide 12.73 and 9.5. That way, you can see how much each pound is separately! Hopefully this helps!

Answer:

[tex]\huge\boxed{1\ pound\ of\ chicken = \$1.34}[/tex]

Step-by-step explanation:

9.5 pounds of chicken = $12.73

Dividing both sides by 9.5

1 pound of chicken = $12.73 / 9.5

1 pound of chicken = $1.34

Please answer this correctly without making mistakes I need to finish this today as soon as possible

Answers

Answer:

14 miles

Step-by-step explanation:

Since we know that the distance of the paths from Cedarburg to Allenville is 22 and 13/16 miles, and we know the distance from Cedarburg to Lakeside is 8 and 13/16 miles.

We know that the total distance is made up of the distance from C to L and L to A.

So 22 and 13/16 = 8 and 13/16 + L to A

We can subtract 22 and 13/16 by 8 and 13/16 to get 14 miles.

Hope this helps.

Other Questions
How will we remember the 2020? How do you think history books will record this moment? What stories will you tellyour grandchildren about what it was like to live during this time? tm 2 s lin tip bit tch ca chng l 9120 a positive number is 7 times another number if 3 is added to both the numbers then one of the new number becomes 5 by 2 times the other new number what are the numbers Find the slope of (3,-20), (5,8) Find the lateral area of the following cone.Leave your answer in terms of pi uestloh 1Which is taller, a 20ft giraffe or a 240 inch pole?(Show your conversion factor in fraction form!) Two technicians are discussing solder wire repair. Technician A says that electrical tape can be used to cover the joint. Technician B says that heat shrink tubing can be used to cover the joint. Who is correct? identify the decimals labeled with the letters A, B, and C on the scale below. Letter A represents the decimal Letter B represents the decimal Letter C represents the decimal solve for y 7y - 6y - 10 = 13 Question 91 ptsaDESPEThe cost of a van is $16,000 with a residual value of$2,000. The van has an estimated useful life of 5 years.The mount of depreciation expense using straight-lineeach year is:DO $933O $373O $737O none of the above 100 POINTS! ANSWER GIVEN! WORK NEEDED ONLY! SAT MATH A cylinder(not shown) has circular faces with circumferences of 8pi. The height of the cylinder is equal to the radius of its circular faces. What is the volume of the cylinder? Answer: 64pi Please show all the work Which graph has an amplitude of 1/2? marc mixes blue and yelow paint to ,ake green he has 14 cans blue 20 cans of yellow . he wants green color so one day 1 he mixes 4 blue 6 yellow day 2 he mixes 6 can blue 9 yellowwhats the highest number of cans each color marc can mix to mzke the same shade of green on day 3 1.78 L of gas is at a pressure of 735 torr. What is the volume in liters (L) when the pressure decreases to 700.0 torr 4x5.If 7:5 = (x + 2y): (x - y), find the value of5y Carafate 1 g p.o.Identify the component missing in the order. If the lengths of the legs of a right triangle are 3 and 10, what is the length of the hypotenuse? How to do this question plz answer me step by why is the linner wall of alimantary canal not digisteg although the digestive enzymes can digest all the materials that make cell? *PLEASE ANSWER ASAP* What is the total volume of the cube below?