The New England Merchants Bank Building in Boston is 152 m high. On windy days it sways with a frequency of 0.18 Hz , and the acceleration of the top of the building can reach 1.9 % of the free-fall acceleration, enough to cause discomfort for occupants.

Required:
What is the total distance, side to side, that the top of the building moves during such an oscillation?

Answers

Answer 1

Answer:

The total distance, side to side, that the top of the building moves during such an oscillation is approximately 0.291 meters.

Explanation:

Let suppose that the building is experimenting a Simple Harmonic Motion due to the action of wind. First, we determine the angular frequency of the system ([tex]\omega[/tex]), in radians per second:

[tex]\omega = 2\pi\cdot f[/tex] (1)

Where [tex]f[/tex] is the frequency, in hertz.

If we know that [tex]f = 0.18\,hz[/tex], then the angular frequency of the system is:

[tex]\omega = 2\pi\cdot (0.18\,hz)[/tex]

[tex]\omega \approx 1.131\,\frac{rad}{s}[/tex]

The maximum acceleration experimented by the system is represented by the following formula, of which we estimate amplitude of the oscillation:

[tex]r\cdot g = \omega^{2}\cdot A[/tex] (2)

Where:

[tex]r[/tex] - Ratio of real acceleration to free-fall acceleration, no unit.

[tex]g[/tex] - Free-fall acceleration, in meters per square second.

[tex]A[/tex] - Amplitude, in meters.

If we know that [tex]\omega \approx 1.131\,\frac{rad}{s}[/tex], [tex]r = 0.019[/tex] and [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], then the amplitude of the oscillation is:

[tex]A = \frac{r\cdot g}{\omega^{2}}[/tex]

[tex]A = \frac{(0.019)\cdot \left(9.807\,\frac{m}{s^{2}} \right)}{\left(1.131\,\frac{rad}{s} \right)^{2}}[/tex]

[tex]A \approx 0.146\,m[/tex]

The total distance, side to side, is twice the amplitude, that is to say, a value of approximately 0.291 meters.


Related Questions

Find the intensity of the electromagnetic wave described in each case. (a) an electromagnetic wave with a wavelength of 655 nm and a peak electric field magnitude of 1.5 V/m. 0.002984 W/m2 (b) an electromagnetic wave with an angular frequency of 6.5 ✕ 1018 rad/s and a peak magnetic field magnitude of 10−10 T. 1.19366E-6 W/m2

Answers

The intensity of the electromagnetic wave in terms of the electric field is 0.00298 W/m² and the intensity of the electromagnetic wave in terms of the magnetic field is 1.193x10⁻⁶  W/m².

The intensity of the electromagnetic wave is related to the electric field as well as to the magnetic field.    

a) Intensity of the electromagnetic wave for the electromagnetic field.

The intensity of the electromagnetic wave (I) in terms of the electromagnetic field is given by:

[tex] I = \frac{E^{2}*c*\epsilon_{0}}{2} [/tex]   (1)

Where:

c: is the speed of light = 3.00*10⁸ m/s  

E: is the magnitude of the electric field = 1.5 V/m

ε₀: is the permittivity of free space = 8.85*10⁻¹² C²/Nm²

Hence, the intensity of the electromagnetic wave (eq 1) is:

[tex] I = \frac{(1.5 V/m)^{2}*3.00 \cdot 10^{8} m/s*8.85 \cdot 10^{-12} C^{2}/(N*m^{2})}{2} = 0.00298 W/m^{2} [/tex]                                                                                          

b) Intensity of the electromagnetic wave for the magnetic field

We can calculate the intensity of the electromagnetic wave (I) in terms of the magnetic field with the following equation:

[tex] I = \frac{cB^{2}}{2\mu_{0}} [/tex]   (2)

Where:

B: is the magnitude of the magnetic field = 10⁻¹⁰ T

μ₀: is the vacuum permeability = 4π*10⁻⁷ m*T/A

Therefore, the intensity of the electromagnetic wave (eq 2) is:

[tex] I = \frac{3.00 \cdot 10^{8} m/s*(1\cdot 10^{-10} m*T/A)^{2}}{2*4\pi \cdot 10^{-7} T/A} = 1.193 \cdot 10^{-6} W/m^{2} [/tex]

Learn more about electromagnetic waves and magnetic and electric fields here: https://brainly.com/question/11647801?referrer=searchResults                                          

                                   

I hope it helps you!

Una persona de 76 kg está siendo retirada de un edificio en llamas mientras se muestra en la figura. Calcule la tensión
en las dos cuerdas si la persona está momentáneamente inmovil.
Ayuda por favor.

Answers

Answer:

T1 = 736.6 N, T2 = 193.5 N

Explanation:

W = 76 N

The tension is T1 and T2.

By use of Lami's theorem

[tex]\frac{T_1}{Sin100}=\frac{T_2}{Sin165}=\frac{W}{Sin 95}\\\\So, \\\\T_1 = \frac{76\times 9.8\times Sin 100}{Sin 95} = 736.6 N \\And\\T_2 = \frac{76\times 9.8\times Sin 165}{Sin 95} = 193.5 N \\[/tex]

Suppose the ski patrol lowers a rescue sled and victim, having a total mass of 55.3 kg, down a theta= 79.6º slope at constant acceleration a=-4.3 m/s2, as shown in Figure (here we assume the positive direction is going down the slope. So the given acceleration is a negative value, it means its direction is going up the slope, slowing down as it moving downward). So, the coefficient of friction between the sled and the snow is 0.100. How many Joules of work is done by the tension in the rope as the sled moves 2.1 m along the hill? Use g= 10 m/s2.

Answers

The tension in the rope is doing a work of 1662.544 joules as the sled moves 2.1 meters along the hill.

In this case, we need to construct the Free Body Diagram of the sled-victim System in order to determine what Forces are doing Work. Then, we construct the respective Energy equation by Newton's Laws of Motion, Work-Energy Theorem and definition of Work.

Given that system experiments an uniform Acceleration, we must solve the resulting model for the work done by the Tension in the rope.

From the Free Body Diagram (see image attached), we see that both Weight of the sled and Friction between sled and snow are doing work in favor of gravity, whereas Tension forces is against gravity. Normal force is not doing work as its direction is perpendicular to the direction of motion. The energy equation of this system is:

[tex]-W_{T} + \mu\cdot m\cdot g \cdot s\cdot \cos \theta + m\cdot g\cdot s\cdot \sin \theta = m\cdot a\cdot s[/tex] (1)

Where:

[tex]W_{T}[/tex] - Work done by tension, in joules.

[tex]m[/tex] - Mass of the sled-victim system, in kilograms.

[tex]\mu[/tex] - Coefficient of kinetic friction, no unit.

[tex]g[/tex] - Gravitational acceleration, in meters per square second.

[tex]s[/tex] - Travelled distance, in meters.

[tex]\theta[/tex] - Slope angle, in sexagesimal degrees.

[tex]a[/tex] - Net acceleration of the sled-victim system, in meters per square second.

If we know that [tex]\mu = 0.100[/tex], [tex]m = 55.3\,kg[/tex], [tex]g = 10\,\frac{m}{s^{2}}[/tex], [tex]s = 2.1\,m[/tex], [tex]\theta = 79.6^{\circ}[/tex] and [tex]a = -4.3\,\frac{m}{s^{2}}[/tex], then the work done by the tension in the rope is:

[tex]-W_{T} + \mu\cdot m\cdot g \cdot s\cdot \cos \theta + m\cdot g\cdot s\cdot \sin \theta = m\cdot a\cdot s[/tex]

[tex]W_{T} = \mu\cdot m\cdot g \cdot s\cdot \cos \theta + m\cdot g\cdot s\cdot \sin \theta -m\cdot a\cdot s[/tex]

[tex]W_{T} = (0.100)\cdot \left(55.3\,kg\right)\cdot \left(10\,\frac{m}{s^{2}} \right)\cdot (2.1\,m)\cdot \cos 79.6^{\circ} + \left(55.3\,kg\right)\cdot \left(10\,\frac{m}{s^{2}} \right)\cdot (2.1\,m)\cdot \sin 79.6^{\circ} - (55.3\,kg)\cdot \left(-4.3\,\frac{m}{s^{2}} \right) \cdot (2.1\,m)[/tex]

[tex]W_{T} = 1662.544\,J[/tex]

The tension in the rope is doing a work of 1662.544 joules as the sled moves 2.1 meters along the hill.

Related questions:

https://brainly.com/question/22599382

https://brainly.com/question/15447861

A Ball A and a Ball B collide elastically. The initial momentum of Ball A is -2.00kgm/s and the initial momentum of Ball B is -5.00kgm/s. Ball A has a mass of 4.00kg and is traveling at 2.50 m/s after the collision. What is the velocity of ball B if it has a mass of 6.50kg?

Answers

The velocity of B after the collision is obtained as -2.6 m/s.

What is the principle of conservation of momentum?

Now we now that the  principle of conservation of momentum states that the momentum before collision is equal to the momentum after collision.

Thus;

(-2.00kgm/s) + ( -5.00kgm/s) = ( 4.00kg * 2.50 m/s) + ( 6.50kg * v)

-7 = 10 + 6.5v

-7 - 10 = 6.5v

v = -7 - 10 /6.5

v = -2.6 m/s

Hence, the velocity of B after the collision is obtained as -2.6 m/s.

Learn more about elastic collision:https://brainly.com/question/5719643

#SPJ1

The source of sound moves away from the listener.The listener has the impression that the source is lower in pitch. Why?

Answers

When the source is moving away from the observer the velocity of the source is added to the speed of light. This increases the value of the denominator, decreasing the value of the observed frequency. Frequency corresponds to pitch or tone; a lower observed frequency will result in a lower observed pitch.

The masses of two heavenly bodies are 2×10‘16’ and 4×10 ‘22’ kg respectively and the distance between than is 30000km. find the gravitational force between them ? ans. 2.668× 10-9N​

Answers

[tex]F = 5.93×10^{13}\:\text{N}[/tex]

Explanation:

Given:

[tex]m_1= 2×10^{16}\:\text{kg}[/tex]

[tex]m_2= 4×10^{22}\:\text{kg}[/tex]

[tex]r = 30000\:\text{km} = 3×10^7\:\text{m}[/tex]

Using Newton's universal law of gravitation, we can write

[tex]F = G\dfrac{m_1m_2}{r^2}[/tex]

[tex]\:\:\:\:=(6.674×10^{-11}\:\text{N-m}^2\text{/kg}^2)\dfrac{(2×10^{16}\:\text{kg})(4×10^{22}\:\text{kg})}{(3×10^7\:\text{m})^2}[/tex]

[tex]\:\:\:\:= 5.93×10^{13}\:\text{N}[/tex]

A nearsighted person has a near point of 50 cmcm and a far point of 100 cmcm. Part A What power lens is necessary to correct this person's vision to allow her to see distant objects

Answers

Answer:

P = -1 D

Explanation:

For this exercise we must use the equation of the constructor

       / f = 1 / p + 1 / q

where f is the focal length, p and q is the distance to the object and the image, respectively

The far view point is at p =∞  and its image must be at q = -100 cm = 1 m, the negative sign is because the image is on the same side as the image  

        [tex]\frac{1}{f} = \frac{1}{infinity} + \frac{1}{-1}[/tex]

         f = 1 m

         P = 1/f

          P = -1 D

The 52-g arrow is launched so that it hits and embeds in a 1.50 kg block. The block hangs from strings. After the arrow joins the block, they swing up so that they are 0.47 m higher than the block's starting point. How fast was the arrow moving before it joined the block? What mechanical work must you do to lift a uniform log that is 3.1 m long and has a mass of 100 kg from the horizontal to a vertical position?

Answers

Answer:

[tex]v_1=87.40m/s[/tex]

Explanation:

From the question we are told that:

Mass of arrow [tex]m=52g[/tex]

Mass of rock [tex]m_r=1.50kg[/tex]

Height [tex]h=0.47m[/tex]

Generally the equation for Velocity is mathematically given by

 [tex]v = \sqrt{(2gh)}[/tex]

 [tex]v=\sqrt{(2 * 9.8m/s² * 0.47m) }[/tex]

 [tex]v= 3.035m/s[/tex]

Generally the equation for conservation of momentum is mathematically given by

 [tex]m_1v_1=m_2v_2[/tex]

 [tex]0.052kg * v = 1.5 * 3.03m/s[/tex]

 [tex]v_1=87.40m/s[/tex]

A block weighing 400 kg rest on a horizontal surface and supports on top of it another block of weight 100 kg placed on the top of it as shown. The block W2 is attached to a vertical wall by a string 6 m long. Ifthe coefficient of friction between all surfaces is 0.25 and the system is in equilibrium find the magnitude of the horizontal force P applied to the lower block.

Answers

The horizontal force applied to the lower block is approximately 1,420.85 Newtons

The known parameters are;

The mass of the block, m₁ = 400 kg, weight, W₁ = 3,924 N

The mass of the block resting on the first block, m₂ = 100 kg, weight, W₂ = 981 N

The length of the string attached to the block, W₂, l = 6 m

The horizontal distance from the point of attachment of the second block to the block W₂, x = 5 m

The coefficient of friction between the surfaces, μ = 0.25

Let T represent the tension in the string

The upward force on W₂ due to the string = T × sin(θ)

The normal force of W₁ on W₂, N₂ = W₂ - T × sin(θ)

The tension in the string, T = N₂ × μ × cos(θ)

∴ T = (W₂ - T × sin(θ)) × μ × cos(θ)

sin(θ) = √(6² - 5²)/6

cos(θ) = 5/6

T = (981 - T × √(6² - 5²)/6) × 0.25 × 5/6

Solving, we get;

T ≈ 183.27 N

The normal reaction on W₂, N₂ = T/(μ × cos(θ))

∴ N₂ = 183.27/(0.25 × 5/6) = 879.7

N₂ ≈ 879.7 N

The friction force, [tex]F_{f2}[/tex] = N₂ × μ

∴ [tex]F_{f2}[/tex] = 879.7 N × 0.25 = 219.925 N

The total normal reaction on the ground, [tex]\mathbf{N_T}[/tex] = W₁ + N₂

[tex]N_T[/tex] = 3,924 N + 879.7 N = 4,803.7 N

The friction force, on the ground [tex]\mathbf{F_T}[/tex] = [tex]\mathbf{N_T}[/tex] × μ

∴  [tex]F_T[/tex] = 4,803.7 N × 0.25 = 1,200.925 N

The horizontal force applied to the lower block, P = [tex]\mathbf{F_T}[/tex] + [tex]\mathbf{F_{f2}}[/tex]

Therefore;

P = 1,200.925 N + 219.925 N = 1,420.85 N

The horizontal force applied to the lower block, P ≈ 1,420.85 N

What is an internal resistance?

Answers

Explanation:

some thing inside a resistor

Determine the density in kg \cm of solid whose Made is 1080 and whose dimension in cm are length=3 ,width=4,and height=3 ​

Answers

Answer:

d = 30kg/cm³

Explanation:

d = m/v

d = 1080kg/(3cm*4cm*3cm)

d = 30kg/cm³

Which of the units of the following physical quantities are derived

Answers

Answer:

where is the attachment

Explanation:

Which of the following choices is not an example of climate?
0000
San Diego has mild, warm temperatures and sea breezes year-round.
Anchorage has short, cool summers and long, snowy winters.
It will be 78° on Friday in Clovis.
Florida is tropical, with a significant rainy season.

Answers

Answer:

Florida is tropical, with a significant rainy seson

a stone is thrown vertically upwards with a velocity of 20 m per second what will be its velocity when it reaches a height of 10.2 m​

Answers

Answer:

Explanation:

Here's the info we have:

initial velocity is 20 m/s;

final velocity is our unknown;

displacement is -10.2 m; and

acceleration due to gravity is -9.8 m/s/s. Using the one-dimensional equation

v² = v₀² + 2aΔx and filling in accordingly to solve for v:

[tex]v=\sqrt{(20)^2+2(-9.8)(-10.2)}[/tex]  Rounding to the correct number of sig fig's to simplify:

[tex]v=\sqrt{400+2.0*10^2}[/tex] to get

v = [tex]\sqrt{600}=20\frac{m}{s}[/tex] If you don't round like that, the velocity could be 24, or it could also be 24.5 depending on how your class is paying attention to sig figs or if you are at all.

So either 20 m/s or 24 m/s

I only need help with e (bottom of the page).​

Answers

Explanation:

The box is accelerating along the y-axis at a rate of [tex]+2.5\:\text{m/s}^2[/tex] as well as along the x-axis at a rate of [tex]+5.1\:\text{m/s}^2.[/tex] So the magnitude of the box's total acceleration is given by

[tex]a_T = \sqrt{a_x^2 + a_y^2}[/tex]

[tex]\:\:\:\:= \sqrt{(5.1\:\text{m/s}^2)^2 + (2.5\:\text{m/s}^2)^2}[/tex]

[tex]\:\:\:\:=5.7\:\text{m/s}^2[/tex]

The direction of the acceleration [tex]\theta[/tex] with respect to the horizontal direction is given by

[tex]\theta = \tan^{-1}\!\left(\dfrac{a_y}{a_x}\right) = \tan^{-1}\!\left(\dfrac{2.5\:\text{m/s}^2}{5.1\:\text{m/s}^2}\right)[/tex]

[tex]\:\:\:\:= 26.1°[/tex]

​Determine usando ecuación de Bernoulli la Presión P1 necesaria para mantener la condición mostrada dentro del sistema mostrado en la figura, sabiendo que el aceite tiene un s.g =0.45 y el valor de d=90mm.

Answers

Answer:

PlROCA

Explanation:

You are working on a project to make a more efficient engine. Your team is investigating the possibility of making electrically controlled valves that open and close the input and exhaust openings for an internal combustion engine. Determine the stability of the valve by calculating the force on each of its sides and the net force on the valve.

The valve is made of a thin but strong rectangular piece of non-magnetic material that has a current-carrying wire along its edges. The rectangle is 0.35 cm x 1.83 cm. The valve is placed in a uniform magnetic field of 0.15 T such that the field lies in the plane of the valve and is parallel to the short sides of the rectangle. The region with the magnetic field is slightly larger than the valve. When a switch is closed, a 1.7 A current enters the short side of the rectangle on one side and leaves on the opposite short side of the rectangle. At the suggestion of a colleague, who is hoping to ensure different currents along the sides of the valve, resistors have been included along the wire on each of the short sides of the valve. The value of the resistor on one side is twice that on the other side.

Answers

Answer:

The answer is "0.00466 N".

Explanation:

[tex]F=(B \times i) L\\\\[/tex]

therefore the smaller side is parallel to magnetic field  

[tex]\therefore \\\\F= B i L\ \sin\ 'o'=0 \ N[/tex]

calculating the force on the layer side:

[tex]\to F=0.15 \times 1.7 \times 0.0183 \times \sin 90^{\circ}=0.00466\ N\\\\[/tex]

Therefore [tex]F_o[/tex] the net force on the  rectangular loop [tex]= 0.00466 \ N[/tex]

Is it true that as we gain mass the force of gravity on us decreases

Answers

Answer:

No. As we gain mass the force of gravity on us does not decrease

The cells lie odjacent to the sieve tubes​

Answers

Answer:

Almost always adjacent to nucleus containing companion cells, which have been produced as sister cells with the sieve elements from the same mother cell.

cyclist always bends when moving the direction opposite to the wind. Give reasons​

Answers

When he bends he kinda off his feet and light but if it’s not i’m so sorry this is just my thinking.

find the rate of energy radiated by a man by assuming the surface area of his body 1.7m²and emissivity of his body 0.4​

Answers

The rate of energy radiated by the man is 3.86 x [tex]10^{-8}[/tex]  J/s. [tex]m^{2}[/tex].

The amount of energy radiated by an object majorly depends on the area of its surface and its temperature. The is well explained in the Stefan-Boltzmann's law which states that:

Q(t) = Aeσ[tex]T^{4}[/tex]

where: Q is the quantity of heat radiated, A is the surface area of the object, e is the emmisivity of the object, σ is the Stefan-Boltzmann constant and T is the temperature of the object.

To determine the rate of energy radiated by the man in the given question;

[tex]\frac{Q(t)}{T^{4} }[/tex] = Aeσ

But A = 1.7 m², e = 0.4 and σ = 5.67 x [tex]10^{-8}[/tex] J/s.

So that;

[tex]\frac{Q(t)}{T^{4} }[/tex] = 1.7 * 0.4 * 5.67 x [tex]10^{-8}[/tex]

     = 3.8556 x [tex]10^{-8}[/tex]

     = 3.86 x [tex]10^{-8}[/tex]  J/s. [tex]m^{2}[/tex]

Thus, the rate of energy radiated by the man is 3.86 x [tex]10^{-8}[/tex]  J/s. [tex]m^{2}[/tex].

Learn more on energy radiation of objects by visiting: https://brainly.com/question/12550129

Let A^=6i^+4j^_2k^ and B= 2i^_2j^+3k^. find the sum and difference of A and B​

Answers

Explanation:

Let [tex]\textbf{A} = 6\hat{\textbf{i}} + 4\hat{\textbf{j}} - 2\hat{\textbf{k}}[/tex] and [tex]\textbf{B} = 2\hat{\textbf{i}} - 2\hat{\textbf{j}} + 3\hat{\textbf{k}}[/tex]

The sum of the two vectors is

[tex]\textbf{A + B} = (6 + 2)\hat{\textbf{i}} + (4 - 2)\hat{\textbf{j}} + (-2 + 3)\hat{\textbf{k}}[/tex]

[tex] = 8\hat{\textbf{i}} + 2\hat{\textbf{j}} + \hat{\textbf{k}}[/tex]

The difference between the two vectors can be written as

[tex]\textbf{A - B} = (6 - 2)\hat{\textbf{i}} + (4 - (-2))\hat{\textbf{j}} + (-2 - 3)\hat{\textbf{k}}[/tex]

[tex]= 4\hat{\textbf{i}} + 6\hat{\textbf{j}} - 5\hat{\textbf{k}}[/tex]

A 20 N south magnetic force pushes a charged particle traveling with a velocity of 4 m/s west through a 5 T magnetic field pointing downwards . What is the charge of the particle ?

Answers

Answer:

Charge of the particle is 1 coulomb.

Explanation:

Force, F:

[tex]{ \bf{F=BeV}}[/tex]

F is magnetic force.

B is the magnetic flux density.

e is the charge of the particle.

V is the velocity

[tex]{ \sf{20 = (5 \times e \times 4)}} \\ { \sf{20e = 20}} \\ { \sf{e = 1 \: coulomb}}[/tex]

the number of significant figures in the measurement 4.300×10^5 km are​

Answers

Answer:

6

Explanation

Any numbers in scientific notation are considered significant. For example, 4.300 x 10-4 has 4 significant figures.

Answer From Gauth Math

Consider the nearly circular orbit of Earth around the Sun as seen by a distant observer standing in the plane of the orbit. What is the effective "spring constant" of this simple harmonic motion?
Express your answer to three significant digits and include the appropriate units.

Answers

We have that the spring constant is mathematically given as

[tex]k=2.37*10^{11}N/m[/tex]

Generally, the equation for angular velocity is mathematically given by

[tex]\omega=\sqrt{k}{m}[/tex]

Where

k=spring constant

And

[tex]\omega =\frac{2\pi}{T}[/tex]

Therefore

[tex]\frac{2\pi}{T}=\sqrt{k}{n}[/tex]

Hence giving spring constant k

[tex]k=m((\frac{2 \pi}{T})^2[/tex]

Generally

Mass of earth [tex]m=5.97*10^{24}[/tex]

Period for on complete resolution of Earth around the Sun

[tex]T=365 days[/tex]

[tex]T=365*24*3600[/tex]

Therefore

[tex]k=(5.97*10^{24})((\frac{2 \pi}{365*24*3600})^2[/tex]

[tex]k=2.37*10^{11}N/m[/tex]

In conclusion

The effective spring constant of this simple harmonic motion is

[tex]k=2.37*10^{11}N/m[/tex]

For more information on this visit

https://brainly.com/question/14159361

define nortons theorem​

Answers

Answer:

In direct-current circuit theory, Norton's theorem is a simplification that can be applied to networks made of linear time-invariant resistances, voltage sources, and current sources. At a pair of terminals of the network, it can be replaced by a current source and a single resistor in parallel.

15 . A scientist who studies the whole environment as a working unit .

Botanist
Chemist
Ecologist
Entomologist

Answers

Answer:

Ecologist.

Your answer is Ecologist.

(Ecologist) is a scientist who studies the whole environment as a working unit.

A force of 1000N is used to kick a football of mass 0.8kg find the velocity with which the ball moves if it takes 0.8 sec to be kicked.​

Answers

The velocity of the ball is 100m/s

The first step is to write out the parameters;

The force used to kick the ball is 1000N

The mass of the ball is 0.8 kg

Time is 0.8 seconds

Therefore the velocity can be calculated as follows

F= Mv-mu/t

1000= 0.8(v) - 0.8(0)/0.8

1000= 0.8v- 0.8/0.8

Cross multiply both sides

1000(0.8) = 0.8v

800= 0.8v

divide both sides by the coefficient of v which is 8

800/0.8= 0.8v/0.8

v= 1000m/s

Hence the velocity is 1000m/s

Learn more via the link below;

https://brainly.com/question/16860823?referrer=searchResults

When the drag force on an object falling through the air equals the force of gravity, the object has reached
terminal force.
terminal acceleration,
terminal illness.
terminal velocity

Answers

The answer is terminal force

A bicycle tire with a volume of 0.00210 m^3 is filled to its recommended absolute pressure of 495 kPa on a cold winter day when the tire's temperature is -14°C. The cyclist then brings his bicycle into a hot laundry room at 32°C.

a. If the tire warms up while its volume remains constant, will the pressure increase be greater than, less than, or equal to the manufacturer's stated 10% overpressure limit?
b. Find the absolute pressure in the tire when it warms to 32 degrees Celcius at constant volume.

Answers

(A) The pressure will be greater than 10% overpressure limit.

(B) The final pressure will be "582.915 kPa".

Given:

Volume,

[tex]V = 0.0021 \ m^3[/tex]

Initial pressure,

[tex]P_o= 495 \ kPa[/tex]

Initial temperature,

[tex]T_o = -14^{\circ} C[/tex]

            [tex]= 259 \ K[/tex]

Final temperature,

[tex]T = 32^{\circ} C[/tex]

(B)

Number of moles,

→ [tex]n = (\frac{P_o V}{RT_o} )[/tex]

then,

The final absolute pressure,

→ [tex]P = \frac{nRT}{V}[/tex]

      [tex]= (\frac{P_o V}{RT_o} )(\frac{RT}{V} )[/tex]

      [tex]=(\frac{T}{T_o} )P_o[/tex]

      [tex]= (\frac{305}{259} )\times 495[/tex]

      [tex]= 582.915 \ kPa[/tex]

Thus the above approach is correct.

Learn more:

https://brainly.com/question/13033911

Other Questions
Why is velocity proportial to pressure? Where was the first recognized firefighting force, known as the Familia Publica, organized?RomeLondonNew YorkPhiladelphia blood flows through many small tubes if the dialyser. what is the significance of this 7 root 3 by 3 minus 3 root 2 by root 15 minus 3 root 2 minus 2 root 5 by root 6 + root 5 Your help desk has informed you that they received an urgent call from the vice president last night requesting his logon ID and password. You discussed about the call with the VP today and you got to know he never made that call. What type of attack is demonstrated in the given scenario Lewis Structures are used to describe the covalent bonding in molecules and ions. Draw a Lewis structure for NO3- and answer the following questions based on your drawing. 1. For the central nitrogen atom: The number of lone pairs = ________The number of single bonds=_______ The number of double bonds= ______2. The central nitrogen atom : List the coordinates for the plotted points A, B, C, and D. What is the sum of 2 and 3 subtracted from the product of 2 and the difference of 7 and 4? The answer is 1, but how is it solved? kx - c = 9 solve for x Which tools would I use to heat 400 mL of water Juanita is deciding whether to buy a dress that she wants, as well as where to buy it. Three stores carry the same dress, but it is more convenient for Juanita to get to some stores than others. For example, she can go to her local store, located 15 minutes away from where she works, and pay a marked-up price of $124 for the dress: Store (Minutes) Travel Time Each Way Price of a Skirt (Dollars per skirt)Local Department Store 15 102Across Town 30 85Neighboring City 60 76Assume that Juanita takes opportunity costs and the price of the suit into consideration when she shops. Juanita will minimize the cost of the suit if she buys it from the:______. . In the future, you really ----- plan your finances better.Select one:A. shouldB. has toC. have betterD. need solve this set of equation, using elimination or substitution method. x-2x=8x - 2x - 8 = 0x - 2x - 4x = 0(x - 2) (x - 4)=0x - 2 =0 therefore x = 2orx - 4 =0 therefore x = 4 A loan on an investment property closed on July 1st for $765,000 at 5.5% interest amortized over 25 years at $4,697.77 per month. Using a 360-day year, what would the principal amount be after the monthly payment was made August 1st At the scene of an accident on a country road, police find skid marks stretching for 50 m.Tests on the road surface show that a skidding car decelerates at 6.5 ms-2. Was the car whichskidded exceeding the speed limit of 25 ms-1 (90 kmh-1) on this road?A. Yes B. No C. The information given is not sufficient. May you please rate my game out of ten, and also please telll me what I need to do to improve it, thx.https://scratch.mit.edu/projects/510955319/ Help meeee!!!!Why is it necessary to check total aerobic microorganisms in microbiological quality control but not to test total anaerobic microorganisms? What type of evolutionary adaptations did plants acquire to allow them to grow in areas that were not directly on a water source? A. Angiosperms evolved flowers, which could catch rainwater, reducing the dependence on ground water sources. B. Vascular seedless plants evolved specific structures to transport and hold fluids, reducing dependence on water sources. C. Gymnosperms evolved seeds, which they could alter to need less water. D. Non vascular plants evolved chloroplasts to allow them to get energy from the sun, instead of relying on water for energy. Which is immobile?A car being driven Or...A parked car